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Maintenance of DNA integrity is critical for all cell types, but neurons are particularly 

sensitive to mutations in DNA repair genes, which lead to both abnormal development and 

neurodegeneration 1. We describe a previously unknown autosomal recessive disease 

characterized by microcephaly, early-onset, intractable seizures and developmental delay 

(MCSZ). Using genome-wide linkage analysis in consanguineous families, we mapped the 

disease locus to chromosome 19q13.33 and identified multiple mutations in PNKP that 

results in severe neurological disease, whereas a splicing mutation is associated with more 

moderate symptoms. Surprisingly, while patient cells are sensitive to radiation and other 

DNA damaging agents, no patient has yet developed cancer or immunodeficiency. Unlike 

other DNA repair defects that affect humans, PNKP mutations universally cause severe 

seizures. The neurological abnormalities in MCSZ patients may reflect a role for PNKP in 

several DNA repair pathways.

We identified the autosomal recessive disorder MCSZ with the following features: 

microcephaly, infantile onset seizures, developmental delay, and variable behavioral 

problems especially hyperactivity. MCSZ was observed in multiple pedigrees of Middle 

Eastern and European origin (Figure 1). The first three pedigrees were Arabic Palestinians 

living in Jordan and the USA. Three other families with similar manifestations were Arabic 

(Kingdom of Saudi Arabia), Turkish, and of mixed European ancestry (USA). We later 

found less severely affected patients from Family 7, which is also American of mixed 

European heritage (USA). Brain MRIs consistently show microcephaly with preserved brain 

structures, without apparent neuronal migration or other structural abnormalities, and with 

no evidence of degeneration (Figure 2). The patients did not develop ataxia or other 

neurological symptoms. Routine clinical genetic and metabolic screening showed no 

abnormalities. Despite careful inquiry, MCSZ patients did not have a higher frequency of 

common or uncommon infections, offering no clinical evidence of immunodeficiency. Cells 

from one patient showed sensitivity to irradiation in a standard colony survival assay2,3. 

However, no patient has developed cancer by age 21 and heterozygous carriers have not 

developed early onset cancer or any sign of immunodeficiency (see Clinical Information and 

Summary in Supplementary Note).

Genome-wide linkage screens suggested a single common homozygous region on 

chromosome 19q in all six MCSZ patients in the consanguineous Families 1-3. This same 

locus showed homozygosity in the two patients from Family 4 and the single patient from 

Family 5 whose parents were not known to be related. No other regions of linkage were 
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observed including known primary microcephaly loci. Interestingly, all six patients in the 

three Palestinian families (Families 1-3) were homozygous for the same 3cM/1.5Mb 

haplotype (between markers D19S879 and D19S907) at chromosome 19q13.33, suggesting 

a common ancestor (Supplementary Information Figure 1). Further investigation revealed a 

common town of origin for these families. Linkage analysis of Families 1-4 and 6 generated 

a combined maximum two point LOD score of 5.60 at D19S867 with θ =0 (Supplementary 

Information Table 2) and a maximum multipoint LOD score of 7.12 (Supplementary 

Information Figure 2).

We sequenced 41 genes within the minimal region (see Supplementary Information) and 

only the PNKP gene contained mutations. Homozygous mutations were present in each of 

the first five families and compound heterozygous mutations were found in Families 6 and 7 

(Figure 3 and Supplementary Information Figure 3 for detailed analyses of all mutations). 

The three Palestinian Families (Families 1-3) shared a homozygous base pair substitution in 

exon 11 (975G>A), resulting in the non-conservative amino acid change E326K. The 

families from the Kingdom of Saudi Arabia (Family 4) and Turkey (Family 5) had the same 

homozygous 17 bp duplication (17 bp dup) in exon 14 (1250_1266dup), resulting in a 

frame-shift, T424GfsX48. Family 6 (European) had two heterozygous mutations: the same 

17 bp dup in exon 14 as the Saudi and Turkish families and a point mutation in exon 5 

(526C>T) resulting in L176F. The moderately affected members of Family 7 (European) 

displayed compound heterozygosity, carrying the 17 bp dup mutation in exon 14 and a 17 bp 

deletion in intron 15 that disrupts proper mRNA splicing.

