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Abstract
Herpes simplex virus type 1 (HSV-1) can induce a robust immune response initially thru the
activation of pattern recognition receptors and subsequent type I interferon production that then
shapes, along with other innate immune components, the adaptive immune response to the insult.
While this response is necessary to quell virus replication, drive the pathogen into a “latent” state,
and likely hinder viral reactivation, collateral damage can ensue with demonstrable cell death and
foci of tissue pathology in the central nervous system (CNS) as a result of the release of inflammatory
mediators including reactive oxygen species. Although rare, HSV-1 is the leading cause of frank
sporadic encephalitis that, if left untreated, can result in death. A greater understanding of the
contribution of resident glial cells and infiltrating leukocytes within the CNS in response to HSV-1
invasion is necessary to identify candidate molecules as targets for therapeutic intervention to reduce
unwarranted inflammation coinciding with maintenance of the anti-viral state.
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1. Introduction to Herpes Simplex Virus-1
HSV-1 is a double-stranded DNA virus with a genome size of 152 kb encoding for at least 84
different polypeptides (McGeoch et al., 1988). During an in vitro acute infection, the lytic
nature of the virus is driven by a sequential cascade of genes (referred to as lytic genes)
expressed collectively over the course of the first 8-12 hours following entry into the host cell
and includes the immediate early or α genes, early or β genes, and late or γ genes (Honess and
Roizman, 1974). It is now appreciated that many of these genes encode proteins that serve dual
functions: assist in the replication of virus and counter the innate or adaptive immune response
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to the pathogen. Ultimately, the success rate of the virus within the human host is dependent
upon its ability to establish a latent infection and then reactivate at opportune times and shed
into bodily secretions that are passed vertically or horizontally to a naive patient.

2. Herpes Spread Into the CNS
HSV-1 gains entry into cells by binding to heparan sulfate proteoglycan and invading the host
cell (neurons) during primary infection (Shieh et al., 1992; WuDunn and Spear, 1989). It has
been shown that this first step of adsorption and infection are severely impaired when enzymatic
digestion of cell surface heparan sulfate is performed, yet unaffected with digestion of dermatan
sulfate or chondroitin sulfate (WuDunn and Spear, 1989). When comparing mutant cells
lacking heparan sulfate to wild types cells, binding is also impaired, (Shieh et al., 1992; Shieh
and Spear, 1994) suggesting the likelihood of heparan sulfate being an initial receptor of
HSV-1. Experimental evidence shows HSV-1 glycoprotein (g) C and gB are vital components
for viral attachment to the host cell (Reske et al., 2007). Without heparan sulfate, the ability
of the virus to attach and infect the host cell is severely impaired.

While the virus can infect cells with the loss of either glycoprotein, a loss of both gC and gB
renders the virion noninfectious. It has also been shown gB binds to specific cell surface
receptors and directly fuses with the cell membrane or enters through fusion within an
endosome in a low pH-dependent or a pH-independent environment (Nicola et al., 2003; Nicola
et al., 2005). Thus, gB is involved in attachment and fusion to many host cell types in some
fashion and coordinates infection in a multitude of cell types including neurons. Following
attachment and fusion, the virus then uses gD interaction with herpesvirus entry mediator,
nectin-1, or 3-O-sulfated heparan sulfate for viral entry (Reske et al., 2007). However, the exact
process and all viral and cellular components involved in attachment and fusion are still unclear.
In the case of neurons, once the virus has entered in an in vivo model of infection, it will then
travel via axonal retrograde transport to infect the cell nucleus of sensory ganglia such as the
trigeminal ganglion within the first 24 hours following infection (Shimeld et al., 2001). The
rapidity of the virus traveling to the neuronal body of the sensory ganglia all but assures escape
from the adaptive immune response such that the host’s innate immune response is the primary
arm of the immune system left to block HSV-1 replication and spread to the CNS. A significant
portion of innate resistance lies with the type I interferon (IFN) response. Consequently, it
should come as no surprise HSV-1 has a number of gene-encoded proteins that specifically
target the type I IFN pathway including infected cell protein (ICP) 34.5, ICP0, and ICP27.

