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“If there is any area in which a network thinking could trigger a revolution, I
believe that biology is it.”

—Albert László Barabási1

Traditional biological and biochemical studies deal with relatively few components,
allowing intuitive reasoning to guide hypotheses and experiments. For example, a popular
experimental protocol in cardiovascular research is to examine gene functions through the
use of transgenic or gene-targeted mice. Although clearly informative, it is becoming
increasingly clear that such studies alone are not sufficient to explain complex processes
such as arrhythmias, heart failure, and atherogenesis. Even a basic behavior, the action
potential of a cardiomyocyte, requires the coordinated actions of >20 different ion
transporters and channels.2 Perturbing proteins individually will help establish their
functions, but it will not provide a full understanding of how they function together
(quantitatively, temporally, and spatially). For this, a more global analysis, in which the
activities of all of the relevant proteins are tracked over time and then integrated into a
quantitative mathematical model, is required to provide a deeper level of understanding of
cardiomyocyte dynamics.

A new branch of biology, called systems biology, seeks to identify the components of
complex systems and to model their dynamic interactions.3 The approach arose in large part
as a result of new technical and analytical developments. The Human Genome Project
provided a biological “parts list,” and technologies such as massively parallel DNA
sequencing, expression microarrays, and tandem mass spectrometric analyses of proteins
and metabolites have made high-throughput analysis of biological systems feasible. To deal
with the data explosion, novel statistical and other mathematical modeling approaches are
being developed.
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Basically, systems-based approaches involve 4 steps. The first is to define the system to be
examined (eg, a cardiomyocyte). The second is to identify the components of the system (eg,
the set of proteins regulating a property of interest). The third is to determine how the
components interact with each other. This can be done experimentally or may be based on
the published literature, and the set of components and their interactions is called a network.
The fourth is to model the dynamics of the network mathematically (ie, how it changes over
time or responds to various perturbations).

Given the complexity of the cardiovascular system and of cardiovascular diseases (Figure
1),4,5 systems-based approaches are likely to play an increasingly important role in
elucidating the higher-order interactions underlying traits such as atherosclerosis, cardiac
hypertrophy, heart failure, and arrhythmias. These approaches should have translational
value in giving biological context to the multitude of genetic variants reported to be
associated with disease and in providing a framework for the development of
pharmacological treatments. Here, we review progress relevant to cardiovascular networks
and their dynamics. We organized our review according to the different approaches used to
model networks. In each section, we include examples relevant to cardiovascular biology
and disease.

General Properties of Biological Networks
One of the central concepts in systems biology is that networks, rather than classic linear
pathways, underlie biological processes. The concept of biological networks arose when
classic metabolic pathways were represented as graphs in which the components (ie,
metabolites) were called nodes and their interactions (ie, enzymatic steps converting one
metabolite to another) were called links or edges. It then became clear that the overall
structure of metabolic pathways was much more interconnected and redundant than
previously recognized.6 Biological networks occur on many different levels such as genes,
transcripts, proteins, metabolites, organelles, cells, organs, organisms, and social systems. In
general, they appear to exhibit an architecture described mathematically as “scale free,” in
which most nodes have few links but a small fraction of nodes (called hubs) are highly
interconnected. This architecture arises naturally in systems that evolve under selective
pressures where nodes randomly interact and form links with other nodes. The system grows
over time by adding new nodes and links, and new links to already highly connected nodes
are favored (preferential attachment, or the principle that “the richer get richer”).7 Scale-free
architecture does not require but is fully compatible with a hierarchal modular organization
of components,6,8 which is typical for biological systems (eg, the organization of
metabolism into various modules as shown in Figure 2A).9–11 Thus, local groups of
sparsely linked nodes form modules that are linked to other modules through their
corresponding hub nodes. The challenge of systems biology is to construct detailed
biological networks for each level, from the gene to the organism, and then to connect the
levels by integrating orthogonal data sets.

Networks exhibit several key features that make them well suited for systems evolving in
response to selective pressures such as biological systems operating through random
mutation and natural selection. For self-organizing systems, properties such as adaptability
and robustness are just as important as efficiency, and the redundancy of pathways in a
network intuitively lends itself to adaptability and robustness more so than a purely linear
pathway. Although redundancy might seem to compromise efficiency, networks overcome
this limitation through their “small-world” effects.12 As an illustration, consider an
Escherichia coli using glycolysis to metabolize glucose to pyruvate to generate ATP, which
suddenly finds itself exposed to a different substrate such as alanine (Figure 2A). If the E
coli metabolism had a linear architecture in which alanine was far removed from glucose,
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then it could be energetically costly (and hence costly to survival) to interconvert a whole
array of intermediate metabolites to synthesize glucose to produce ATP. In a highly
interconnected network, however, enzymatic pathways exist to convert the alanine to a hub
metabolite, which in turn is converted to the hub metabolite (pyruvate) in the glycolysis
module, which is then metabolized to generate ATP. Thus, the energetic cost to the E coli is
minimized as a result of the “short-circuiting” effect of the highly interconnected hub nodes
in a small-world network. This is analogous to airport networks in which airplanes making
many stops to fly the geographically shortest route between 2 small towns may take much
longer than flying from the small town to a large hub city (eg, Chicago) and then
backtracking to the final destination, even though the total distance traversed is greater.
Another example is the “6 degrees of separation” in social networks.12

Networks are inherently robust because there are multiple alternative pathways to get from
one node to another; in a typical scale-free network, up to 80% of the links can be randomly
destroyed before catastrophic network failure occurs. 13 The redundancy of pathways also
makes networks adaptable to changing environmental conditions, as illustrated by the E coli
example above. Most critical for evolutionary adaptability, however, is the feature of
“emergent properties,” which arise when the interactions between the nodes in a network are
nonlinear. Unlike linear systems, in which the whole is equal to the sum of the parts,
nonlinear interactions can create a remarkable new set of collective behaviors that make the
whole much greater than the sum of the parts. The most fundamental emergent property in
biology, the self-oscillation underlying the cell cycle, could not exist without nonlinear
interactions between subcellular components in the biological network of the cell. Other
examples of emergent behaviors include developmental morphogenesis (pattern formation),
circadian rhythms, excitability, and cardiac pacemaking.