To confirm that these mutations were pathogenic, we analyzed patient-derived, Epstein Bar 

Virus (EBV)-transformed, lymphocytes from Families 3 (E326K) and 7 (17 bp dup/intron 

15 del). The samples from the severely affected patient (Family 3) and the mildly affected 

patients (Family 7) had greatly diminished PNKP protein compared to unaffected or 

heterozygous family members (Figure 3b). RT-PCR analysis showed that the intron 15 

deletion in Family 7 disrupts mRNA splicing and causes skipping of exon 15; a barely 

detectable level of properly spliced mRNA remains (Figure 3c). The low levels of PNKP 

protein and the indistinguishable phenotype among severely affected individuals from 

Families 1-6 suggest that all of these mutations impair PNKP severely or completely, 

whereas patients in Family 7 that exhibit a slightly milder phenotype and carry one non-

coding mutation may retain some PNKP activity.

Surprisingly, despite their diverse ancestries (Saudi, Turkish, and mixed European), all 

chromosomes with the 17 bp dup mutation appear to share the same haplotype for 18 SNPs 

in or near the PNKP locus (Supplementary Figure 4a). The low frequency of this mutant 

haplotype (Supplementary Figure 4b), suggests that the 17 bp dup in exon 14 is likely of 

shared origin and very old in all or most of these families. Nonetheless, the mutation shows 

an extremely low carrier frequency in the general population, as the 17 bp dup mutation was 

absent in 1080 Middle Eastern or Caucasian control chromosomes, while all other mutations 

were absent in all of at least 280 control chromosomes screened.

PNKP has been implicated in repair of both double strand breaks (DSBs) and single strand 

breaks (SSBs) 4,5, since its phosphatase domain removes 3′ phosphates and the kinase 
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domain phosphorylates 5′ hydroxyl groups, required for DNA ligation 6. PNKP's forkhead 

domain mediates interaction with the non-homologous end joining (NHEJ) complex via 

XRCC4, or the SSB and base excision repair (BER) pathways via XRCC1 (Supplemental 

Figure 6 a and b)4-8. PNKP has been further implicated in the repair pathway disrupted in an 

ataxic neurodegenerative disease, spinocerebellar ataxia with axonal neuropathy, SCAN1 

(TDP1) (see Supplementary Information Figure 6 for additional details). The abnormalities 

in a clinical irradiation sensitivity test already reflect deficiencies in NHEJ required to repair 

radiation induced DSBs. Because PNKP potentially plays roles in additional repair 

pathways, we tested cells in response to other DNA damaging agents.

The response to free radical damage from hydrogen peroxide, predominately requiring BER, 

and camptothecin, requiring TDP1 via its activity on topoisomerase I, was examined via 

alkaline comet assay which detects both SSBs and DSBs by quantitating the amount of 

DNA that moves from a nucleus after electrophoresis. Typical nuclei with various amounts 

of DNA damage are shown in Figure 4a. The relative amount of DNA damage was 

determined by measuring the % Tail DNA (DNA that has moved out of the nucleus). The 

relative amount of DNA damage repair was quantitated as % Tail DNA after toxin exposure 

at various times of recovery (see Supplementary Figure 5 for all data) and normalized to the 

maximum and minimum damage for each cell line in each experiment. MCSZ derived cell 

lines were significantly impaired in their ability to repair hydrogen peroxide induced 

damage (Figure 4b) and were also delayed in repairing camptothecin induced damage 

(Figure 4c). However, MCSZ derived cells were eventually able to repair the camptothecin 

induced damage after 45 minutes while they were not able to repair all hydrogen peroxide 

induced damage even after 90 min. These data suggest that camptothecin induced damage 

may be easier to repair than free radical damage in the setting of PNKP mutations. Although 

MCSZ patients do not develop the ataxia that characterizes TDP1 mutations that also have 

camptothecin sensitivity 9,10, our patients are perhaps too young (oldest 21 years) or maybe 

there is a compensatory mechanism for the loss of PNKP.