During primary infection HSV-1 replicates and thwarts viral-encoded protein translational
arrest using ICP34.5 and ICP27 to inhibit activated protein kinase R and Jak/STAT signaling
respectively in response to a vigorous immune response (Leib et al., 2000; Mossman and
Smiley, 2002; Johnson et al., 2008). The virus circumvents host cell defense using ICP0 and
virion host shutoff (vhs) antagonism of Stat I and thus IFN production (Yokota et al, 2001;
Chee and Roizman, 2003; Halford et al., 2006; Pasieka et al., 2008; Harle et al., 2002). ICP0
accomplishes this process by inhibiting activation and nuclear accumulation of interferon
regulatory factor (IRF)-3 and IRF-7 mediated by the ICPO RING finger domain (Lin et al.,
2004; Melroe et al., 2004). In addition, ICP0 disperses nuclear domain-10 nuclear bodies that
are normally associated with transcription regulation, growth suppression, and apoptosis (Maul
et al., 1993; Everett and Zafiropoulos, 2004). Contrary to previous studies (Steiner et al.,
1990; Sears et al., 1991; Ecob-Prince et al., 1993), a recent in vivo investigation has reported
that virus lacking an early transcribed viral particle-16 (VP16), which mediates transcription
of immediate early genes, does not exit latency (Thompson et al., 2009). In addition, it has also
been reported ICP0 deficient HSV-1 maintains similar viral protein levels as the parental wild
type counterparts in cell culture (Thompson et al., 2009) and are still able to reactivate (Preston,
2007). Taken together, these studies suggest VP16 could play a role in mediating transcription
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of early viral particles but also rely on ICP0-mediated interference of host anti-viral defenses
to fully reactivate. Whether these coordinated events allow the virus to exit latency and
reactivate still remains unproven. The impact of ICP0 expression in the CNS is not fully
understood although ICP0 mutants do not replicate to the same extent as parental virus unless
the type I IFN pathway is compromised (Halford et al., 2006). Conversely, over expression of
type I IFNs in the CNS is found to enhance resistance to HSV-1 infection (Carr et al., 1998).
Therefore, it would appear to be a race between type I IFN activation of antiviral pathways
and HSV-encoded proteins to counter the effects of the IFN pathway and the adaptive immune
response that ultimately dictates whether the virus will prevail and establish a latent infection.

After the acute infection, the virus establishes latency in A5+ and KH10+ sensory ganglion
cells (Bertke et al., 2009) and is thought to remain dormant until reactivation. Experimentally
though, HSV-1 causes localized incomplete or low level lytic infection (Feldman et al.,
2002) causing a persistent immune response during latency (Cantin et al., 1995; Shimeld et al.,
1995; Halford et al., 1996; Liu et al., 1996). Daily exposure to the antiviral drug acyclovir
significantly reduces the localized immune response within the ganglion during latency
(Halford et al., 1997). Thus, the virus continuously undergoes incomplete or low level
reactivation until such circumstances allow it to fully reactivate and perpetuate spread to naive
recipients.

3. Host Cell Response to HSV-1 Infection: The Toll-like receptor (TLR)
The lytic cycle of HSV-1 evokes an intricate immunological response in the CNS. One of the
earliest steps in the immune process is the binding of viral invariant structures known as
pathogen-associated molecular patterns (PAMPs) to toll-like receptors (TLRs), a type of
pattern recognition receptor (PRR), to initiate the innate immune response and inflammation
(Medzhitov and Janeway, 2002). TLRs are single membrane spanning receptors with
extracellular leucine-rich repeats and an intracellular signaling Toll/IL-1 receptor domain
[TIR] (Takeda et al., 2003) found on cell membranes and cell compartments that recognize
specific molecular patterns. Once they bind foreign molecules like HSV-1 proteins or viral
nucleic acid, they activate the innate immune response by dimerizing and inducing the
production of chemokines, proinflammatory cytokines, and up-regulation of cell surface
receptors through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), or
a p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (Jnk)
activation of AP-1 (Akira et al., 2001; Karin, 1995). These molecules drive inflammation and
prime the host adaptive immune response through further signaling pathways (Fig. 1). One
critical anti-viral group of molecules elicited by 5 of the 10 human TLRs and 4 of the 12 mouse
TLRs are the type I IFNs (Zhang et al., 2007a).