From an evolutionary perspective, emergent behaviors provide a rich source of qualitatively
new behaviors that can potentially confer a survival advantage to a biological system. Thus,
it is not surprising that the logic of biological networks is typically nonlinear or that
biological systems exhibit properties that may not be apparent until viewed as a whole. A
key corollary is that pure reductionist approaches can provide us with a detailed parts list but
not the whole view unless combined with integrative approaches.

With this general background, we now describe examples of different approaches being used
to model biological networks relevant to cardiovascular biology and disease.

Networks Based on Prior Knowledge
The data in the published literature can be mined through the use of known associations
(such as those with diseases or defined pathways) or simply correlations across data sets
(such as cocitation, phylogenetic profiling, coexpression, and sequence similarity), allowing
the modeling of functional networks. Numerous vast databases derived from high-
throughput technologies such as the Gene Expression Omnibus, 14 the dbEST database at
the National Center for Biotechnology Information, and GeneNetwork
(www.genenetwork.org) are freely available. There are also systematic phenotyping projects
such as the rat cardiovascular phenotyping project at the Medical College of Wisconsin.15
Such modeling can help reveal functions of genes about which little is known and can help
identify genes underlying diseases.16 For example, Figure 1 summarizes published
interactions in cardiovascular diseases derived from clinical and experimental databases.4,5
Our understanding of cardiovascular pathology is far from complete, so the network model
is very imperfect, but the tremendous complexity of cardiovascular diseases is apparent. The
goal of the studies described below is to create biological networks and to map them onto
the disease network.
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Systems-based approaches frequently rely on technologies capable of broadly interrogating
the components of a system such as DNA sequencing (genetic variation), expression arrays
(transcript levels), tandem mass spectrometry (protein and metabolite levels), or Chip-chip
and Chip-seq (DNA–transcription factor interactions). The result is generally a long list of
components, perhaps with some differences between samples, but generally lacking any
unifying biological theme. The challenge is to extract meaning from such lists. A number of
approaches have been developed to determine whether such lists are enriched for known
pathways.16

For example, Ashley et al17 sought to identify networks involved in restenosis after a
percutaneous coronary intervention. They examined 89 patients who underwent cardiac
atherectomy for de novo atherosclerosis (n=55) or in-stent restenosis (n=34). Whole-genome
gene expression profiling was then performed to examine the pathological samples, and the
genes from the array were ordered in a rank list according to their differential expression
between the classes. To construct an association network, the authors used text mining of
Medline abstracts. Any 2 genes were considered an interaction verb if they appeared in the
same sentence. In this way, certain highly connected genes, called nexus genes, were
identified and proposed as candidates for involvement in restenosis.

A related method is gene set enrichment analysis. The gene sets are defined on the basis of
prior biological knowledge, primarily published information. More than 1000 such lists have
now been compiled and are publicly available.18 Using a simple statistical test such as the
Kolmogorov-Smirnov test or Fisher exact test, one can ask if the list is enriched for any such
gene sets. An early example of the use of this approach is a study by Mootha et al,19 who
analyzed data obtained from muscle biopsies of diabetics compared with healthy control
subjects. The results did not reveal any single genes that differed significantly in expression,
but they did show that genes involved in oxidative phosphorylation exhibited reduced
expression in diabetics when taken as a pathway or a gene set. A similar approach was used
to identify pathways contributing to differences in obesity in randomized populations of
mice.9 Progeny from an intercross between 2 different inbred strains, C57BL/6J and DBA/
2J, were studied for obesity-related traits and for global expression in liver. With the gene
set enrichment analysis, 13 annotated metabolic pathways were found to be significantly
enriched among genes with an expression that was associated with obesity (Figure 2).
Interestingly, all of these pathways centered on the tricarboxylic acid cycle, and recent
transgenic studies have validated some of these findings.11

Networks Based on Physical Interactions
An intuitive criterion for analyzing network structure is that of physical proximity.
Components situated near one another are more likely to exhibit functional connections than
are distant components. For example, many proteins mediate their biological functions
through protein interactions, including aspects such as signaling, regulation of gene
expression, immunity, and molecular machines. Such networks can be based on literature
such as the Human Protein Reference Database20 or on unbiased experimental studies. A
variety of high-throughput methods have been used to construct protein interaction
networks, including global yeast 2 hybrid analysis, tandem affinity purification/mass
spectrometry, and protein arrays. Various methods for the prediction of protein-protein
interactions have also been developed (eg, from coevolution events). Such methods have
been applied in most detail to yeast, but a variety of organisms, including flies, worms, and
mammalian cells, have been examined.21–23 The first draft of the human interaction map
(interactome) comprises >70 000 predicted physical interactions between 6231 proteins.24
In interaction networks, the individual proteins are nodes, and the interactions connecting 2
proteins are links.
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Another type of physical network can be constructed from functional interactions, eg, the
modular compartmentalization of energy-generating systems in a cardiomyocyte (reviewed
elsewhere25). These modules include glycolytic enzymes, glycogenolytic enzymes, and
oxidative phosphorylation, which appear to be spatially distributed to optimize ATP delivery
to specific ATPases (Figure 3). Glycolysis, which generates ATP through oxidation of
glucose, preferentially serves energy channeling to the sarcolemma, where glucose is
transported into the cell. Glycogenolysis appears to preferentially serve the sarcoplasmic
reticulum to energize calcium cycling. Oxidative phosphorylation occurs in the
mitochondria, channeling ATP to the myofilaments and throughout the cytoplasm. This is
aided by the creatine kinase and adenylate kinase systems. Although the vast majority of
energy is generated by oxidative phosphorylation, the glycolytic and glycogenolytic systems
are low-capacity but high-specificity modules of the integrated metabolic network of a
cardiomyocyte. There has been recent progress in identifying the protein components of
mammalian organelles (eg, see the work by Foster et al26), and an important goal is to
integrate proteomic networks with organelle networks.