Microcephaly can result from failure to produce enough neurons during development 

(primary microcephaly) or degeneration after normal development. MCSZ patients have no 

evidence of brain atrophy or clinical regression, making degeneration unlikely (see 

Supplemental Note, Clinical Information for further details). In situ hybridization indicated 

that human and mouse PNKP mRNAs are expressed in both dividing neuronal precursors in 

the cerebral cortical ventricular zone (Figure 5 a and c VZ) as well as post-mitotic neurons 

of the cortical plate (Figure 5d CP) consistent with potential roles in both dividing and post-

mitotic neurons. In addition, we found that when levels of Pnkp were reduced in dissociated 

mouse neurons in vitro via RNAi, there was a small but statistically significant increase in 

apoptosis in both neuronal precursors (Supplemental Information Figure 7c) and 

differentiated neurons (7d) compared to cells transfected with control plasmids. This 

indicates that microcephaly could result from apoptosis of precursors, differentiated neurons 

or both cell types.

Although disruption of genes encoding NHEJ repair proteins leads to microcephaly in 

human and/or mouse in LIG4 syndrome, Lig411-13, severe combined immunodeficiency 

with microcephaly, NHEJ1 (cernunnos) 14, Xrcc4 15, Xrcc6 (Ku70)/ Xrcc5 (Ku80)16, and 
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Prkdc (DNA-PKcs) 17, disruption of NHEJ function is not known to cause seizures, which 

are a prominent clinical feature of MCSZ. In contrast, disruption of the BER/SSB pathways 

by deletion of Xrcc1 in mice produced normal brain size but the mutant mice developed 

ataxia, loss of interneurons within the cerebellum, and seizure-like behavior 18. The 

intriguing similarity of phenotypes between patients with mutations in PNKP and mice with 

targeted deletion of Xrcc1 does suggest a potential common mechanism demonstrating the 

requirement for the BER/SSB pathways in the prevention of seizures, potentially via an 

interneuron specific requirement of the BER/SSB pathway. Therefore, the unique pattern of 

neurological symptoms of MCSZ may reflect a requirement for PNKP activity in multiple 

DNA repair pathways.

Online Methods

Genetic screening

Family 1 underwent a genome-wide linkage screen using about 400 microsatellite markers 

in the ABI linkage mapping set MD v2.5 at 10 cM average density (Applied Biosystems) at 

the Children's Hospital in Boston (Boston, MA, Genotyping Core facility). Genome-wide 

screens for Families 3 and 4 were performed at the Center for Inherited Disease Research 

using microsatellite markers also at 10 cM average spacing. Fine mapping was done using 

polymorphic microsatellite markers from the ABI linkage mapping set HD v2.5 at 5cM 

average density (Applied Biosystems) along with additional microsatellite markers 

identified using the UCSC Human Genome Browser 19 and synthesized primers (Sigma-

Genosys). Two point and multipoint LOD scores calculated using Allegro 20 assumed 

recessive inheritance, full penetrance, and a disease allele frequency of 0.0001. All 

nucleotide numbers are in reference to cDNA where A (of the ATG start site) is +1 except 

for the intronic deletion which is in reference to the genomic sequence where A of ATG of 

the translational start site is +1 (all from UCSC genome browser, NCBI Build 36.1).

PNKP Western blot

For PNKP, EBV transformed lymphocytes were grown in DMEM with 15% FCS plus 

normocin. 2×105 cells were lysed in sodium dodecyl sulfate (SDS) loading buffer at 90°C 

and fractionated by SDS-polyacrylamide gel electrophoresis (PAGE). Proteins were 

transferred to Hybond-C Extra Nitrocellulose (GE Healthcare), stained with Ponceau S 

solution (Sigma), and washed in TBST before immunoblotting with anti- PNK (SK3195) 21 

at a dilution of 1 in 1000 in 5% milk. Blots were washed and probed with goat anti-rabbit 

IgG HRP secondary antibody (DakoCytomation) and detected with ECL detection reagents 

(GE Healthcare). The blot washed in TBST and re-probed with anti-β-actin monoclonal 

antibody (Sigma) using rabbit anti-mouse IgG HRP (DakoCytomation) as a secondary 

antibody.