Several TLRs have been implicated as important mediators of viral containment and/or
destructive inflammation in response to HSV-1 infection of the CNS. Specifically, one of the
most important TLRs to mediate host cell response to HSV-1 is TLR-2, which is found on the
cell surface of microglia and astrocytes in the CNS (Kielian, 2006). TLR-2 signals through a
myeloid differentiation factor 88 (MyD88) or toll-interleukin 1 receptor domain containing
adaptor protein (TIRAP)-dependent cascade to activate downstream DNA binding proteins
like NF-κB to increase transcription of various interleukins (IL) and tissue necrosis factor
(TNF) (Yamamoto et al., 2002; Akira and Takeda, 2004; Akira et al., 2006; O’Neill and Bowie
2007). It has been reported TLR-2 deficient mice have a blunted cytokine and chemokine
(monocyte chemoattractant protein1) response to lethal HSV-1 infection, yet a reduction in
mortality, inflammatory brain lesions, partial or total paralysis, and/or seizures (Kurt-Jones et
al., 2004). Another group has reported TLR-2 acts in concert with TLR-9 to control HSV-1
and HSV-2 infection through NK cell recruitment in the brain to decrease viral loads (Sato et
al., 2006; Sorensen et al., 2008). How such observations can be reconciled is currently
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unknown. Identifying the role of various TLRs and downstream pathways activated in the CNS
in response to HSV-1 continues to be an actively studied area.

Another aspect of the immune response regulated by TLR-2 is the induction of the IL-15 gene
in response to HSV-1 (Ahmad et al., 2008). IL-15 with IL-21 elicits proliferation of naive and
memory CD8+ T cells (Rodrigues et al., 2009) that likely monitor and control virus replication
and spread. One detrimental outcome from CD8+ T cell activation is the targeted destruction
of virally-infected cells which could have significant consequences as a contributor to
neuropathology dependent upon the viral load within the CNS (Lellouch-Tubiana et al.,
2000; Anglen et al., 2003).

TLR-3 is found in cell compartments of microglia, astrocytes, oligodendrocytes, and neurons
(Bsibsi et al., 2002; Olson and Miller, 2004; Carpentier et al., 2005; Farina et al., 2005; Prehaud
et al., 2005; Scumpia et al., 2005). It has been shown to prime the immune system in response
to double-stranded HSV-1, non-transcribed RNA intermediates during infection through a
MYD88-independent pathway resulting in the activation of NF-κB and IRF-3 (Alexopoulou
et al., 2001; Doyle et al., 2002; Akira and Takeda, 2004; Takeda and Akira, 2004; Boehme and
Compton, 2004; Akira et al., 2006; O’Neill and Bowie 2007; Onoguchi et al., 2007). While
NF-κB is activated by other TLRs in response to HSV-1, IRF-3 is mobilized solely by TLR-3
or -4 and induces a specific set of genes necessary for viral defense (Doyle et al., 2002). In
individuals lacking TLR-3 and thus IRF-3 activation, an impaired IFN-dependent containment
of the virus has been reported (Casrouge et al., 2006). The susceptibility is likely due to a
decreased ability to signal through TIR-domain-containing adaptor-inducing IFN-β (TRIF), a
binding protein that interacts with TLR-3 (Sato et al., 2000; Yamamato et al., 2003; Town et
al., 2006; Zhang et al., 2007b). Thus, cells are unable to activate antiviral effector molecules
including RNAse L and double-stranded RNA-dependent protein kinase (PKR) to inhibit viral
spread and can succumb to encephalitis like that reported in West Nile Virus
meningoencephalitis (Samuel et al, 2006). TLR-3 activation in neuronal cells is associated with
increased resistance to HSV-1 infection and an increase in the production and heightened
response to IFNs (Prehaud et al., 2005; Delhaye et al., 2006; Boivin et al., 2008; Zhou et al.,
2009). Such observations reinforce the central role of type I IFNs as necessary components to
contain virus within the CNS (Delhaye et al., 2006).

