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Mammalian cytosolic and mitochondrial thioredoxin reduc-
tases are essential selenocysteine-containing enzymes that con-
trol thioredoxin functions. Thioredoxin/glutathione reductase
(TGR) is a third member of this enzyme family. It has an addi-
tional glutaredoxin domain and shows highest expression in
testes. Herein, we found that human and several other mamma-
lian TGR genes lack any AUG codons that could function in
translation initiation. Although mouse and rat TGRs have such
codons, we detected protein sequences upstream of them by
immunoblot assays and direct proteomic analyses. Further gene
engineering and expression analyses demonstrated that a CUG
codon, located upstream of the sequences previously thought to
initiate translation, is the actual start codon inmouse TGR. The
use of this codon relies on the Kozak consensus sequence and
ribosome-scanning mechanism. However, CUG serves as an
inefficient start codon that allows downstream initiation, thus
generating two isoforms of the enzyme in vivo and in vitro. The
use of CUG evolved in mammalian TGRs, and in some of these
organisms, GUG is used instead. The newly discovered longer
TGR form shows cytosolic localization in cultured cells and is
expressed in spermatids in mouse testes. This study shows that
CUG codon is used as an inefficient start codon to generate pro-
tein isoforms in mouse.

Mammalian thioredoxin reductases (TRs)3 are essential
enzymes that belong to a pyridine nucleotide disulfide oxi-
doreductase family (1, 2). In addition to the catalytic site, typical
of the entire superfamily, TRs contain a C-terminal penulti-
mate selenocysteine residue encoded by UGA codon (3). This
selenocysteine is inserted with the help of selenocysteine inser-
tion sequence element present in the 3�-UTRs of TRs and other
selenoprotein genes. The TRs play key roles in the control of
cellular redox homeostasis by maintaining thioredoxins (Trxs)

in the reduced state, but they are also able to directly reduce
certain smallmolecules such as selenite (4), hydroperoxides (5),
dehydroascorbate (6), and NK-lysin (7).
Three TRs exist in mammals: TR1 (also known as TrxR1,

TxnRd1, or TrxR�), TR3 (TrxR2, TxnRd2, TrxR�), and TGR
(TR2, TxnRd3). TR1 and TR3 functions are well characterized.
The former is a cytosolic enzyme involved in cell growth (8),
whereas the latter is mainly localized to mitochondria and is
involved in heart development (9). Both proteins are present in
all vertebrates and are essential formouse embryogenesis (8, 9).
On the other hand, mammalian TGR is abundant in testis, and
its function is not well understood (10–14). It was suggested
that TGR promotes disulfide bond isomerization between
GPx4 and other proteins. GPx4 is another selenoprotein abun-
dant in testes, which is both an enzyme and a structural protein
of the mitochondrial sheath in sperm cells (15).
The main feature that distinguishes TGR from other mam-

malian TRs is an N-terminal glutaredoxin (Grx) domain. Grx is
a Trx-fold protein and a component of another major redox
system in mammals: the glutathione system (16–18). Despite
an atypical active site motif in the Grx domain (i.e. CXXS
instead of CXXC), this domain exhibits Grx activity either in
concert with TGR or when expressed alone (11). Thus, this
domain allows TGR to participate in both Trx and glutathione
systems (13). A Grx-containing form of TR1 is also known, but
it does not display activities typical of Grx (19, 20). Prior toTGR
discovery, it was thought that Trx and glutathione systems
work independently, but increasing evidence suggests cross-
talk between these systems. In this regard, several previous
observations deserve a particular attention. First, inDrosophila
melanogaster, the Trx system substitutes for glutathione reduc-
tase (21, 22); second, in Schistosomamansoni and related platy-
helminths, there is neither TR nor glutathione reductase (GR),
and TGR alone replaces both major redox systems (23–25).
We previously focused on themouse TGR as amodel protein