Networks Based on Experimental Perturbations
Most biological studies involve some kind of perturbation such as a chemical treatment or
genetic alteration, followed by analysis of the resulting effects. Conclusions about the causal
interactions can then be drawn. For example, the function of a gene can be defined by
“knockdown” in tissue culture using treatment with siRNA or by “knockout” in mice using
gene targeting. In such experiments, whatever changes are observed are clearly the result of
the single perturbation. But such experiments alone are not very useful for constructing gene
networks because the components being analyzed have only 2 states (ie, wild type or
knockout). Thus, to determine how the various components interact with each other, a series
of single perturbations is required. For example, one could analyze a series of mouse
knockouts or transgenics affecting overlapping pathways. The resulting changes in transcript
levels or protein levels or activities could then be mathematically modeled as a network.
Another kind of experiment involves the use of multiple perturbations. For example, natural
populations exhibit functional variations (such as in gene expression) in hundreds or
thousands of genes. Thus, one could examine the status of components in different
individuals in the population and construct networks based on correlations between the
components. In contrast to single perturbations, such studies have clear advantages for the
construction of biological networks. Below, we discuss 2 examples of each.

Inflammation and macrophage activation are clearly implicated in atherogenesis, and a
recent study by Ramsey and coworkers27 explored the macrophage transcriptional network
mediated by Toll-like receptors (TLR) using a series of single gene perturbations. TLR
recognize a variety of pathogen-associated molecules and certain endogenous ligands
through adaptor molecules such as TRIF and Myd88 and then parallel crosstalking signaling
pathways. In the case of macrophage TLR4, when stimulated with lipopolysaccharide, these
activated pathways initiate a program leading to the differential expression of >1000 genes,
including hundreds of transcription factors.28 Although these differentially expressed genes
are known, the network of these interactions has proved difficult to address with traditional
biochemistry. The authors combined 2 types of data to explain the network. First, they
performed computational scanning of promoter sequences of clusters of coexpressed genes
for known TF binding sites. Second, they used expression dynamics, modeling time course
expression data to best fit the expression of a TF with potential target genes. The whole-
genome expression array analyses were performed on primary bone marrow macrophages
from 5 strains of mice (1 wild-type and 4 targeted strains) treated with 6 different TLR
agonists at multiple time points between 0 and 48 hours. In all, 95 different combinations of
strains, stimuli, and elapsed times were measured. The set of differentially expressed genes
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was clustered; promoter sequences of each gene were scanned for TF binding sites; and the
temporal patterns of expression of TF and targeted genes were compared to identify
potential causal influences. When integrated, the results provided a broad picture of the
dynamic transcriptional program of the TLR network. The general approach seems
applicable to other mammalian systems for which time course data are available.

Skogsberg and colleagues29 used a series of single gene perturbations to create a network of
genes mediating the development of advanced atherosclerotic lesions in mice. Briefly, they
followed the development of atherosclerotic lesions in low-density lipoprotein receptor–null
mice (a model of familial hypercholesterolemia) and observed a gradual initial growth
phase, followed by an accelerated phase of rapid foam cell development and finally a
plateau phase. Using a genetic switch that blocked secretion of lipoproteins to rapidly lower
cholesterol, they observed that the switch blocked the development of advanced lesions if
performed before the expansion phase and that this block was associated with altered
expression of 37 genes, some of which had previously been associated with foam cell
formation (CD36, PPARA). They then used siRNA knockdown of a subset of these genes to
construct a network of cholesterol-responsive atherosclerosis target genes. For this, the
authors examined expression patterns and cholesterol ester in a macrophage cell line
(THP-1) after treatment with acetylated low-density lipoprotein in the presence or absence
of siRNA to one of the candidate genes. Computational modeling of the expression data30
revealed a directed network of 8 genes involved in foam cell formation (Figure 4).

One of the first examples of the use of multiple, common genetic perturbations to construct
functional networks for cardiovascular traits is described by Nadeau et al.31 These
investigators examined a variety of cardiovascular traits, as well as exercise endurance and
body weight, in a panel of genetically randomized mice (ie, a series of inbred strains
differing in their genetic backgrounds as a result of mendelian segregation). Using
echocardiographic and treadmill assays, the authors measured functions such as cardiac
output, end-systolic dimensions, septal wall thickness, and heartbeats per minute. None of
these traits represented adverse pathology but instead constituted genetically controlled
differences in the normal range of variation. In addition, none of the traits showed
mendelian inheritance but rather exhibited continuous variation that was consistent with
multigenic control. A network was then constructed in which the traits (nodes) were
assigned edges based on significant correlations (Figure 5). The assumption in such
networks is that traits are correlated as a result of shared genetic determinants or causal
interactions. The resulting network correctly identified known functional relationships based
on physiological studies, and some interactions were confirmed through the use of single-
gene mutant mice or treatment with pharmacological agents. Thus, this proof-of-principle
study demonstrated that such networks are a powerful approach for characterizing functional
relationships in complex biological systems.