PNKP RT-PCR

EBV transformed lymphocytes were grown as above. RNA was isolated via RNeasy Mini 

Kit (Qiagen). 5 μg of total RNA was used for first strand synthesis via oligo dT primers via 

SuperScript III First-Strand Synthesis SuperMix (Invitrogen Corporation). 1 μl of the 

product of the RT reaction was used in PCR using primers from Exon 10 to Exon 17.
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Comet Assays

Alkaline comet assays were performed via the protocol from CometAssayTM ES unit 

(Trevigen, Inc.) Briefly, patient derived EBV transformed lymphocytes were grown as 

described. Cells were obtained prior to treatment or exposed to 100 μM hydrogen peroxide 

(Sigma) or 10 μM camptothecin (Sigma) for 30 and 60 minutes respectively at 37°C. After 

exposure, cells were immediately collected for 0 min recovery time point or washed once, 

resuspended in growth media and incubated at 37°C. Cells were subsequently collected at 

times described. Cells were embedded in low melt agarose, plated upon microscope slides, 

lysed, treated with alkaline solution, and slides electrophoresed in alkaline solution at 1 

Volt/cm (21 V) with ~300 mAmps for 30 minutes. Slides were washed, dried, and DNA 

stained with SYBR green. Images of nuclei and tails were taken with a Nikon TE2000-E 

fluorescent microscope with CCD camera and % Tail DNA determined with CometScore 

1.5 software (TriTek, Corp.).

In situ hybridization

Human in situ hybridizations were performed at the Human Developmental Biology 

Resource (Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, 

NE1 3BZ) with probes to anti-sense human PNKP cDNA (+488-1500). Mouse in situs were 

done as previously published 22, with anti-sense probe from mouse Pnkp cDNA 

(+386-1566).

Statistics were done within Microsoft Excel software unless otherwise described. The % 

DNA Repair in Figure 4 was determined by measuring mean of % Tail DNA in 3 separate 

wells (raw data in Supplementary Information Figure 5) and using combined % Tail DNA at 

0 minute recovery (maximum damage) and minimum damage measured as full recovery for 

each individual cell line. P-values were determined by comparing the baseline adjusted 

DNA repair level from 3 separate wells using T-Test comparing each MCSZ deficient line 

to 2 normal control cell lines with two-tailed distribution and homoscedastic test.

PNKP mutation analysis

PNKP protein alignments were performed with MegAlign (Lasergene). Three dimensional 

structure of mouse Pnkp was examined in MacPyMOL from previously published 

information 23. The Branch Point analysis was done with Human Splicing Finder version 2.3 

(http://www.umd.be/HSF/).

Exon 14 17 bp dup haplotype determination

Sequenom SNP genotypes were determined in patient and controls samples at the Molecular 

Genetics Core Facility at Children's Hospital Boston (Boston, MA, USA). Haplotypes were 

determined by Mendelian inheritance patterns for parents and offspring and Phase haplotype 

determining software24-26 for control samples.

Pnkp RNAi studies—Silencer 1.0 GFP had RNAi oligos targeted to mouse Pnkp mRNA 

identified via the Broad Institute RNAi Consortium shRNA Library, ligated into EcoRI and 

ApaI sites (see Supplemental Information (Invitrogen)). Cerebral cortices from E13.5 day 

old Swiss-Webster mice were dissected and dissociated with Papain Dissociation System 
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(Worthington Biochemical Corp.), cells were washed twice in HBSS buffer and transfected 

via the Amaxa Nucleofactor 96 well shuttle system (Amaxa Biosystems) with either 

pSilencer mouse Pnkp-RNAi GFP, pSilencer GFP, with or without pSport-human PNKP 

(Open Biosystems, Entrez clone ID BC057659). Cells were grown on poly-L-ornithine 

(Sigma-Aldrich) treated Lab-Tek chamber slides with Permox (Nalge Nunc International) in 

DMEM with 10% FBS for the Pax6 studies and for the NeuN studies cultures were changed 

to Neurobasal complete media after 4 hours. Cultures were fixed with 4% paraformaldehyde 