(10–14). However, examination of its homologs in other mam-
mals revealed a lack of initiation codons in several sequences in
the position of the AUG codon previously predicted to serve as
the start codon. Translation initiation signals other than AUG
are common in viruses; they are also used in bacteria but are
extremely rare in eukaryotes. In mammals, non-AUG triplets
with the change in one nucleotide in AUG (with the exception
of AGG and AAG codons) could direct translation initiation in
vitro (26). However, not all of them are able to serve this func-
tion in vivo. To date, only about 30 proteins are known that
utilize non-canonical initiation sites in mammals (27). The
majority of these proteins are regulators of transcription and
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translation, growth factors, and cation transport channels. In
some cases, the utilization of non-AUGcodon is driven by IRES
structure recognition (28, 29), and in other cases, it is driven by
conventional ribosome-scanning mechanism (30, 31). In this
work, we found thatCUG is used as a start codon inmouseTGR
and that this feature evolved to generate isoforms of this
protein.

EXPERIMENTAL PROCEDURES

Analysis of TGR Genes—Genomic, non-redundant, and
expressed sequence tag databases at the National Center for
Biotechnology Information (NCBI) were scanned with
tBLASTN using mouse TGR sequence (NM_153162) as a
query. TGR sequences were then extended upstream and
aligned using ClustalX.
Expression and Purification of Recombinant TGR—To gen-

erate a construct for expression of the short form of TGR in
Escherichia coli, cDNA of mouse TGR was amplified using
primers F1 andR1 (supplemental Table S1). The reverse primer
contained a selenocysteine insertion sequence element, derived
from E. coli formate dehydrogenase H gene, that was inserted
immediately downstream of the TAG stop signal of TGR. This
PCR product was cloned into pET28a(�) plasmid (Novagen)
in-frame with the preexisting N-terminal His tag using EcoRI
and NdeI restriction sites. The construct for expression of the
full-length TGRwas prepared in two stages. First, the sequence
was amplified with primers F2 and R2 and then cloned into
pET24(�) using EcoRI and NdeI sites. Second, a PCR proce-
durewas used to add aHis tag sequence at theN terminus using
primers F3 and R3. The resulting plasmids were co-trans-
formed into E. coli BL21(DE3) cells (New England Biolabs)
together with pSUABC plasmid (32). Cells were grown in LB
medium supplemented with 20 �M FAD and 10 �M sodium
selenite, kanamycin, and chloramphenicol, and induction of
protein synthesis was performed by adding 50 �M isopropyl-1-
thio-�-D-galactopyranoside at A600 � 1 and incubating cells at
17 °C overnight.
Affinity purification of proteins was carried out using Talon

resin (Clontech). 50 mM phosphate buffer, pH 7.5, was used
containing 300 mM NaCl and 5 mM imidazole as an equilibra-
tion/wash solution, and 50 mM phosphate buffer, pH 7.5, con-
taining 300 mM NaCl and 300 mM imidazole was used as the
elution solution. Following elution, proteins were concentrated
for further use.
Constructs for Expression in Mammalian Cells—GFP fusion

constructs were prepared on the basis of pEGFPN1 (Clontech).
The N-terminal part of mouse TGR including the extended
longer form (designated extTGR) was cloned using primers F4
and R4 into the EcoRI/BamHI sites of pEGFPN1. The sequence
located upstream of the previously predicted AUG start codon
was separately fused to a GFP sequence using the same forward
primer andR5 as a reverse primer, resulting in the extTGR-GFP
construct. Variants of extTGR-GFP plasmids carrying dele-
tions were made as follows: (i) �203–256 used primers D1 and
D2, (ii) �1–92 used primers D3 and D4, and (iii) �93–119 used
primers D5 and D6 (schematic representation is shown in sup-
plemental Fig. S2). Plasmids carrying pointmutations inmouse
TGR Kozak sequence were made as follows: (i) mutation of

CTG codon at position 146–148 of cDNA intoCTCused prim-
ers P1 and P2, (ii) mutation of CTG at position 146–148 into
ATG used primers P3 and P4, (iii) mutation of CC at position
144–145 into GT used primers P5 and P6, (iv) mutation of CA
in position 136–137 into TT used primers P7 and P8, (v) muta-
tion of GAG at position 149–151 into CAT used primers P9
and P10, and (vi) mutation of GCC at position 143–145 into
CATused primers P11 and P12. To examineTGR expression in
HEK 293 cells, we removed the AUG start codon in the ext-
TGR-GFP construct using primers P13 and P14. To replace the
AUG codon of GFP in pEGFPN1 with the Kozak sequence of
CUG codon in mouse TGR, we used primers F6 and R6 and
obtained a PCR product from pEGFPN1, which was then
inserted into the same vector digested with BamHI/NotI.
Cell Transfection and Lysate Preparation—Transfection of