A similar strategy, using multiple genetic perturbations, was used to model an inflammatory
network associated with atherosclerosis.32 Oxidized lipids are thought to promote
atherosclerosis by stimulating endothelial cells to produce inflammatory cytokines such as
interleukin-8, but the pathways involved are poorly understood. To examine this, transcript
levels in the presence and absence of oxidized lipids were quantified in cultured endothelial
cells derived from a series of random individuals (heart transplant donors). Altogether,
>1000 genes were found to be significantly influenced by the oxidized lipids. In addition,
between endothelial cells from different donors, there were striking differences in the
responses of individual genes. This result was due to the fact that, in natural populations,
there are many polymorphisms that perturb gene expression. These multiple common
genetic variations were then used to group the genes according to the similarity of
expression across individuals and thus create a “coexpression” network (Figure 6). In such
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networks, the nodes are genes and the edges represent correlations in the transcript levels
between pairs of genes. A tutorial on the analysis of coexpression networks can be found at
http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/. Altogether, 15 modules
of highly connected genes were identified, and they were significantly enriched in genes for
known pathways, including modules corresponding to 2 different arms of the unfolded
protein response. In addition to identifying key pathways involved in the inflammatory
response, the network was also useful for predicting regulatory mechanisms and identifying
gene functions. For example, interleukin-8 and certain other cytokines thought to be
involved in atherosclerosis were observed to occur in the XBP1 arm of the unfolded protein
response, suggesting that these cytokines were regulated in part by the unfolded protein
response. This prediction was validated through the use of siRNA and overexpression. The
authors also were able to predict the functions of certain genes on the basis of their presence
in modules. For example, a gene of unknown function (MGC4504) was a hub in the ATF 4
arm of the unfolded protein response, suggesting that it was an unfolded protein response
gene regulated by ATF 4. This was confirmed, and subsequent studies have indicated that
the function of the gene is related to apoptosis.33

Systems Genetics
The endothelial example above shows how common genetic variations can be leveraged to
model biological networks. This can be extended by simultaneously examining DNA
variation and clinical phenotypes, as well as molecular phenotypes. This approach, called
genetic genomics, integrative genetics, or systems genetics, is proving particularly powerful
for the analysis of complex cardiovascular and metabolic traits.34–36 The basic concept is
illustrated in Figure 7. Common forms of cardiovascular disease are due to multiple genetic
factors, each contributing modestly to disease risk, and to environmental factors. These
environmental and genetic factors perturb molecular phenotypes such as gene transcript
levels, protein levels, and metabolite levels; genetic variation can also affect coding
sequences and protein structure. These, in turn, perturb the cellular and physiological states
contributing to the diseases. Classic genetics attempts to relate DNA variation directly to
clinical phenotypes. Systems genetics, on the other hand, attempts to assess molecular
phenotypes quantitatively and to identify patterns (networks) in them that are associated
with clinical traits.

An early example of the approach is illustrated in Figure 8. A group of ≈300 genetically
randomized mice (from a cross between 2 inbred strains) have been typed for DNA markers,
transcript levels for an enzyme involved in cholesterol catabolism, and levels of plasma
high-density lipoproteins (HDL). As in human populations, there are thousands of common
variations that perturb gene expression among common laboratory strains of mice or rats. In
this cross, genetic loci on chromosomes 3, 5, and 11 exhibited significant or suggestive
association with HDL cholesterol levels. These same 3 loci also exhibited significant
association for the transcript levels of the enzyme cholesterol 7α-hydroxylase (Cyp7a),
which degrades cholesterol. The loci controlling HDL levels are called clinical quantitative
trait loci; the loci controlling transcript levels are called expression quantitative trait loci.
These results suggested 3 possible hypotheses: the loci control levels of the Cyp7a gene
expression, which in turn influences HDL cholesterol levels; these loci control HDL
cholesterol level, and this in turn perturbs Cyp7a transcript levels; and the 3 loci
independently control levels of HDL cholesterol and Cyp7a transcripts. As discussed below,
these possibilities can be modeled mathematically. These studies were carried out in the
mid-1990s before the development of gene expression microarrays.37 Now, it is possible to
carry out such analyses globally, examining relationships between DNA variation
throughout the genome and levels of transcripts globally.
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An important concept for such analyses is that information flows from DNA to the
molecular or clinical traits. Thus, in the example above, we can assume that DNA variation
causes alterations in Cyp7a transcript levels and HDL levels but not the reverse. Thus, when
a network is constructed, DNA can serve as a “causal anchor.” The relationships between
DNA variation, transcript levels, and HDL levels can be modeled statistically. If Cyp7a
transcript levels control HDL levels, then the relationship between the DNA variation and
HDL would be expected to be considerably reduced or eliminated by mathematical
conditioning on transcript levels using partial correlation coefficients. That is, because in
this scenario the loci influence HDL only secondarily as a result of influencing transcript
levels, transcript levels would be sufficient to explain HDL levels at those loci. Conversely,
if HDL levels controlled transcript levels, conditioning on HDL would reduce or eliminate
the DNA–transcript level associations. Schadt and colleagues36 developed a statistical
procedure to distinguish between such possible relationships and to identify genes likely to
be causally involved in complex traits. To validate the approach, they chose genes predicted
to contribute to body fat in a segregating population of mice and tested the predictions by
overexpressing the genes in transgenic mice or reducing expression in gene-targeted mice.
To date, 9 genes have been tested; of these 9, all but 1 showed a significant impact on body
fat.11 Such causal modeling is dependent on the concept of multiple perturbations discussed
above. It would have little power to test for causal relationships between traits in studies
with single perturbations such as a gene knockout study in mice because all traits would
change as a result of the same perturbation and only environmental noise would distinguish
primary from secondary effects.