24 hours post-transfection. Immunostaining was performed in PBS with 0.2% Triton X-100 

and 10% goat serum with chick anti-GFP (Abcam), rabbit anti-cleaved caspase 3 (Asp175) 

(Cell Signaling Technology, Inc.), mouse anti-Pax6 (The Developmental Studies Hybridoma 

Bank) or mouse anti-NeuN (Chemicon). Primary antibodies were detected with anti-chicken 

IgG Alexa 488 (Invitrogen), and donkey anti-mouse IgG Cy3 or donkey anti-rabbit IgG Cy5 

(Jackson Immunoresearch Inc.). Images were obtained by looking for GFP+ cells with a 

Nikon TE2000-E fluorescent microscope and Metamorph imaging software. Cell counts 

were made from digital images with the counter blinded as to whether the cultures were 

derived from Pnkp-RNAi or control transfections. P-value in Supplementary Figure 7 were 

calculations were calculated using G-test of goodness-of fit with 5 degrees of freedom, two-

tailed P-value and no Williams correction27.

Mouse Pnkp-RNAi testing

Mo-Pnkp RNAi construct was tested against Mo-Pnkp-DsRed or Hu-PNKP-DsRed both 

expressed by pCAG-DsRed vector 28. RNAi control vector (empty vector)/mouse (Mo)-

Pnkp-DsRed fusion protein, MoPnkp-RNAi/MoPnkp-DsRed, RNAi-control/human (Hu)-

PNKP-DsRed fusion, and MoPnkp-RNAi/HuPNKP-DsRed were transfected into NIH-3T3 

cells with Lipofectamine 2000 (Invitrogen) per manufacturer protocol. Cells were counted 

after 24 hours in culture. Random fields were chosen by expression of GFP, the number of 

high GFP expressing cells were counted followed by the number of Ds-Red fusion protein 

expressing cells. DsRed expression was nuclear as expected from PNKP localization (data 

not shown). For Western Blot analysis, NIH-3T3 cells were transfected as above. After 24 

hours of culture, cells were lysed via the protocol described in the methods of the main body 

of the manuscript. After protein quantitation via BCA assay, 25 μg of protein per lane was 

separated via PAGE. Protein was transferred to membrane, blocked with Odyssey blocking 

buffer (Li-Cor Biosciences) and probed with Mo anti-Actin (AC-15), Rb anti-GFP 

(Molecular Probes) and Rb anti-DsRed (Clontech). Primary antibody was detected with anti-

mouse labeled with IRDye 700 or anti-rabbit IRDye 800 (Li-Cor Biosciences) and detected 

with Li-Cor imaging system. In the bar graph protein amounts are normalized with RNAi 

Control conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pedigrees of MCSZ families
Family 1 represents a consanguineous Palestinian pedigree in Jordan. Family 2 shows 

another consanguineous Palestinian pedigree reportedly unrelated to Family 1 also in 

Jordan. Family 3 is also consanguineous and Palestinian but now in the USA. Family 4 is 

from the Kingdom of Saudi Arabia and the parents were not known to be consanguineous. 

Family 5 is from Turkey and the parents were not known to be related. Family 6 is of mixed 

European descent from the USA (German-Irish). Family 7 is also of mixed European 

(Swedish, Italian, Irish and English) heritage from the USA. The individuals from whom 

samples were obtained are labeled “DNA”. The individuals from whom we established 

lymphoid cell lines are labeled “Cells”. Cells and DNA were available for all Family 7 

members.
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Figure 2. Brain MRIs of MCSZ patients
Representative MRI images are shown from Families 4 (a, severely affected) and 7 (b, 

moderately affected) with aged matched controls. MRIs of severely affected patients from 

other families were similar to the representative images in a. Sagittal images are shown on 

the left (T1), axial images in the middle (T2) and coronal images on the right (T2 (a) and 

