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Introduction

Life on earth is absolutely dependent on sulphur (S) and nitro-
gen (N). In plants, S is mainly taken up from the soil as sul-
phate, the oxidized form of S, before reduction and metabolism 
into S-containing compounds.1-3 Animals are unable to reduce 
sulphate and thus require S-containing amino acids (such as 
cysteine and methionine) or proteins as diet. Therefore, sulphate 
assimilation by plants is essential for all life on earth. The pres-
ence of S in many redox mediators also highlights its importance 
for signaling processes.4,5 Likewise, plants recruit N mainly from 
the soil as nitrate, which is reduced to ammonium before integra-
tion into N-containing compounds. N supply is a limiting factor 
for plant growth and ultimately for the production of food for 
heterotrophic organisms (reviewed in refs. 6–9).

The second steps in the reduction of sulphate and nitrate 
are mediated by the enzymes sulphite and nitrite reductases 
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Life on earth is dependent on sulphur (S) and nitrogen (N). in 
plants, the second step in the reduction of sulphate and nitrate 
are mediated by the enzymes sulphite and nitrite reductases, 
which contain the iron (Fe)-containing siroheme as a cofactor. 
it is synthesized from the tetrapyrrole primogenitor uropor-
phyrinogen iii in the plastids via three enzymatic reactions, 
methylation, oxidation and ferrochelatation. without siroheme 
biosynthesis, there would be no life on earth. Limitations in 
siroheme should have an enormous effect on the S- and N-
metabolism, plant growth, development, fitness and reproduc-
tion, biotic and abiotic stresses including growth under S, N and 
Fe limitations, and the response to pathogens and beneficial 
interaction partners. Furthermore, the vast majority of redox-
reactions in plants depend on S-components, and S-containing 
compounds are also involved in the detoxification of heavy 
metals and other chemical toxins. Disturbance of siroheme 
biosynthesis may cause the accumulation of light-sensitive in-
termediates and reactive oxygen species, which are harmful, 
or they can function as signaling molecules and participate in 
interorganellar signaling processes. This review highlights the 
role of siroheme in these scenarios.
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(SiR, NiR). Higher plant SiRs and NiRs contain siroheme as 
prosthetic group which is central to the catalytic activity of the 
higher plant enzymes10 and catalyze the six electron reduction of 
sulphite and nitrite, respectively. Thus, assimilation of all inor-
ganic S and the majority of N in the biosphere depend on the 
availability of siroheme and without siroheme, there would be 
no reduced S for the synthesis of the amino acids cysteine and 
methionine and for the biogenesis of Fe-S centers. Interestingly, 
both SiRs and NiRs also contain a Fe-S cofactor.11

Biosynthesis of Siroheme

In higher plants tetrapyrrole synthesis occurs in plastids,12,13 
where it is initiated by the reduction of the glutamyl moiety of 
glutamyl-tRNA to glutamate-1-semialdehyde. Intermolecular 
transamination of glutamate semialdehyde generates 5-amin-
olevulinic acid (ALA), which is then transformed into the first 
macrocyclic intermediate of the pathway, uroporphyrinogen III, 
by the enzymes ALA dehydratase, porphobilinogen deaminase, 
and uroporphyrinogen III synthase.14-17 ALA dehydratase con-
verts two molecules of ALA to porphobilinogen (PBG) and PBG 
deaminase and uroporphyrinogen III cosynthase condense four 
molecules of PBG and inverse the ring D to form uroporphy-
rinogen III (Fig. 1). It represents the first branch point in the 
pathway, as methylation of this intermediate directs it toward 
siroheme synthesis, whereas decarboxylation steers it toward 
heme and chlorophyll synthesis.18

Siroheme biosynthesis from uroporphyrinogen III is medi-
ated by three enzymatic reactions (Fig. 2): (1) Two methyla-
tion steps, (2) oxidation and (3) ferrochelatation. Methylation 
in rings A and B by uroporphyrinogen III methyltransferase 
(Upm, At5g40850, acc. no. in Arabidopsis) forms first pre-
corrin-1 (first methylation step) and then precorrin-2 (second 
metylation step) for siroheme synthesis, while decarboxylation 
by uroporphyrinogen III decarboxylase generates copropor-
phyrinogen III leading to chlorophyll and heme biosynthesis. 
UPM requires S-adenosyl-L-methionine as a methyl donor and 
has been characterized from a wide variety of species includ-
ing higher plants.8,13,19 Precorrin-2 is further dehydrogenated 
to sirohydrochlorin and Fe is inserted to the center of the tet-
rapyrrole to form siroheme by sirohydrochlorin ferrochelatase  
(SirB; At1g50170, acc. no. in Arabidopsis). A gene/enzyme 
for the second step is not yet known in plants (Fig. 2).  
Interestingly, not only SiR and NiR, but also SirB contain  
2Fe-2S centers.11
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Figure 1. Tetrapyrrole biosynthesis pathway leading to chlorophylls, siroheme and phytochromes. Crucial enzymes are in red: HemA, Glu trNA 
synthase, POr, protochlorophyllide oxidoreductase. Chelexed ions are in green. Yellow boxes: enzymes and subtrates, which require siroheme and 
heme, respectively. Blue error: feedback regulation of HemA enzyme activity.