TLR-9, a PRR that recognizes unmethylated CpG DNA, (Akira and Hemmi, 2003; Takeda et
al., 2003; Hemmi et al., 2003) is found in endosomes/vacuolar compartments of microglia and
astrocytes (Dalpke et al., 2002; Bsibsi, et al., 2002; Bowman et al., 2003; Olson et al., 2004;
Jack et al., 2005). It mediates an early and rapid production of type I IFNs through an IRAK-4
and MYD88-dependent pathway in response to HSV-1 (Krug et al., 2004; Kawai et al.,
2004; Yang et al., 2005; Rasmussen et al., 2007). Recently, TLR-9 has been found to operate
through the PI(3)K-mTOR-p70S6K pathway in plasmacytoid dendritic cells to induce type I
IFNs (Cao et al., 2008). TLR-9 has also been implicated in influencing hematopoiesis towards
production of plasmacytoid and IFN producing killer dendritic cells at the expense of lymphoid
precursors (especially B lymphocytes) (Welner et al., 2008). This becomes relevant in viral
infections that activate TLR-9 since plasmacytoid dendritic cells can secrete large amounts of
IFNs once mature and thus become a vital link between host innate and adaptive immune
systems (Biron, 2001; Dai et al., 2004; Kadowaki et al., 2000).

4. The Interferon Response to HSV-1 in the CNS
Binding of viral particles and activation of PRRs, such as mannose receptors, TLRs, and
cytosolic receptors induce type I IFN production through MYD88-dependent and -independent
pathways (Malmgaard, 2004; Malmgaard et al., 2004). Type I IFNs are secreted by infected
cells and work in an autocrine or paracrine manner to induce resistance to viral spread. They
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play a vital role in the host cell response signaling through the Jak-Stat pathway (Darnell et
al., 1994; Aaronson and Horvath, 2002; Malmgaard, 2004) and induce expression of RNAse
L, PKR, and Mx protein GTPases (Zhou et al., 1993; Samuel, 2001). RNAse L acts to degrade
all intracellular mRNA (cellular and foreign), while PKR causes translation cessation. These
two processes drastically reduce viral replication in the cell and are used by the cell to inhibit
viral proliferation. In addition to these anti-viral properties, PKR and RNAse L are mediators
of cell death through apoptosis (Zhou et al., 1997; Barber, 2005).

IFNs also augment maturation of dendritic cells and activate NK cells, dendritic cells, B and
T lymphocytes (Mossman and Ashkar, 2005) and maintain and facilitate clonal expansion of
activated T cells (von Hoegen, 1995; Marrack et al., 1999; Kolumam et al., 2005). IFN-α
enhances TLR responsiveness by up-regulating TLR-3, -4, and -7 (Siren et al., 2005; Tissari
et al., 2005) priming these cells to produce massive quantities of IFNs and cytokines (Garcia-
Sastre and Biron, 2006). If such production arises in organized lymphoid tissue, the paracrine
signaling acts to promote clonal expansion of cytotoxic T cell precursors (Curtsinger et al.,
2005).