HEK 293 cells was carried out by the calcium chloride method.
COS-1 and NIH 3T3 cells were transfected by Lipofectamine
2000 (Invitrogen). After 24–48 h of incubation, cells were col-
lected and lysed in CelLytic M (Sigma). Lysates were directly
used for SDS-PAGE analysis on 10%Bis-Trismini gels (Invitro-
gen) followed by Western blotting. We prepared rabbit poly-
clonal antibodies against a shorter version of TGR and sepa-
rately against peptide sequences coded by sequences upstream
of AUG. Monoclonal anti-GFP antibodies were from Sigma.
ECLTM donkey anti-rabbit (or anti-mouse in the case of GFP)
IgG horseradish peroxidase-linked antibodies were used as sec-
ondary antibodies.
Tissue Samples—Testes were taken from C57BL/6 mice fed

standard rodent chow (Harlan Teklad, Madison, WI). Tissues
were fixed in 10% formalin and processed for paraffin embed-
ding at the Veterinary Diagnostic Center, University of
Nebraska, Lincoln, NE. Immunohistochemistry was performed
with a Histostain-Plus kit (Zymed Laboratories Inc.) according
to the manufacturer’s instructions. Briefly, prior to staining,
sections of testes were deparaffinized with xylene and passed
through a graded series of ethanol. Non-immune goat serum
(10%) was used to block nonspecific binding. The slides were
incubated with antibodies against a short form of TGR (1:300
dilution) or antibodies against N-terminal sequences of TGR
(1:10,000 dilution) for 1 h andwashed with phosphate-buffered
saline containing 0.05%Tween 20 (PBST). Biotinylated second-
ary antibodies were applied to the sections for 10 min. The
slides were then washed with PBST and incubated with horse-
radish peroxidase-conjugated streptavidin followed by rinsing
in PBST. Staining was performed using 3,3�-diaminobenzene
chromogen. In addition, staining by hematoxylin (Invitrogen)
was done according to themanual. Images were collected using
a light Olympus AX70microscope at the University of Nebras-
ka-Lincoln Microscopy Core Facility.

RESULTS

Several Mammalian TGR Genes Lack AUG Start Codon—
This study began with a surprising observation that human
TGR gene lacked an AUG start codon in the position corre-
sponding to the previously predicted start codon inmouseTGR
and that upstream sequences in the human gene lacked any
AUG at all. Multiple sequence alignment of mammalian TGR
genes revealed that themouseAUGwas only present in rodents

CUG Start Codon in Thioredoxin/Glutathione Reductase

4596 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 285 • NUMBER 7 • FEBRUARY 12, 2010

http://www.jbc.org/cgi/content/full/M109.070532/DC1
http://www.jbc.org/cgi/content/full/M109.070532/DC1
http://www.jbc.org/cgi/content/full/M109.070532/DC1


and several other animals, such as
tupaia and armadillo, whereas
humans, other primates, and several
other mammals replaced AUG with
other codons, and all these sequences
lacked AUG upstream in the correct
open reading frame (Fig. 1).
Mammalian TGRs Have Coding

Sequences Upstream of AUG Codon
in Mouse TGR—A region upstream
of the mouse AUG codon showed
high sequence conservation at both
nucleotide and protein levels in
mammals, and any changes in the
nucleotide sequence were multiples
of three (i.e. preserving the frame)
(Figs. 1 and 2). This arrangement
was indicative of coding sequences.
To directly detect N-terminal

coding sequences, we purified TGR
from rat testes and subjected it
to liquid chromatography-tandem
mass spectrometry analyses. In
addition to tryptic peptides corre-
sponding to internal sequences of
TGR, this procedure identified a
peptide that extended 8 amino acids
upstream of the AUG codon. Taken
together, these observations sug-
gested that non-canonical transla-
tion initiation is used inmammalian
TGR genes.
Mouse TGR Has an Alternative