FLAIR (b)) with the MRI sequence noted above the image. The MRIs illustrate that despite 

the microencephaly (small brain), the gyral pattern is not clearly abnormal indicating 

absence of visible neuronal migration abnormality. The cerebellum is proportionately small 

compared to the cerebrum and the subpallium (basal ganglia or ventral cerebrum) is 

proportionately with the pallium (dorsal cerebrum). There is no evidence of atrophy or glial 

scarring. Bar=5 cm for both unaffected and MCSZ images.
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Figure 3. PNKP mutations in MCSZ patients
(a) Four different mutations diagrammed in human PNKP genomic DNA, mRNA, and 

protein including domains (forkhead is FHA). The human PNKP gene consists of 17 exons 

shown as boxes and encodes a peptide of 521 amino acids. Filled boxes represent 

untranslated regions and open boxes represent coding regions. Lines connecting the exons 

represent introns. (b) Western blot for PNKP, the first and second lanes show a MCSZ 

patient (VI:3 with E326K mutation) and unaffected brother (VI:1), respectively, from 

Family 3. The third and fourth lanes show MCSZ patients (II:1 and 4, both with 17 bp dup 

and 17 bp intron 15 del) while the fifth and sixth lanes the father (I:1) and brother (II:3) both 

heterozygous for 17 bp intron 15 del. The band is ~60 kD (57 kD predicted size). Anti-β-

actin is a loading control. (c) RT-PCR products of mRNA from members of Family 7 show 

the expected size from the normal copy of PNKP cDNA, 636 bp, seen in lanes 3 and 4 from 

non-affected carriers. The 17 bp dup results in a 653 bp long fragment seen in lanes 1, 2 and 

3. The 548 bp band in lanes 1, 2, and 4 show samples with the intron 15 deletion lacking 

exon 15 (determined from sequencing, data not shown). A small amount of normal sized 

transcript is seen in lanes 1 and 2 with higher exposure (data not shown), indicating that a 

small amount of normal PNKP mRNA by be produced.
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Figure 4. Patient derived lymphocytes show abnormal DNA repair
(a) Examples of comet assay results are shown. The intensity of the fluorescence is 

represented in pseudocolor while the electrical field drives damaged, loose DNA from left to 

right. (I) Shows a cell with 50% Tail DNA with the body of the nucleus (green) on the left 

and the tail of the comet derived from the damaged DNA extending to the right. (II and III) 

show progressively less damage, 29% and 11% Tail DNA respectively. (b) After hydrogen 

peroxide (H2O2) treatment with 0 minutes for recovery, cells show their maximum damage. 

Cells derived from MCSZ patients (blue, red), show significant impairment in their ability to 

repair DNA after hydrogen peroxide was removed, while cells derived from unaffected 

family members were able to repair DNA much more efficiently. (c) After camptothecin 

(CPT) treatment, there was also statistically significantly slower repair in cells derived from 

MCSZ patients compared to unaffected family members (green, purple) as well. However, 

after 45 minutes, the MCSZ derived cells were able to repair all CPT damage, in contrast to 

H2O2-treated cells. All cells derived from Family 7. Blue diamond and red square were from 

MCSZ patients with exon 14 17 bp duplication and intron 15 17 bp deletion (II:1 and II:4 

respectively), green triangle were from unaffected parent heterozygous for the intron 15 17 

bp deletion (I:1) and purple X from unaffected sibling with no mutation (II:2). *(P=0.05), 

**(P<0.005) and ***(P<0.0005). Scale bar shows 50 μm.
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Figure 5. PNKP in situ hybridization
In situ hybridization of Carnegie Stage 22 human embryos (~54 postovulatory days) with 

anti-sense probe to human PNKP (a). Sense strand (not shown) showed no specific 

hybridization. Higher magnification image of developing cerebral cortex boxed area in (a) is 

shown in (b). Ventricular zone (VZ), containing proliferating cells, shows PNKP mRNA 

expression while the cell-sparse marginal zone (MZ) has no staining. Mouse E14 cerebral 

cortex (c) with high magnification of boxed region shown in (d) shows a similar staining 

pattern with high expression within the proliferating VZ and lower but maintained 

expression within differentiated neurons of the cortical plate (CP). (a) and (b) are in the 

transverse plane and (c) and (d) are coronal. Scale bars, (a) 1 mm, (b) 100 μm, (c) 150 μm, 

(d) 75 μm.

Shen et al. Page 14

Nat Genet. Author manuscript; available in PMC 2010 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