Figure 2. Siroheme biosynthesis from uroporphyrinogen iii. The plant, yeast and bacterial enzymes are indicated. For details, see text.
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a C-terminal histidine-rich region that may be important for 
metal delivery and/or storage, and may also contain an Fe-S cen-
ter. Both are found in a wide range of bacteria. This subgroup 
also contains single domain proteins from archaea and bacteria 
which may represent the ancestral form of ferro- and cobalt-
chelatases. Thus, the nuclear-encoded sirb gene of higher plants 
is of prokaryotic origin. The gene became part of the eukryotic 
cell after the stable establishment of the endosymbiosis and must 
have been shifted from the plastid genome to the nucleus.

Uroporphyrinogen III is a Light Sensitive Component

Interestingly, the tetrapyrrole primogenitor uroporphyrinogen 
III is the first light-sensitive compound in the tetrapyrrole bio-
synthesis pathway. Accumulation of uroporphyrin III, a non-
enzymatic oxidation product of uroporphyrinogen III, is likely to 
cause photodamage and to initiate ROS formation in the plastids 
and the cells. The tetrapyrolle biosynthesis pathway in higher 
plants is highly regulated through metabolic feedback inhibition 
of Glu tRNA reductase (HemA) by heme and Pchlide presum-
ably via the FLU protein.28,29 HemA responsible for the synthesis 
of ALA is located upstream of UPM that methylates uroporphy-
rinogen III, and thus regulates ALA and siroheme biosynthesis. 
The feedback regulation ensures that the light-sensitive interme-
diates do not accumulate in the chloroplasts, when they are not 

In yeast, the first step in this pathway is catalyzed by an 
enzyme called Met1p, which shows no homology to UPM from 
higher plants (Fig. 2). The last two steps are catalyzed by a single 
bifunctional enzyme called Met8p,20 which houses both dehy-
drogenase and chelatase functionalities within the same active 
site (reviewed in ref. 21; Fig. 2). However, no orthologs of Met8p 
are found in higher plants.

In some bacteria, the transformation of dihydrosirohydro-
chlorin into siroheme is catalyzed by two separate enzymes called 
SirC (dihydrosirohydrochlorin dehydrogenase) and SirB.22,23 The 
latter inserts ferrous Fe into sirohydrochlorin to give siroheme. 
Interestingly, CysG, a homodimeric enzyme of 50-kDa sub-
units from bacteria such as S. enterica serovar typhimurium and 
Escherichia coli, catalyzes all reactions.15,24,25

Little is known about the regulation of siroheme biosynthesis 
in higher plants. As expected, knock-out lines for the two known 
plant enzymes UPM and SirB are lethal, thus only manipulation 
of the upm and sirb mRNA levels in plants will allow the analysis 
of these enzymes by genetic approaches.

Several evolutionary related chelatases insert various ions into 
the tetrapyrrole skeleton (reviewed in ref. 26; Fig. 3). Many of 
the SirB protein sequence of both higher plants and bacteria are 
closely related to CbiXs, cobalt chelatases from bacteria.27 They 
are responsible for the chelation of Co2+ into sirohydrochlorin 
and important for vitamin B12 biosynthesis. CbiX often contains 

Figure 3. role of Fe, Fe-S clusters and siroheme in the metabolism of a plant cell. The synthesis of siroheme and heme from uroporphyrinogen iii 
and the uptake and assimilation of S, N and Fe is shown. Dashed lines show the requirement of these compounds as cofactors and their involvement in 
biological pathways (yellow boxes). ProFC, protochlorophyllide ferrochelatase; irT1, inducible iron transporter 1, FrO2, ferric-chelate reductase 2.
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at least for Brassicaceae, that the S metabolism is controlled by 
beneficial microbes for two reasons: to strengthen plant perfor-
mance by a better supply of S, and to promote the S-dependent 
defense machinery for better protection against pathogens and/
or to maintain a balanced growth of the beneficial microbe in the 
host (cf. below).