Start Codon Upstream of the Previ-
ously Reported AUG—We verified
the presence of the actual TGR
mRNA sequences in testes of
C57BL/6 mice by amplification
and cDNA sequencing. Then, we
cloned a region of mouse TGR
corresponding to 22 amino acids
downstream of the AUG together
with the entire upstream se-
quences, or only the sequences
upstream of the AUG, and pre-
pared fusion constructs with GFP
(including its AUG start codon).
These constructs were then trans-
fected into HEK 293, NIH 3T3, or
COS-1 cells and examined for
translation initiation by subjecting
protein extracts to Western blots
with anti-GFP antibodies (Fig. 3, A
and B). When the sequences
located upstream of the AUGwere
used, two protein forms were
detected. One was GFP alone, and
the other was a fusion of GFP with

FIGURE 1. Alignment of 5� nucleotide sequences of mammalian TGRs. The alignment of nucleotide
sequences of mammalian TGRs corresponding to the 5�-UTR and an initial part of the coding sequence is
shown. The newly identified start codon is marked by stars, and the AUG previously thought to serve as the
initiation signal is marked by triangles. For sequence accession numbers, see supplemental Table S2.
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sequences coded by the upstream
region; these sequences must have
corresponded to the N terminus of
TGR. The other construct yielded
three bands that corresponded
to GFP alone, AUG-originated
mouse TGR, and the form that
began with the natural start codon
of TGR. Simultaneous detection of
multiple protein forms suggested
that the natural upstream start
codon is inefficiently used.
MammalianTGRsHave aCandi-

date CUG Start Codon—To identify
an upstream start codon, we intro-
duced deletions in the mouse TGR
cDNA sequence and transfected
such constructs into HEK 293 cells.
When nucleotides 203–256 were
deleted, the upper band, which cor-
responded to translation from an
alternative start codon, appeared
lower (Fig. 4A). This observation
suggested that the upstream start
codon should be closer to the 5� end.
Removing nucleotides 1–92 of TGR
cDNA did not affect translation ini-
tiation. Nucleotides 93–119 that are
conserved in mammals were not
required either (Fig. 3B). From these
observations and taking into
account a 24-nucleotide gap in rat

and mouse sequences relative to human TGR, we defined a
40-nucleotide region that contained an alternative start codon
(Fig. 1). Based on the sequence alignment, CUG codon at posi-
tion 146–148 emerged as a promising candidate for translation
initiation. This codon was preserved in almost all mammals
except hedgehog,macaque, and gibbon, but in those organisms,
it was replaced with GUG or AUG codons, the two most com-
mon translation start sites in nature.
To test whether CUG is the natural start codon, we mutated

it into CUC. The mutation resulted in the loss of the larger
protein form, whereas the forms that started from downstream
sequences were intact (Fig. 4A, lane 5). A similar experiment
was carried out in NIH 3T3 cells (supplemental Fig. S1). When
CUG was changed to AUG, efficiency of translation initiation
from this site increased such that only the larger protein form
was detected (Fig. 4A, lane 6). Thus, CUG is a natural, albeit
inefficient, start codon, and in addition, a downstream AUG
codon can serve as a start codon wherein two protein forms are
synthesized from the samemRNA.The novel largeTGR form is
hereafter designated as TGR-L; it differs from the previously
known TGR form by a 4-kDa N-terminal extension.
Taking into account the data shown in Figs. 3 and 4,we devel-

oped polyclonal antibodies against the LGKVGVLPNRRL-
GAVRG peptide, which is part of the N-terminal extension and
is unique to the long TGR form. Western blot analysis of the
same samples as those shown in Fig. 3A with these antibodies

FIGURE 2. Alignment of N-terminal protein sequences of mammalian TGRs. The alignment of N-terminal
sequences of mammalian TGRs, starting from the CUG codon, is shown. First amino acid residue in protein is
marked by stars, and the methionine previously thought to be the initial residue is marked by triangles. The
active site of the Grx domain of TGR is designated by crosses. The peptide in the longer TGR form that was used
as antigen for polyclonal antibodies is marked with dashes.