Experimentally in the absence of the type I IFN receptor (IFNAR), mice succumb to systemic
HSV-1 dissemination (Luker et al., 2003) with two- to three-fold increased levels of circulating
monocytes and neutrophils (Muller et al., 1994). The leukocytosis is likely due in part to TLR-9
driven myeloid cell differentiation (Welner et al., 2008). In the absence of the principal subunit
of the type I IFN receptor IFNAR-A1 (CD118-/-), the increased sensitivity to HSV-1 infection
is reflected by a loss of draining mandibular lymph node integrity. There is a massive loss of
T and NK cells as well as macrophages in the lymph nodes (Conrady et al., 2009) evident by
the pronounced loss of primary and secondary follicles by day 5 post infection (Fig. 2). As a
result, the generation of HSV-specific cytotoxic T cells is dramatically reduced which likely
contributes to poor viral surveillance in the peripheral and central nervous systems resulting
in rapid death (Fig. 3) (Conrady et al., 2009).

Although T cell numbers are reduced within the nervous system of the CD118-/- mice,
macrophage numbers are elevated (Conrady et al., 2009). The effect of increased macrophage
trafficking to the CNS has not been firmly established. However, one group has found depletion
of neutrophils or macrophages during HSV-1 infection increases mouse survival (Lundberg et
al., 2008). The authors conclude the inflammatory response and increased mortality is due to
a failure to control inflammation rather than HSV-1 destruction of the CNS. While the study
seems to implicate macrophage and neutrophil-dependent CNS devastation in response to
HSV-1 infection, further studies are required to eliminate the contribution of additional
leukocyte populations in the neuropathology.

In addition to the risk of disseminated disease, the lack of IFNs or a pathway intermediate in
the production of IFNs can have drastic consequences as well. For example, an autosomal
recessive deficiency in UNC-93B (an endosomal protein important in TLR-3, TLR-7, and
TLR-9 signaling) found in some children is found to increase susceptibility to herpes
encephalitis due to a deficiency in IFN-α/β production through TLR-3 signaling, yet these
children have a typical immune response to other viral encounters (cytomegalovirus, varicella
zoster virus, Epstein-Barr virus, parvovirus B19, respiratory syncitial virus, parainfluenza-1,
influenza A and B, human herpes virus-6, and immunized with live measles/mumps/rubella
and poliovirus vaccines) (Casrouge et al., 2006). Thus, UNC-93B-dependent production of
IFNs is necessary for host defenses against CNS HSV infection, yet seems to be redundant for
effective immune responses to other pathogens.

Clearly, the inability to generate a robust adaptive immune response due to aberrant innate
immune activation will ultimately lead to a loss in viral containment and spread from the
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peripheral nervous system to various areas of the brain. The toxic metabolites of large numbers
of activated microglia including nitrous oxide could cause widespread damage (Marques et al.,
2008) and thus severe CNS pathology. Therefore, the question arises: is it the loss of viral
containment within the periphery resulting in a large viral burden in the CNS which then elicits
resident cell (astrocyte and microglia) activation and production of toxic metabolites that
ultimately harms the host, the recruitment of activated leukocytes (e.g., macrophages, CD4+

and CD8+ T cells) that release cytolytic molecules resulting in massive cell death of infected
neurons, astrocytes, and oligodendrocytes, or the combination of these events that contributes
to significant neuropathology including encephalitis? Ironically, one report suggests microglia,
unlike astrocytes, harbor HSV-1 without overt cytopathic effect and therefore, may act as a
reservoir for persistent low level release of virus and cytokines that over a long period of time
may have detrimental consequences to the host (Baker et al., 1999).