Redox regulation, detoxification of the cell. One of the pri-
mary mechanisms of a cell is to maintain an environmental-depen-
dent balance of the oxidized and reduced form of glutathione 
to maintain the cellular redox state.39,40 Glutathione biosynthe-
sis is a key component of plant stress responses and counteracts 
oxidative damage. The synthesis of glutathione occurs in two 
ATP-dependent steps: glutamate-cysteine ligase catalyzes the 
formation of γ-glutamylcysteine from cysteine and Glu, the rate 
limiting step in the pathway. Glutathione synthase adds Gly to 
γ-glutamylcysteine to yield glutathione. The reduced form of glu-
tathione provides a substrate for multiple cellular reactions that 
yield oxidized glutathione, in which two molecules are linked by 
a disulphide bridge. Regulation of the glutathione pool is com-
plex. It occurs at the transcriptional level for enzymes responsible 
for synthesis and utilization of glutathione. It is also regulated 
post-translationally by enzyme modifications, the availability of 
substrates and feedback loops. Glutathione is also the substrate 
for metallothioneins, which chelate and detoxify excess heavy 
metals in the cell.

Extreme temperatures, drought, pathogen attacks, or chemi-
cals/toxins induce the production of toxic levels of ROS.40-44 
Detoxification of ROS, xenobiotics and heavy metals requires 
gluthatione which acts as an antioxidant and plays a key role in 
the ascorbate-glutathione cycle.45-50 Changes in redox status also 
occur during immune responses in different organisms. Redox 
changes regulate the conformation of NPR1, a master regulator 
of salicylic acid-mediated defense genes.51-53 NPR1 is sequestered 
in the cytoplasm as an oligomer through intermolecular disul-
phide bonds. S-nitrosylation of NPR1 facilitates its oligomeriza-
tion, whereas salicylic acid-induced NPR1 oligomer-to-monomer 
reaction is catalyzed by thioredoxins53 and the transition of cyto-
plasmic NPR1 to the nucleus. Thus, oxidative stress and H
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production results in the oxidation of redox sensors which needs 
to be counteracted by the plant. In contrast, beneficial microbes 
establish reducing conditions in the cell.54,55

Secondary S metabolism. Besides the requirement of S in the 
primary metabolism, it also plays an important role in the biosyn-
thesis of glucosinolates. In Brassicaceae, up to 30% of the S can 
be incorporated into glucosinolates, S-rich plant metabolites of 
the order Brassicales that function in the defense of plants against 
pests and pathogens.56-58 It appears that different S-containing 
antimicrobial substances of the secondary S-metabolism contrib-
ute to the resistance against necrotrophic and biotropic fungi. A 
role of glucosinolates in beneficial plant/microbe interactions has 
also been postulated.59 Their breakdown products might restrict 
hyphal growth, which is necessary to maintain the interaction 
in a beneficial stage. Glucosinolates are also important as flavor 
components, cancer-prevention agents, and crop biofumigants. 
Glucosinolate accumulation depends intimately on the S status 
of the entire plant. S fertilisation usually led to an increase in 

utilized for siroheme, chlorophyll or heme biosynthesis. A sophis-
ticated control system must ensure that the pathways obtain suf-
ficient substrate to fulfil their functions under a given situation. 
Manipulation of the siroheme biosynthesis pathway may result 
in the accumulation of uroporphyrinogen III that is oxidised 
to highly photoactive uroporphyrin III leading to tetrapyrrole-
mediated type II photosensitization reaction that generates 1O

2
 

(singlet oxygen).30-32 Furthermore, elevated levels of ROS acti-
vate the stimulation of the scavenging system and might have 
consequences for the redox status in the cell. ROS formation 
in the plastids and activation of the scavenging systems might 
influence the redox status of cytoplasm/nucleus. Due to severe 
metabolic and redox changes, stress and defense related genes are 
activated (cf. below). Since all enzymes of the scavenging systems 
are nuclear-encoded, disturbance in the tetrapyrrole biosynthesis 
pathway and ROS production in the plastids might influence the 
retrograde signaling from the plastids to the nucleus.33

Crucial Metabolic Pathway Depending on Siroheme

Primary S and N metabolism. Sulphate is taken up from the soil 
by the roots via high affinity sulphate uptake systems (Fig. 3). 
Reduction to sulphite by the sulphate reductase and to sulphide 
via a 6 electron-transfer reaction by SiR occurs in the plastids, 
before the reduced S is integrated into cysteine and methionine. 
The S-containing amino acids are then distributed to all other 
compartments of the cell, where they can be integrated into pro-
teins or used for the synthesis of other S-containing compounds, 
such as redox-active peptides or heavy metal-complexing met-
allothioneins. Many enzymes of S assimilation are subjected to 
complex regulations via transcriptional, post-transcriptional and 
translational processes, control of the enzyme activities and feed-
back processes.34