FIGURE 3. Expression of TGR constructs in cell lines. A, immunoblot analysis
of expression products. The samples were as follows: lane 1, GFP alone; lane 2,
GFP coding sequence fused with the 5�-UTR and sequences coding for the
N-terminal region of TGR; lane 3, GFP sequences fused with the 5�-UTR and
sequences coding for an additional N-terminal 22 amino acids. The constructs
were expressed in the indicated cell lines, and the expressed proteins were
probed in immunoblot assays with antibodies specific for GFP. B, schematic
representation of constructs used in A. Numbers correspond to those in A.
Arrows indicate positions at which translation initiation occurs. extTGR,
extended longer form of TGR; N-term, N terminus. C, immunoblot analysis of
samples shown in A with antibodies specific for the N-terminal region of
TGR-L.
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provided additional evidence for TGR-L existence (Fig. 3C). In
Fig. 3A, the upper band corresponded to the translation of the
N-terminal part of TGR-L.Despite excellent Kozak sequence of
theCUGcodon, it serves as aweak initiator of translation and is
subject to leaky scanning. This explains the observation of a
middle band in lane 3 that originates from AUG start codon of
the short TGR form. Moreover, this AUG has a weak Kozak
consensus; thus, ribosome may also initiate translation at the
downstream GFP sequence.
Mechanism of Translation Initiation from the CUG Codon—

All cases of non-canonical start codon usage in mammals can
be separated into two groups: IRES-dependent and IRES-inde-
pendent. We carried out site-directed mutagenesis studies to
determine themechanism of CUG-initiated translation; specif-
ically, we determined whether it utilizes IRES or is based on a
typical ribosome-scanning mechanism. As discussed above,
deletion of sequences upstream or downstream of the CUG
codon and its 25 flanking nucleotides at the 5� end had no influ-
ence on translation initiation. Because the shortest experimen-
tally verified viral IRES has a length of 56 nucleotides, whereas
the average size inmammals is about 300 nucleotides according
to the IRESite data base (33), the functional sequences flanking
CUG could not accommodate IRES. We further examined this
mRNA region by Mfold and did not identify a stable mRNA
structure that could function as IRES. Thus, IRES-dependent

mechanism is not likely. We also made a set of constructs with
pointmutations in the consensus sequence that flanks theCUG
(Fig. 4C). This region is referred to as the Kozak sequence for
alternative initiation in a recent bioinformatics study (27); posi-
tions �7, �6, and �4 are particularly important in addition to
the classical Kozak. Thesemutations either completely blocked
or severely inhibited translation initiation. On the other hand,
certain changes in nucleotide sequences facilitated it (e.g.
replacement of GA in positions �7 and �6 with TT-increased
fidelity of the CUG start codon). To further exclude a role of
possible vicinal sequences in the CUG-driven translation initi-
ation, we replaced the native AUG start codon in the control
GFP construct by the Kozak region (from �8 to �6 positions)
of TGR-L, including the CUG codon, and expressed this con-
struct inHEK 293 cells. A clear and sharp bandwas observed by
Western blotting with anti-GFP antibodies. Thus, the Kozak
sequence ofmouse TGR is sufficient for translation initiation at
CUG codon (Fig. 4D).
Tissue Distribution of TGR and TGR-L—Previous studies

showed that TGR is abundant in testis and is expressed in
seminiferous tubuli. To examine TGR-L expression in vivo,
we employed polyclonal antibodies against the unique
N-terminal part of TGR-L. As a control, we used antibodies
prepared against a recombinant TGR that lacked the N-ter-
minal 4-kDa region; these antibodies recognized all TGR