As discussed above for endothelial inflammation studies, data from such experiments can be
modeled to generate coexpression networks. Such networks have exhibited several
remarkable features. For example, some of the modules showed striking overall correlations
with clinical traits. Ghazalpour et al38 identified liver modules that explained a significant
fraction of adiposity or glucose levels in a segregating population of mice. Wang et al39
observed significant correlations between adipose gene modules and atherogenesis in a
segregating population of mice on a hyperlipidemic genetic background. Keller et al40 also
showed that the modules in different tissues can exhibit significant correlations, indicative of
coordinated communication between different cells and organs (Figure 9). Striking sex
effects have also been observed. For example, van Nas et al41 observed that modules in
various tissues of a population of mice were generally conserved between sexes but that
several showed dramatic differences in connectivity, including some that essentially broke
into pieces in one sex compared with the other. Such emergent properties are likely to have
important implications for cardiovascular and other complex diseases. Coexpression
networks can also be significantly influenced by disease states and genetic backgrounds
(Figure 9). In an elegant study in which pancreatic islet proliferation was measured with
metabolic labeling, Keller et al40 observed differences in the overall networks of an obese,
non–diabetes-prone strain of mouse (B6) compared with a diabetes-prone strain (BTBR),
particularly in a cell-cycle module that is likely to be relevant to the development of type 2
diabetes mellitus (Figure 8). Conceptually, a powerful aspect of elucidating the topological
structure of biological networks is the simplification of the system from a vast number of
individual components (eg, 20 000 genes) to a smaller number of interacting modules (eg,
<100 gene modules regulated by hub genes).

Although gene coexpression network analysis models the overall topological features of a
network by portioning the transcriptome data into functional units (modules), how the genes
interact and how information flows through the network are not explained. However, as
discussed above, the relationships between genes in a network can be causally modeled, and
bayesian methodologies that exploit the increased information of joint probabilistic mapping
can be applied to produced “directed” graphs. Needham et al42 and Beaumont and
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Rannala43 provide reviews of bayesian analysis of complex systems. Chen and
colleagues34 have used bayesian networks for liver and adipose gene expression in mouse
crosses. Several subnetworks (coexpression modules) were observed to be significantly
correlated with clinical traits, allowing prediction of genes likely to contribute importantly to
these traits (Figure 2).

It is clear that systems genetics approaches can also be applied to humans, although access
to tissues is an important limitation. Numerous studies have shown that loci contributing to
transcript levels can be identified in human populations by linkage (expression quantitative
trait loci) or association analyses (expression single nucleotide polymorphism, eSNP),44 and
as discussed above, for human endothelial cells, it was feasible to construct coexpression
networks. In fact, recent studies suggest that mouse and human coexpression networks show
considerable overlap, and network analysis has been used to prioritize candidate genes
identified in genome-wide association studies.45

Clearly, expression arrays provide a very incomplete picture of molecular phenotypes, and it
is important that systems genetics be extended to proteins and metabolites. The most
extensive of such analyses have been conducted in experimental organisms such as yeast
and Arabidopsis.46 Recently, Chaibub Neto and colleagues47 integrated metabolic profiling
with gene expression in a mouse cross-segregating for diabetes mellitus and validated some
causal interactions.

Network Dynamics
The ultimate goal of systems biology is to apply knowledge about the structure of biological
networks to understand their function, including how function changes over time
(development, aging, diurnal cycles), between sexes,41 and in disease states. So far, such
analyses have been performed in detail only in model organisms such as yeast and certain
tissue culture cells (eg, Ramsey et al27). However, an understanding of network dynamics
will be particularly important for the cardiovascular system, given the progressive nature of
metabolic disease, atherosclerosis, and heart failure.

Perhaps the greatest challenge in elucidating network structure-function relationships relates
to emergent properties. As discussed earlier, the nonlinear interactions in biological
networks that drive evolution by generating novel adaptive collective behaviors cannot be
understood solely by examining the properties of individual components of the network.
Although reductionist approaches are essential to characterize components, integrative
approaches that incorporate the dynamic interactions between components must be
reintegrated back into the system to understand how these novel collective behaviors arise
and how they are regulated.

Mathematical modeling and nonlinear dynamics provide the tools to analyze emergent
properties and to define the system-level parameters controlling them. For this purpose, 2
modeling strategies can be used synergistically. Traditional detailed (high-dimensional)
models are most valuable for directly linking biological networks across levels (eg, protein,
organelle, cell, tissue, organism) in a biologically realistic manner. Conceptual (low-
dimensional) models, on the other hand, are most valuable for analyzing the dynamics of
novel behaviors at a given level.

Detailed modeling incorporates detailed molecular interactions into the model, with the
advantage that physical biological entities can be represented explicitly, allowing
corresponding biological experiments to be designed to evaluate the accuracy of the model.
However, these models become very complex and difficult to analyze, especially with
unknown parameters/rate constants. Once the topological structure of a network has been
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defined, however, computational techniques based on optimality assumptions can be used to
test validity and predictive accuracy.48,49 For example, in metabolic networks, 2 commonly
used optimality assumptions include flux balance analysis and minimization of metabolic
adjustment. Flux balance analysis assumes that the goal of metabolism is to maximize
growth (ie, maximizing the conversion of substrates into products that are essential for cell
growth), whereas minimization of metabolic adjustment assumes that the metabolite
network strives to minimize metabolic flux redistribution in response to perturbations. With
these constraints, unknown parameter values in the network are explored computationally
and assigned optimized values that maximize growth rate (flux balance analysis) or
minimize metabolic flux redistribution (minimization of metabolic adjustment). With these
techniques, knowledge of a restricted set of parameters, combined with the application of
fundamental thermodynamic and evolutionary principles, can generate quantitative
predictions and testable hypotheses. These approaches have successfully predicted
experimental results in microbe responses to mutations and environmental changes, and
similar approaches are being developed to model the adaptive responses of the mammalian
myocardium to cardiac workload, acute ischemia, and heart failure.50–52