5. Clinical Course: the human significance
HSV-1 is a highly successful human pathogen. This is shown by seroprevalance studies
demonstrating widespread transmission in childhood such that 39% of individuals 14-19 years
of age are already infected, and prevalence rates increase to 65.3% by middle adulthood (Xu
et al., 2006). The vast majority of transmission in the general population is through saliva and
less commonly through genital transmission, and infection is usually asymptomatic or manifest
as a simple “cold sore” on the labia with little further sequelae. Nevertheless, a small fraction
of patients HSV-1 infection develop more serious diseases of the CNS, the most notable of
which is encephalitis. The yearly incidence of HSV-1 encephalitis has been estimated at 2-4
cases /1,000,000 individuals (Hjalmarrson et al., 2007; Skoldenberg et al., 1984; Whitley,
2006). It is also the most common cause of sporadic viral encephalitis and was responsible for
75% of hospitalizations for viral encephalitis in the United States prior to the introduction of
West Nile Virus to North America (Khetsuriani et al., 2002).

HSV-1 encephalitis occurs in all age groups and has been described as having a bi-modal
distribution although the majority of cases are in adults over the age of 50 (Hjalmarrson et al.,
2007; Whitley, 1990.). Earlier reports suggested that it was not more common in
immunosuppressed patients; however, more recent studies identified children specific
mutations in UNC-93B and in TLR3 that impair host defenses against HSV (Zhang et al.,
2008). By comparison, individuals with IFNγ-R-deficiency, STAT 1 deficiency, or
pharmacological immunosuppression such as by anti-TNF-α monoclonal antibody are also at
risk for HSV encephalitis as well as a variety of other viral and bacterial infections (Dupuis et
al., 2003; Dorman et al., 1999; Bradford et. al., 2009.).

More than 80% of patients with HSV-1 encephalitis present with the triad of fever, headache,
and altered level of consciousness and 97% of patients with biopsy proven HSV infection have
CSF pleocytosis (Whitley et al., 1982). Other less common presentations are also possible such
as a symmetrical brainstem inflammatory course with lesions associated with vasogenic edema
(Miura et al., 2009). In addition, the presentation in neonates and young children differs from
that of adults by being more frequently diffuse and or multi-focal (Kleinschmidt-DeMasters
and Gilden, 2001; Batnitzky et al., 1986). These different presentations may reflect different
mechanisms of CNS invasion between adults on the one hand and neonates / young children
on the other. For example, recent data show that 34% of 32 children aged 9-44 months with
primary HSV-1 gingivostomatitis were viremic by polymerase chain reaction (PCR) (Harel et
al., 2004.). Although viremia can also be demonstrated in adults, it is possible that immaturity
of the blood-brain barrier and the immune system in young children allow the virus to seed the
CNS in a fashion not found in adults which lends itself to multi-focal or atypical disease in the
setting of reactivation. Signs of temporal lobe involvement, e.g. personality changes, are
suggestive of HSV encephalitis history, but clinical features and routine CSF parameters
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(protein concentration, leukocyte count, erythrocyte count) alone are not sufficient to
distinguish CNS infection caused by HSV from encephalitis caused by other pathogens or to
exclude it from further consideration (Whitley et al., 1982; Whitley et al., 1989). Definitive
diagnosis requires demonstration of virus in the cerebral spinal fluid (CSF) or brain tissue by
culture or histology, but it is most commonly accomplished by PCR methodology of CSF
(Cinque et al., 1996.) Use of PCR containing multiple species-specific primer pairs has the
advantage of distinguishing HSV-1 from other neurotropic herpesviruses such as HSV-2 and
varicella zoster virus (VZV), as well as identifying mild or atypical cases of HSV-1 infection
(Ihekwaba et al., 2008; Fodor et al., 1998). Gadolinium-enhanced magnetic resonance imaging
is the optimal choice for neuroimaging and electroencephalography can reveal a characteristic
temporal focus of periodic lateralized epileptiform discharges that suggests a diagnosis of HSV
encephalitis (Steiner et al., 2005). On a histological level most cases in adults show a
characteristic necrotizing, hemorrhagic encephalitis that is usually in a frontal-temporal
distribution (Kleinschmidt-DeMasters and Gilden, 2001).