FIGURE 4. Analysis of translation initiation function of the CUG codon. A, deletion and point mutation of CUG codon and its flanking areas were used to
examine the ability of CUG to initiate translation. Lane 1, GFP control; lane 2, GFP fused with 5�-UTR and sequences coding for the N-terminal region of TGR-L;
lane 3, GFP fusion construct carrying deletion at nucleotide positions 203–256; lane 4, GFP fusion construct with deletion at nucleotide positions 1–92; lane 5,
GFP fusion construct in which CUG was mutated to CUC in nucleotide position 148; lane 6, GFP fusion construct in which CUG codon was mutated to AUG.
extTGR, extended longer form of TGR. B, deletion of conserved sequences upstream of CUG does not affect translation initiation. Lane 1, GFP control; lane 2, GFP
fusion construct that contains the 5�-UTR and sequences coding for the N-terminal region of TGR-L; lane 3, same construct, but with deletion in nucleotide
positions 93–119. C, Kozak consensus sequences flanking the CUG codon are important for efficient initiation of translation. The upper panel summarizes
mutations that were examined. The middle panel shows an immunoblot analysis with anti-GFP antibodies. Lysates of HEK 293 cells were used. Cells were
transfected with GFP fusion constructs with mutations in the Kozak consensus sequence of the CUG codon. Lane 1, GFP control; lane 2, GFP fusion construct
coding for the N-terminal part of TGR-L; lane 3, the same construct but CC was replaced with GT; lane 4, CA was replaced with TT; lane 5, GAG was replaced with
CAT; and lane 6, GCC was replaced with CAT. The lower panel shows the protein loading control. D, Kozak consensus sequence of the longer form of TGR is
sufficient to initiate translation at CUG codon in HEK 293 cells. Immunoblot analysis with antibodies specific for GFP is shown. Lane 1, expression of control GFP
construct in HEK 293 cells; lane 2, expression of the GFP construct with AUG start codon replaced by CUG and its Kozak sequence (�8 to �6 positions relative
to CUG) derived from the longer form of TGR.
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forms (total TGR). Immunohistochemical analyses revealed
that the total TGR was evenly distributed among seminifer-
ous tubuli cells, whereas TGR-L was less abundant on the
outer edge of tubuli (Fig. 5). Thus, the long TGR form was
expressed in mouse testes, and it showed an expression pat-
tern that differed from that of total TGR. Overall, both TGR
forms were apparently present in mouse testes.
Localization of TGR in Cultured Cells—We examined the

N-terminal sequence of TGR-L for being a localization signal.
Computational analyses by PSORT II and other programs did
not identify signal sequences in this region of TGR. We trans-
fected HEK 293 cells with the construct coding for the 4-kDa
sequence of TGR-L (designated as extTGR in Figs. 3 and 4)
followed by GFP. Because the CUG start codon was not
stringent in translation initiation resulting in background
from unfused GFP, we mutated the natural AUG start codon
of GFP. The resulting protein product was expressed and
localized to cytosol (Fig. 6). As a control, we used a similar
vector with the N-terminal part of regular TGR. Some
nuclear staining was also detected, but it was not different

from the expression of GFP alone
(which has an inherent ability to
pass through the nuclear mem-
brane). The data suggest that the
N-terminal sequence of TGR-L is
not involved in targeting the pro-
tein to cellular compartments
when expressed in transfected
cells.
The Two Forms of TGR Occur in

Mammals—We examined whether
the two forms of TGR occur in vivo.
Western blot analysis of mouse tes-
tes with antibodies specific for
recombinant TGR revealed two
bands, which corresponded to
TGR-L and a shorter form (Fig. 7).
The assignment of the upper band
to TGR-L was further verified by
Western blotting with antibodies
specific for the synthetic peptide
in the N-terminal portion of
TGR-L. We also observed hetero-
geneity of TGR forms in rat testes
(data not shown). Overall, the two
TGR forms were both generated
upon expression of the gene in cell
culture experiments and existed
in vivo.
CUG Usage Evolved in Mam-

mals—We traced the use of the
CUG codon in TGRs by analyzing
evolution of this protein in verte-
brates and examining translation
initiation signals in these sequences.
Placing this information on the tree
of life revealed that the ancestral
form of TGR had a AUG start

codon. This codon is still used in fish, birds, and amphibians.
Mostmammals, however, contain extension at the 5� end of TGR
mRNAwithaconservedCUGcodon,andsomeprimates (baboon,
macaque) useGUG instead.The acquireduse ofCUGand its con-
servation in mammals indicate that translation initiation is best
served by a non-canonical codon in TGRs.