Conceptual modeling, on the other hand, ignores the explicit physical details and instead
strives to capture dynamic principles underlying emergent behaviors by following Albert
Einstein’s dictum that “things should be as simple as possible, but not too simple.” As an
example, consider the emergent behavior of reentry, the most common cause of cardiac
arrhythmias. Reentry does not exist at the level of the myocyte but emerges as a collective
behavior at the level of tissue when individual myocytes are coupled diffusively by gap
junctions. Conceptually, the simplest requirement for reentry is that the wavelength of the
cardiac electric wave (the product of its conduction velocity and refractory period) be less
than the available path length in the tissue so that an excitable gap exists between the wave
front and the wave back (Figure 10). Thus, conduction velocity, refractoriness, wavelength,
and excitable gap are system-level parameters that control the emergent behavior of reentry.
It is important to note that these system-level parameters are phenomenological; ie, none is a
discrete biological entity such as an ion channel protein. The goal of conceptual models is to
identify such system-level phenomenological parameters that control the emergent behavior
so that the physical entities such as ion channels (more specifically, the interactions between
various ion channels) can be mapped onto the phenomenological parameters. Conceptual
models can be very powerful, as illustrated by the example of reentry. The therapeutic
concept of electric defibrillation, based on eliminating excitable gaps in reentrant circuits,
preceded any detailed molecular or cellular knowledge of cardiac electrophysiology and yet
remains the most effective therapy for preventing sudden cardiac death, despite 50 years of
cellular/molecular investigation.

In summary, these 2 modeling approaches, although fundamentally different, are highly
complementary.53 Conceptual models provide critical insight into how new properties
emerge at a given level, but they do not directly relate phenomenological system parameters
to physical biological entities. Detailed models link these phenomenological parameters to
physical entities that can be experimentally manipulated. Combining both approaches
provides a powerful strategy for generating hypotheses from conceptual models that can be
related to specific biological parameters in detailed models, which can then be manipulated
in biological experiments to test their validity. Thus, the interactions with biological
experiments are direct and bidirectional. Excellent examples include quantitative modeling
in electrophysiology in which iterated maps,54,55 simple 2-variable dynamical models,56
low-dimensional physiologically detailed models,57 complemented by very high-
dimensional physiologically detailed models58–60 are used to elucidate the underlying
dynamics of action potential excitation and wave propagation. A cardiovascular example

Lusis and Weiss Page 10

Circulation. Author manuscript; available in PMC 2010 March 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



relevant to morphogenesis includes calcification patterns in cultured vascular smooth muscle
cells created by diffusible morphogens.61

Clinical Applications
Systems biology is providing the framework to analyze how the structures of biological
networks relate to their functions, as required to understand human disease. Although
clinical applications are still in their infancy, there have been a number of promising
advances related to disease gene discovery, diagnosis, treatment, and general patterns of
human disease.

One application that has already proven very useful is in providing a biological context to
the many single nucleotide polymorphisms associated with disease in genome-wide
association studies.45 Thus, if genes located near the single nucleotide polymorphisms are
present in a network module, they can immediately be associated with annotated genes in
that module. Baranzini62 have developed an interesting strategy for identifying subnetworks
associated with common diseases, including cardiovascular disease, using genome-wide
association study results. Thus, single-nucleotide polymorphisms with nominal evidence of
association with the diseases were superimposed on the human protein interaction network,
and subnetworks enriched for associated genes were identified.

A network perspective may prove valuable for diagnostic purposes. Recent genome-wide
association studies have revealed that cardiovascular diseases, like most complex diseases,
have a surprising complex genetic architecture and that there are no truly “major genes.”
Thus, even highly heritable traits such as obesity and lipoprotein levels are determined by
polymorphisms with effects that are, individually, very small (usually with the strongest
genes exhibiting odds ratios <1.2). Moreover, only a small fraction of the genetic
components of traits such as atherosclerosis have been explained by even very large
genome-wide association studies involving thousands of individuals. Thus, the dream of
individualized medicine using DNA analysis seems very distant. However, systems genetics
studies, as discussed above, have shown that certain networks are highly correlated with
clinical phenotypes, in some cases explaining up to 50% of the trait variance, much more
than can be explained by individual DNA variations.38,40 This concept of using defined
clusters of transcripts identified by global expression profiling has already proven useful in
predicting outcomes in cancers and may be similarly effective in cardiovascular diseases.63

Although such networks can be readily constructed in experimental organisms, it will be
challenging to obtain and integrate global data sets in humans in the context of
cardiovascular disease. Molecular studies will be limited by tissue availability, but as
discussed above, samples can be obtained from pathological sources such as endarterectomy
and from accessible tissues such as blood and adipose. In a recent study, Lewis and
colleagues64 took advantage of planned myocardial infarction procedures to create a
metabolic profile related to myocardial injury. They applied mass spectrometry to quantify
metabolites in blood of 36 patients undergoing alcohol septal ablation treatments for
hypertrophic obstructive cardiomyopathy. A clear signature consisting of a set of altered
metabolites associated with cardiac injury was thus obtained.

An important reason for elucidating the networks associated with a disease is to better
understand how it can be targeted pharmacologically. If a given gene is not classically
“targetable,” a network perspective may reveal connected targetable genes that regulate it.
Alternatively, a network perspective could help avoid toxicities resulting from disruption of
multiple edges of a node.10 It may also be useful for the development of “combination
therapy” in which the desired effect is obtained by targeting multiple arms of the network.
For example, the drug Vytorin reduces cholesterol by targeting both cholesterol synthesis
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with simvastatin (an inhibitor of HMG-CoA reductase) and dietary cholesterol uptake with
ezetimibe (an inhibitor of Niemann-Pick type C1-like). It is also possible that some
cardiovascular diseases are emergent properties of the network and thus are unlikely to be
targetable by a single molecule.10

Network analyses are also revealing connections between diseases. Goh and coworkers65
constructed a bipartite graph in which one set of nodes corresponds to all known human
genetic disorders and the second set to all known disease genes (the “diseaseome”). This
could be transformed into a “human disease network” by connecting diseases sharing a gene
or into a “disease gene network” by connecting genes sharing a disease. This network
strategy offers the possibility of identifying general patterns of human disease not apparent
from studies of individual disorders. For example, the disease gene network exhibited
distinct functional modules in which various combinations of perturbed genes appeared to
lead to diseases. The approach was also capable of predicting comorbidity patterns such as
Alzheimer disease and myocardial infarction.66 In a related study, Hidalgo and
colleagues67 constructed a network of pairwise comorbidity correlations for >10 000
diseases from >30 million medical records (a “phenotypic disease network”). They then
used the results to study illness progression from a network dynamics perspective. For
example, they found that the progression of disease occurred along the links of the network
and differed among genders and ethnicities (Figure 11).