Before effective antiviral agents were available, HSV encephalitis had a mortality rate widely
quoted at 70% and permanent neurological deficits afflicted many, if not most, of the survivors
(Whitley et al., 1977). The superiority of acyclovir over vidarabine was established by 2
landmark clinical trials over 20 years ago and acyclovir remains the drug of choice for treatment
for most patients today (Sköldenberg et al., 1984; Whitley et al., 1986). The main exception
to this is individuals infected with acyclovir resistant virus. This is quite uncommon (< 1%) in
the general population, but can be problematic in immunosuppressed patients reaching levels
as high as 30% in some bone marrow transplant patients (Kimberlin, 2007). In such cases
treatment options include cidofovir and foscarnet, drugs that are more toxic than acyclovir yet
retain activity against acyclovir-resistant virus (Losada et al., 2002; Superti et. al., 2008).
Nonetheless, even with treatment these studies and others report mortality rates of 14%-28%
and severe neurological disabilities in an additional 9%-33% with a high prevalence of seizures
(Raschilas et al., 2002; McGrath et al., 1997; Hjalmarrson et al., 2007.). In contrast only 38%
to 65% of affected individuals have a good outcome, i.e. return to pre-infection level of
functioning.

This unsatisfactory prognosis begs the question of the extent to which modulators of the
immune response, e.g. glucocorticoids, could improve outcomes in HSV encephalitis as they
have been shown to do in some forms of bacterial meningitis. However, unlike the situation
with bacterial meningitis, there are no randomized, placebo-controlled trials demonstrating the
effectiveness of corticosteroids in humans with HSV encephalitis on which to base strong
recommendations (Steiner et al., 2005, Tunkel et al., 2008, Fitch and van de Beek, 2008).
Nevertheless, experimental rodent models of HSV encephalitis and anecdotal experience in
humans may be instructive. For example, studies using dexamethasone alone beginning 3 days
after intranasal infection of mice showed reduced viral replication and prolonged survival
compared with no treatment (Sergerie et al., 2007). In a different study, mice treated with
acyclovir plus methylprednisolone resulted in a significant reduction of the severity of long-
term MRI abnormalities and no increase in viral replication compared with acyclovir treatment
alone (Meyding-Lamade et al., 2003). In addition, there are case reports in adult and pediatric
clinical medicine also suggest that high doses of corticosteroids are not harmful, and can be
helpful in selected patients such as those with severe brain edema (Nakano et al., 2003;
Musallam et al., 2007). Furthemore, a retrospective analysis of 45 patients treated for HSV
encephalitis, some of whom received dexamethasone, found that receiving this drug in addition
to acyclovir was an independent predictor of a good outcome (Kamei et al., 2005). These data
and others provided a rationale for a multicenter, randomized, placebo-controlled trial known
as the GACHE trial (German trial of Acyclovir and Corticosteroids in Herpes-simplex-virus-
Encephalitis) designed to answer the question of whether dexamethasone should be used along
with acyclovir as adjunctive therapy to diminish collateral damage that ensues as a result of
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infection and the immune response to it (Martinez-Torres et al., 2008). Until systematic clinical
studies like the GACHE trial show the efficacy of steroid therapy as well as the optimal protocol
for their dosage and administration, the use of adjunctive corticosteroids remains an option for
adjunctive therapy in patients with HSV encephalitis and severe brain edema or vasculitis left
to the judgment of the attending physician (Fitch and van de Beek, 2008).

6. Potential long-term consequences of HSV-1
HSV-1 infection of the CNS can have lifelong effects such as permanent temporal lobe damage.
Recent reports have surfaced that link Alzheimer’s disease and HSV-1 (Dobson and Itzhaki et
al., 1999; Itzhaki and Wozniak, 2008) consistent with an earlier report (Middleton et al.,
1980). HSV-1 has been shown to phosphorylate microtubule-associated tau, the main
component of neurofibrillary tangles found in Alzheimer’s disease, at several sites including
serine 202, threonine 212, serine 214, serine 396, and serine 404 (Wozniak et al., 2009). The
virus has also been shown to lead to dramatic increases in the intracellular levels of β-amyloid
proteins, the major protein found in senile plaques of Alzheimer’s disease in neuronal and glial
cell cultures (Wozniak et al., 2007). These neurofibrillary tangles and senile plaques in the
CNS are pathopnuemonic for a diagnosis of Alzheimer’s disease in the elderly with dementia.
If indeed HSV-1 is proven to be one of several neurotropic pathogens that contribute to CNS
disease including Alzheimer’s, alternative treatment options including vaccines (Lin et al.,
2001) may limit the long-term consequences of CNS destruction.