DISCUSSION

Numerous isoforms of mammalian thioredoxin reductases
TR1 and TR3 are known. Some of them were predicted from
the analyses of expressed sequence tag sequences, and some
were experimentally verified (20, 34–38). As a rule, alternative
first exon splicing is used in these genes wherein different
mRNA forms are transcribed from unique promoters and gen-
erate unique N-terminal sequences that converge onto the
common TR module. TR1 and TR3 forms may be targeted by
their N-terminal sequences to different cellular compartments
or to distinct interacting partners. In some cases, an alternative
form of TR1, normally a cytosolic protein, localizes to mito-
chondria, whereas the mitochondrial TR3 can be targeted to

FIGURE 5. Localization of TGR in mouse seminiferous tubuli. The left panel shows staining of a mouse testis
section with antibodies specific for the N-terminal part of TGR-L (brown) and hematoxylin (blue). The right panel
shows staining of a mouse testis section with antibodies specific for the recombinant TGR and hematoxylin.

FIGURE 6. Localization of the N-terminal region of TGR-L and a shorter form of TGR fused to GFP in HEK
293 cells. A, expression construct coding for the N-terminal part of TGR-L (up to the nucleotide position 256)
fused to GFP. B, expression construct coding for the N-terminal part of short TGR (nucleotides 256 –323) fused
to GFP.
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the cytosol when alternative first exon splicing skips over the
sequences coding for the mitochondrial signal (34). There is
also an intriguing isoform of TR1 that has a Grx domain that
shows no activity in the Grx assays. However, this domain can
be activated by mutating two amino acids in the active site.
Further studies linked the function of the Grx-containing TR1
to cytoskeleton rearrangements and cell shape (39, 40).
For TGR, however, no alternative forms were described.

Searches in the expressed sequence tag data base did not reveal
obvious candidates. However, onWestern blots, mouse and rat
TGRs appear as two bands (Fig. 7). Through a series of experi-
ments, we found that TGR exists in two forms generated by
leakage through a weak translation initiator codon. In experi-
ments involving HEK 293 cells, translation from a AUG codon
wasmore efficient than from aCUG codon. However, inmouse
testis, thismay not be the case. In addition, themechanisms and
details of translation initiation may vary between various orga-
nisms. In any case, themechanism used to generate TGR forms
differs from that in other TRs, although all three enzymes are
present during spermatid development (cytosolic and mito-
chondrial TRs are essential enzymes that are expressed in all
cell types). Both TGR isoforms occur in mouse testes; however,
the longer form appears to be more abundant. Analysis of the
alignment of mammalian TGRs suggests that human and some
other organisms may only have a single form, the long form of
TGR, due to the absence of the AUG codon downstream the
CUG in mouse and rat sequences.
Utilization of non-AUG start codons is highly unusual in

mammals. Only several proteins are known to use codons other
than AUG, and they include growth factors, kinases, and tran-
scription factors (27). Some of these proteins evolved an IRES
structure that facilitates translation initiation, whereas others
still utilize cap-dependent, ribosome-scanning mechanisms.

For instance, FGF2 (fibroblast growth factor) has as many as
five vicinal CUG codons, four of which participate in the IRES-
driven translation, whereas the function of the remaining one is
cap-dependent (41). In rare cases, regulation of CUG transla-
tion by trans-acting factors can occur (42). Recent studies sug-
gest an unknown CUG-specific methionine-independent
translational mechanism (43). In the majority of such proteins,
a non-AUG codon is auxiliary to themain AUG start signal and
is located upstream of it. Several such proteins are transcrip-
tional regulators known to use only non-AUG codons to ini-
tiate translation (44–46). One exception is a phosphoribo-
sylpyrophosphate synthase, which is involved in nucleotide
synthesis and was found exclusively in testes (47).
The selective usage of CUG codon in TGR generates protein

isoforms, and evolutionary analyses suggest that this function
evolved specifically inmammals and has been almost uniformly
preserved in these organisms. Non-mammalian (e.g. amphibi-
ans, fish, birds) TGRs still use AUG as the start codon. How-
ever, in the majority of mammals, a conserved CUG is used
instead. Some primates replace it with GUG, which perhaps
could also serve as an inefficient start signal. Our data suggest
that the function of CUG is to provide inefficient translation
initiation that allows production of two forms of TGR from a
single mRNA species.
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