Finally, network analysis of disease offers a new, more specific, strategy for disease
classifications.68 Thus, a systems-based approach allows one to quantitatively assess the
molecular and environmental relationships that define a specific pathophenotype. From this
perspective, disease is viewed as the result of interactions between a modular collection of
genomic, proteomic, metabolomic, and environmental networks.

Summary
New technology is making it possible to see both the “forest” and the “trees” in biological
systems. Systems biology might be best defined as the attempt to integrate new discovery-
driven technologies that allow us to track biological networks holistically with classic
hypothesis-driven approaches. Mathematical biology, in the form of bioinformatics to
elucidate the structure of biological networks, as well as conceptual and detailed modeling
to illuminate how network structure relates to function, will play an increasingly critical role
in this effort. In this truly exciting era of cardiovascular biology, we can glimpse how the
mysteries of human cardiovascular diseases might ultimately be solved.

Appendix

Glossary of Terms
Bayesian networks: Networks in which the connectivity of components is represented by
joint probabilities. For example, in coexpression networks, the correlation of individual
components can indicate functional associations, and causal interactions can be represented
as joint probabilities.

Boolean networks: In these networks, each component is represented in 2 possible states
(on/off). Boolean networks lead to relatively “coarse-grained” models lacking quantitative
network properties.

Coexpression networks: Networks based on correlations between components in response to
a variety of perturbations. In such networks, the connections are based on the degree of
correlation, with the assumption that correlation suggests functional or causal interactions.
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Complex traits: Traits that are due to multiple genetic, environmental, or developmental
factors.

Connectivity (k): A measure of gene connectiveness. Genes with high k are all highly
correlated with many other network genes.

Emergent properties: Properties that are not possessed by the individual components of a
system but “emerge” in the assembled system.

Graphs: Mathematical representations of the pair-wise relationships between components in
a system.

Hub: A node with many connections.

Module: A group of components tightly connected across a set of conditions or
perturbations.

Network motifs: Subgraphs that occur in real networks relative to all possible links between
a subset of nodes. For example, “feedback” or “feed-forward” loops occur commonly in
biological regulatory systems.

Network models: Graphs containing multiple “components” or “nodes” connected by
“edges.” For example, in a network of protein interactions, the nodes are the proteins and the
edges are pair-wise interactions between the proteins. In “undirected’ graphs, causal
relationships between nodes are not specified. In “directed” graphs, the edges, or “arcs,”
indicate a direction of interaction.

Self-organizing system: A system that increases in complexity without being guided by an
outside source. Examples in biology include the spontaneous folding of proteins and
morphogenesis.

Small-world effects: Properties of biological networks resulting in short path lengths
between nodes.

Systems-based approaches: Approaches that use computational and statistical methods to
understand systems with a large number of components.