7. Conclusion
While many studies are beginning to implicate the immune response to HSV-1 and its various
cell populations (e.g. microglia, CD8+ T cells) in causing widespread CNS pathology (Fischer
and Riechman, 2001; Anglen et al., 2003; Bien and Bauer, 2005; Skoldenberg et al., 2006;
Sobel et al., 1986; Marques et al., 2008), the exact cause of the extensive destruction of the
CNS is still unclear. The issue arises that only a few studies have incorporated human subjects
or even animal models to study the response to HSV-1 making it difficult to apply to clinical
medicine. The complex interaction between the immune response and the virus cannot be
distilled down in vitro using cell lines and targeted mutations of select HSV-1 genes as this
would exclude the host adaptive immune response, a major component involved in the
maintenance of viral latency (Knickelbein et al., 2009) and tissue damage associated with much
of the morbidity in the human host. Thus, emphasis should be placed on in vivo models
including cases of human genetic anomalies (Casrouge et al., 2006) in order to attain a better
understanding of components that contribute to CNS pathology in response to HSV-1.
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Figure 1.
Mechanisms of HSV-1-mediated antagonism of TLR-dependent, anti-viral pathways. TLR-3
signals in a MYD88-independent manner to induce interferon production, while TLR-9
activates inflammatory cytokines and interferons through a MYD88-dependent pathway in
response to HSV-1 infection. HSV-1 blocks ND10 accumulation in the nucleus, PKR activity,
and Jak/STAT signaling with a cumulative effect that renders the infected cell highly
susceptible to viral replication.
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Figure 2.
The absence of a functional type I IFN receptor results in a massive loss of cells populating
the draining (mandibular) lymph node following ocular HSV-1 infection. Wild type and
IFNRA1 deficient mice (CD118-/-) were infected with 1,000 plaque forming units of HSV-1
(McKrae strain) in the cornea. Five days post infection, the mice were exsanguinated and the
mandibular lymph nodes were removed, sectioned, and H&E stained. The results are
representative of three experiments, two mice/group/experiment. (a) Wild type mouse lymph
node showing normal lymph node integrity at 40x magnification and (b) 100x magnification.
(c) Lymph node from a CD118-/- mouse with widespread cell death resulting in a loss of cells
at 40x magnification, and (d) 100x magnification.
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Figure 3.
Type I IFN receptor deficient mice show increased expression of HSV-1 antigen and reduced
CD3+ T cell infiltration in the trigeminal ganglia following ocular infection with HSV-1. Wild
type and IFNRA1 deficient mice (CD118-/-) were infected with 1,000 plaque forming units of
HSV-1 (McKrae strain) in the cornea. Five days post infection, the mice were exsanguinated
and the trigeminal ganglia were removed and processed for whole mount staining using
polyclonal phycoerythrin-conjugated anti-HSV-1 (red) and fluorescein isothiocyanate-
conjugated anti-CD3 (green) antibodies. (a) Trigeminal ganglion of a wild type mouse at 400x
magnification showing T cell infiltration with little appreciable HSV-1 antigen expression.
(b) Trigeminal ganglion from a CD118-/- mouse at magnification of 400x with a constellation
of HSV-1 antigen expression but few T cells residing in the tissue. Nuclei were stained with
DAPI (blue). This figure is representative of three trigeminal ganglia per group.
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