The vast majority of reduced N in the plants derives from 
nitrate assimilation (Fig. 3), while legumes in association with 
rhizobia can also form nodules and fix N from the air (cf. below). 
Nitrate is taken up by the roots by a number of high- and low-
affinity transporters (Fig. 3) and reduced in the cytoplasm to 
nitrite by nitrate reductase. Further reduction of nitrite to ammo-
nium occurs in the plastids via a 6-electron transfer reaction medi-
ated by NiR (Fig. 3). In photosynthetic organisms, the electrons 
for the reduction of nitrite to ammonium derive from ferredoxin 
of photosynthetic electron transport chain. Besides siroheme, SiR 
and NiR contain Fe and Fe-S clusters as cofactors, which suggests 
that Fe homeostasis in the cell might play a regulatory role in the 
control of sulphate and nitrate assimilation (Fig. 3).

Recently, the transcription factor SLIM1 has been identified 
as a central transcriptional regulator of the primary and second-
ary S metabolism in Arabidopsis.35 Furthermore, a forward screen 
identified SLIM1 as an essential component in the beneficial 
interaction between P. indica and Arabidopsis (Sherameti et al. 
unpublished). In the yeast-two hybrid system, SLIM1 also forms 
dimers with MYB72, a transcription factor that is required for 
induced systemic resistance (ISR) in Arabidopsis.36,37 If this holds 
true for the in vivo situation, SLIM1 is directly involved in the 
plant/microbe interaction (reviewed in ref. 38). It is conceivable, 
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insertion into the proteins is a prerequisite for the function of a 
symbiotic nodule.

Fe homeostasis might also be important for Fe-S cluster bio-
synthesis in plant cells. Although the chemical structure of the 
Fe-S clusters is simple and the cluster can self-assemble under 
anaerobic conditions, under aerobic conditions, their biosynthe-
sis requires dedicated proteins. The assembly process consists of 
three steps: (1) the release of S from cysteine, (2) co-assembly 
with Fe on a scaffold protein and (3) transfer of the nascent clus-
ter to the target Fe-S protein.

Because of the unstable nature of Fe-S clusters, every cell and 
organelle contain Fe-S cluster assembly proteins. Fe-S cluster 
biosynthesis is quite old since all bacteria can synthesize them. 
Regulation and distribution of Fe-S clusters in the cells is com-
plex.63 The majority of the Fe-S clusters in autotrophic, pho-
tosynthetic organisms is probably used for photosynthesis. For 
instance, the photosystem I complex contains 3 Fe-S clusters and 
represents one of the most abundant protein complexes in higher 
plants.64-68 Crucial enzymes involved in the dark reaction of pho-
tosynthesis contain also Fe-S centers.

Role in Organellar and Cellular Signaling

For many years intermediates of the chlorophyll biosynthesis have 
been proposed to play a crucial role in this signaling process.69 
Although a direct involvement of chlorophyll intermediates 
appear to be less likely,70,71 impairments in chlorophyll biosyn-
thesis still have an effect on the expression of nuclear genes for 
plastids proteins, for instance, following photodamaging effects 
and ROS production. Manipulation of siroheme biosynthesis 
might affect the accumulation of the light-sensitive uroporphy-
rinogen III (or other light-sensitive intermediates) if they are not 
used for chlorophyll and/or heme pathways. This might interfere 
with the feedback regulation from heme and protochlorophyllide 
to ALA. Microarray analyses will provide important information 
on the expression of the nuclear encoded genes for proteins of the 
metabolic and signaling pathways which are controlled by siro-
heme (Fe, N and S metabolism; Fe-S cluster biosynthesis; ROS 
scavenging systems; redox control; glucosinolate biosynthesis; 
defense responses; plastid → nucleus signaling; etc.). A compara-
tive analyses of these data with those from photodamaged plas-
tids, plastids which are impaired in specific signal processes or 
plastids which accumulate ROS due to photodamage will clearly 
demonstrate the role of heme and siroheme intermediates in the 
retrograde signaling.72

Open Questions

Considering the important role of siroheme in central cellular 
processes in plants, many questions remain unanswered:

What determines the distribution of uroporphyrinogen III 
between the two pathways? Determining physiological parame-
ters such as photosynthetic activities or chlorophyll accumulation 
in wild-type and knock-down lines in the absence or presence of 
Fe-chelator α-α-dipyridyl needs to be performed to understand 
the competition between ferrochelatase and siroheme chelatase 

glucosinolate content ranging from 25% to more than 50-fold. 
The effect was greater on glucosinolates derived from methionine 
than from tryptophan. This is regulated by extensive gene tran-
scription and under the control of SLIM1. In S-deficient plants, 
there is a general downregulation of glucosinolate biosynthetic 
genes which accompanies an upregulation of genes controlling 
S uptake and assimilation. Glucosinolates may be considered a 
potential source of S for other metabolic processes under low-S 
conditions, since increased breakdown of glucosinolates has been 
reported under S deficiency. However, the pathway for S mobili-
sation from glucosinolates has not been determined.56,60 The 
breakdown of indolic glucosinolates to form auxin in roots under 
S-deficient conditions may help stimulate root formation for S 
uptake.60

Camalexin is probably the best characterized phytoalexin 
from Arabidopsis which is induced by a large variety of plant 
pathogens. It is substituted with S- and N-containing side 
chains, which again highlights the importance of siroheme for 
plant/microbe interactions. Both biotrophic and necrotrophic 
plant pathogens as well as beneficial microbes induce camalexin, 
and this includes bacteria, viruses and fungi. Camalexin can be 
induced in shoots and roots61 and the major inducers are ROS, 
since also abiotic factors generating ROS (such as heavy metals, 
UV-B light, ROS, chemicals, etc.) activate camalexin biosyn-
thesis. Besides ROS, salicylic acid signaling and the redox state 
of glutathione are important for the induction. Although the 
formation of camalexin in response to many biotic and abiotic 
substances is well documented, we are only at the beginning to 
understand the function of camalexin in plant defense.

Fe Metabolism

Proton transporting ATPases in the plasma membrane of 
Fe-deficient roots increase the solubility of Fe3+ hydroxides by 
generating a slightly acidic pH in the apoplast. The lower pH 
stimulates the activity of the plasma membrane-bound Fe3+ che-
late reductase FRO2 which transfers electrons from intracellular 
NADH to extracellular Fe3+. This enzyme activity is co-regulated 
with the Fe-regulated transporter IRT1 (Fig. 3). Within the cells, 
Fe is distributed into the different subcellular locations i.e., plas-
tids, mitochondria, cytoplasm and vacuole.62 At the appropriate 
cellular compartment, it is bound to ferritin or chelatases that 
bring the Fe to the required positions, or it can be directly bound 
by the enzymes which require Fe as a cofactor. Considering the 
complexity of these processes and the central role of Fe for siro-
heme synthesis, S and N assimilation and as a cofactor for several 
enzymes, it is tempting to speculate that the Fe homeostasis in 
the cell or even in the organelles may play a crucial regulatory role 
in all S and N requiring metabolic processes.

Fe is also central for rhizobacteria-mediated N
2
-fixation in 

legumes, since leghaemoglobin and the nitrogenase contain huge 
amounts of Fe. While the Fe-containing heme cofactor of leghae-
moglobin is synthesized by the bacterium, the apoprotein is of 
plant origin. Furthermore, the nitrogenase consists of two sub-
units: subunit 1 contains MoFe cofactors and subunit 2 Fe cofac-
tors. Thus, the availability of huge amounts of Fe and the proper 
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highly sensitive to external manipulations and redox agents, it 
might have an ion-sensing function. Therefore, plants impaired 
in upm and/or sirb might be highly sensitive to reduced Fe and/
or S concentrations, since not only the biochemical pathways 
are impaired if the ions are limiting, but that the limitation 
might be perceived ahead of time by the plants. The Fe-S center 
in SirB could be involved in redox-sensing and/or the initia-
tion of signaling pathways that regulate downstream processes. 
Finally, the enzyme catalysing the second step in the biosynthe-
sis is not known in plants. Different biological disciplines are 
required to tackle these questions.
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leading to synthesis of Fe-protoporphyrin IX and siroheme. 
Generating reduced uroporphyrinogen III pools in wild-type, 
knock-down and overexpressor lines in the presence of levulinic 
acid that inhibits uroporphyrinogen synthesis or in the presence 
of ALA in dark that causes high accumulation of the substrate 
for siroheme, heme and chlorophyll biosynthesis, will shine light 
on this regulation. The distribution of uroporphyrinogen III 
between the two pathways should be dependent on external 
parameters such as nutrient availability or other stress, or sensed 
by the Fe-S centers in SirB. Again, the presence of an Fe-S cen-
ter in SirB and its unstability to reduction might play a role 
in branchpoint regulation. Redox-signals may allow or prevent 
protein-protein interactions, which can control the efficien-
cies of the two branches of the pathways. Since this cofactor is 
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