Weighted gene coexpression network analysis: A collection of algorithms designed to
identify modules of coexpressed genes using microarray data. They are referred to as
“weighted” because connection strengths (ie, correlations) range from 0 to 1. In an
“unweighted” network, the connection strengths are binary, 0 or 1.
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Figure 1.
Graph of the components (clinical traits) and their interactions (connecting lines) in
cardiovascular disease. This crude network is based on the results of clinical studies and
experimental models. Data derived from refs. 4, 5.
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Figure 2.
Networks contributing to adiposity in mice. A, A set of curated pathways was shown to be
enriched in genes differentially expressed between livers of fat and lean mice in a
segregating mouse population.9 Note that these pathways tend to center on the tricarboxylic
acid cycle, which is central in energy production. Through the use of systems genetics, a set
of genes (labeled 1 through 9) were predicted to be causally related to adiposity in mice.10
Their effects on adiposity were validated with transgenic approaches, and expression array
analyses of the transgenic mice showed that the differentially regulated genes were enriched
in many of the same tricarboxylic acid–centered pathways (indicated by numbering above
pathways).11 B, Systems genetics approaches were used to construct a directed “bayesian”
coexpression network model based on global expression array analysis of segregating
populations of mice. One subnetwork, or module, was significantly associated with
adiposity. Notably, the genes causally involved in adiposity (above) correspond to hubs in
the network. Data derived from refs. 9, 11.
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Figure 3.
A spatially distributed, dynamic metabolic energy network in a cardiomyocyte. Energy
modules include glycolytic enzymes (GE) associated with sarcolemma (SL) ATPases in red,
glycogenolytic enzymes (GGE) associated with sarcoplasmic reticulum (SR) Ca ATPases
(SERCA) in blue, and oxidative phosphorylation in mitochondria (Mito) associated with
myofilament (MyoF) ATPases in green. Energy-distributing modules include creatine kinase
(CK) in purple and adenylate kinase (AK) in orange. CP indicates creatine phosphate; Cr,
creatine; KATP, ATP-sensitive K channel; and PRY, pyruvate.
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Figure 4.
A regulatory network for foam cell formation based on in vivo expression analyses in mice
followed by perturbation in vitro. A, The above genes were found to be differentially
regulated in the response to cholesterol lowering in atherosclerotic lesions in mice. They
were then subjected to in vitro siRNA “knockdown” studies in a macrophage cell line. The
predicted interactions (edges) are indicated, along with the percent change in cholesterol
accumulation after cholesterol loading. Blue indicates an inhibition of cholesterol loading;
red, an increase; and black, no change. B, Representative siRNA-treated cells are shown
after 48 hours of incubation with acetylated low-density lipoprotein and staining for neutral
lipids with Oil Red O. AGPAT3 indicates 1-acylglycerol-3-phosphate O-acyltransferase 3;
AGL, amylo-1,6-glucosidase, 4-α-glucanotransferase; PVRL2, poliovirus receptor-related 2;
GYPC, glycophorin C; HMGB3, high-mobility group box 3; HSDL2, hydroxysteroid
dehydrogenase-like 2; CD36, CD36 molecule; PPARA, peroxisome proliferator-activated
receptor-α. Reproduced from Skogsberg et al29 under the Creative Commons Attribution
License. Copyright © 2008 Skogsberg et al.
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Figure 5.
A network of cardiovascular traits based on trait correlations in genetically randomize mice.
Solid lines indicate positive relationships between traits; broken lines, inverse relationships .
The body weight and exercise nodes did not exhibit significant cosegregation with any other
traits. Adapted from Nadeau et al31 with permission from Cold Spring Harbor Laboratory
Press. Copyright © 2003 Cold Spring Harbor Laboratory Press.
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Figure 6.
Coexpression analysis of the inflammatory responses of human endothelial cells based on
common genetic variations in the population. Small pieces of human aortic arteries
(obtained during the course of heart transplant surgery) were used to obtain pure, early-
passage cultures of human endothelial cells. The endothelial cells from different donors
were observed to exhibit significant differences in response to oxidized lipids. A, Production
of interleukin-8 (IL8) by the cultures after treatment with biologically active oxidized
phospholipids (solid symbols) vs control levels (open symbols). A total of 12 endothelial
cell cultures isolated from individuals exhibiting various responses to oxidized lipids were
subjected to microarray analysis, and >1000 genes were shown to be regulated by oxidized
lipid treatment. Transcript levels of these genes were then used to model scale-free networks
based on coexpression. A correlation matrix of all the genes was constructed, and their
connectivities were used to generate a topographical overlap matrix (TOM) plot. B, Results
shown as color-coded clusters (modules) of highly correlated genes in a symmetric plot.
Correlations between genes are indicated by the color intensity (white corresponding to little
or no correlation; red, strong correlation). The red diagonal represents correlations of each
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gene with itself, and offset from this are correlations with other genes. Some of the modules
were highly enriched for curated pathways as shown. Adapted from Gargalovic et al32
according to the policy of Proceedings of the National Academy of Sciences. Copyright ©
2006 by the National Academy of Sciences. HAECs indicates human aortic endothelial
cells.
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Figure 7.
“Molecular phenotypes” (such as transcript levels) can be used to identify networks
contributing to complex cardiovascular disorders. Complex traits such as common forms of
coronary artery disease and heart failure result from the interactions of multiple genetic
variations, and environmental factors. Random populations of humans or experimental
organisms can be examined for molecular phenotypes (such as transcript levels, protein
levels, and metabolite levels) and for clinical traits to identify molecular patterns (networks)
associated with the clinical traits. If DNA variants are typed, they can be associated with
both molecular and clinical phenotypes.
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Figure 8.
Integration of DNA variation, transcript levels, and a clinical trait. A randomized population
of mice (from an intercross between 2 strains of mice) was studied for DNA variation
(genotyping), for levels of HDL cholesterol in plasma, and for transcript levels of a
candidate gene, Cyp7a. A through C, A measure of statistical significance of linkage (lod
score) for HDL cholesterol and Cyp7a transcript levels along the chromosomes, with the
positions of typed genetic markers indicated. As shown, 3 overlapping loci (on
chromosomes 3, 5, and 11) controlled both traits. D, There are 3 likely causal relationships
between the components. Redrawn from Machleder et al37 according to the policy of The
Journal of Clinical Investigation. Copyright © The American Society for Clinical
Investigation.
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Figure 9.
Coexpression modules in different tissues are strongly correlated, and the connectivity of the
networks is influenced by genetic background and disease status. Inbred C57BL/6 (B6) and
BTBR mice, some carrying the ob leptin gene mutation resulting in massive obesity, were
studied by global expression array analysis in 6 different tissues and at different ages, and
the data were used to model coexpression networks in each tissue. The resulting modules are
illustrated as colored bricks along the inside and outside of the network wheels. The edges,
shown as arcs and lines, represent significant correlations of modules between tissues (inside
the wheel) or within tissues (outside the wheel). A cell-cycle module with the pancreatic
islets and those modules that form a direct connection to the cell cycle islet are highlighted
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with open arrows. Reproduced from Keller et al40 with permission from Cold Spring
Harbor Laboratory Press. Copyright © 2008 Cold Spring Harbor Laboratory Press.
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Figure 10.
Reentry as an emergent property of cardiac tissue. For reentry to occur, an excitable gap
must be present between the wave front (action potential [AP] upstroke) and wave back (AP
repolarization). CV indicates conduction velocity.
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Figure 11.
A phenotypic database network based on comorbidities from >30 medical records.67 Shown
are all diseases connected to hypertension and ischemic heart disease, emphasizing
differences in links for black and white men. Comorbidities significantly stronger for black
men are shown in blue; comorbidities stronger for white men are shown in red. Black edges
were similar for black and white men. The node colors indicate different classes of diseases.
Reproduced from Hidalgo et al67 under the Creative Commons Attribution License.
Copyright © 2009 Hidalgo et al.
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