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Abstract

There has been growing interest in targeting myocardial substrate metabolism for the therapy of
cardiovascular and metabolism diseases. This is largely based on the observation that cardiac
metabolism undergoes significant changes during both physiological and pathological stresses. In
search for an effective therapeutic strategy, recent studies have focused on the functional significance
of the substrate switch in the heart during stress conditions, such as cardiac hypertrophy and failure,
using both pharmacological and genetic approaches. The results of these studies indicate that both
the capacity and the flexibility of the cardiac metabolic network are essential for normal function;
thus, their maintenance should be the primary goal for future metabolic therapy.

Introduction

The heart requires a continually high level of energy supply to maintain its mechanical function
throughout life. The amount of ATP generated and consumed by a human heart daily is over
15 times its own weight (Ingwall 2002) and is primarily generated through complex metabolic
pathways that supply carbon substrates to the mitochondria for oxidative phosphorylation
(Figure 1). Mitochondria occupy ~30% of the volume of a cardiac myocyte, ensuring the great
oxidative capacity of the system. To meet the high energetic demand, the cardiac metabolic
network has developed into an extremely versatile system, capable of metabolizing all carbon
substrates, i.e. lipids, carbohydrates, and amino acids, for energy production.

An important feature of cardiac metabolism is that it is highly adaptable throughout the life
cycle as well as under physiological or pathological stressors. In utero, the fetal heart relies on
carbohydrate substrates for ATP generation (Fisher 1984). As the heart matures, in parallel to
the increase of mitochondrial volume and higher circulating fatty acids levels, fatty acids
become the dominant energy substrate (Lopaschuk et al. 1994). During conditions of fasting
or diabetes, the adult heart can become even more dependant on fatty acids (Belke et al.
2000, Mazumder et al. 2004). This is in contrast to the hypoxic or failing heart, where the
relative use of carbohydrate, especially glucose, is increased (Allard et al. 1997, Barger et al.
1999, Tian 2003). Although much attention has focused on the use of glucose and fatty acids
in cardiac metabolism, the heart is also capable of utilizing ketones, lactate, and endogenous
substrates, i.e. glycogen and triglyceride, as fuel (Figure 1). These observations underscore the
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flexibility of cardiac metabolism in response to a variety of environmental changes. Studies in
the last decade have revealed a number of mechanisms that remodel the metabolic pathways
at the molecular level to allow such adaptations, e.g. PPARs, AMPK and PGC-1 (Figure 1).
As our understanding of the molecular mechanisms regulating metabolic flexibility advances,
it becomes increasingly attractive to consider metabolic modulations as means to maintain or
improve cardiac function under pathological conditions.

This review will focus on recent advances in the understanding of the functional significance
of alterations in the myocardial substrate utilization that accompany cardiac hypertrophy/heart
failure and obesity or diabetes. In addition, metabolic manipulations that have been attempted
for these conditions in animal models and patients will be discussed.

The Fetal Metabolic Profile in Cardiac Hypertrophy and Failure

It has been widely recognized that pathological hypertrophy is associated with the reappearance
of fetal gene expression pattern (Buttrick et al. 1994). The metabolic profile of the
hypertrophied heart also reverts to the fetal pattern, showing decreased fatty acid oxidation and
increased reliance on carbohydrate fuel sources (Barger et al. 1999, Razeghi et al. 2001). The
switch in the metabolic profile in animal models of heart failure is associated with
downregulation of PPARa and upregulation of enzymes involved in glucose utilization (Tian
2003). As pathological hypertrophy progresses to heart failure, the shift of substrate preference
to glucose is closely associated with impairment of myocardial energetics and loss of
contractile reserve (Neubauer 2007). These observations have raised the question whether the
metabolic switch towards glucose is maladaptive for cardiac hypertrophy and failure.

To determine a causal relationship between altered cardiac metabolism and the development
of heart failure, genetically altered mouse models have been used to recapitulate or manipulate
the metabolic phenotype in cardiac hypertrophy and failure (Table 1). Due to the space restraint,
the discussion will be limited to a few models. We utilized transgenic mice expressing the
insulin-independent glucose transporter (GLUTL) in the heart that led to increased glucose
uptake, glycolysis, and glucose oxidation, with decreases in fatty acid oxidation in the heart
(Liao et al. 2002,Luptak et al. 2005). Despite the fetal-like cardiac metabolic profile, the
GLUT1 mice lived a normal life span with unaltered cardiac function, and when subjected to
pressure overload by ascending aortic constriction, were protected against contractile
dysfunction and LV dilation (Liao et al. 2002,Luptak et al. 2007). These studies demonstrate
that increased reliance on glucose per se is not detrimental to the heart.

However, as discussed previously, increased glucose utilization has been shown to be
associated with impaired myocardial energetics in the hypertrophied and failing heart.
Similarly, PPARa-null hearts, which had permissive increases in glucose oxidation as a result
of impaired fatty acid oxidation, also failed to maintain myocardial energetics and function
during a high workload challenge (Luptak etal. 2005). In addition, the PPAR-null mice develop
cardiomyopathy at an old age (Watanabe et al. 2000). Interestingly, the loss of energetic and
contractile reserves in the PPAR-null heart could be rescued by overexpressing GLUT1, which
markedly expanded the capacity for glucose uptake and utilization (Luptak et al. 2005). These
findings suggest that the inherent capacity for glucose utilization in an adult heart, when fatty
acid oxidation is severely impaired, is insufficient for sustaining normal energy supply under
stress. Overexpression of GLUT1 under these conditions expanded the capacity and provided
the optimal substrate in the face of impaired ability to oxidize fatty acids. There has been
significant amount of evidence suggesting that the failing heart is insulin resistant (Witteles et
al. 2004, Ashrafian et al. 2007). Since the capacity for glucose uptake and utilization in an adult
heart is highly insulin-dependent, impaired insulin signaling in combination with decreased
fatty acid oxidation, can result in severe limitations of substrate oxidation in heart failure. The
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benefit of overexpressing GLUT1, an insulin-independent glucose transporter, may be partially
attributable to the relief of limitations in substrate supply associated with insulin resistance.
Thus, for failing hearts, an adaptive metabolic profile must be able to fully support the energetic
demand among other metabolic considerations.

Pharmacological Approaches to Optimize Cardiac Metabolism in Heart

Failure

Along the line of promoting glucose utilization of the heart, an established protein target is the
muscle form of the carnitine-palmitoyl transferase-1 (CPT-1, Figure 1), the enzyme responsible
for the uptake of long-chain fatty acids into the mitochondria. Several CPT-1 inhibitors,
oxfenicine, etomoxir, and perhexiline, have been shown to partially reduce fatty acid oxidation
and promote glucose oxidation of the heart. In rodent and large animal models of heart failure,
these compounds delayed the onset of decompensated failure while preventing the
transcriptional down-regulation of key enzymes in cardiac energy metabolism (Lionetti et al.
2005) and improving the rate of sarcoplasmic reticulum calcium uptake (Rupp et al. 2000).
Furthermore, a recent study showed that short-term treatment with perhexiline, in addition to
standard medication, improved cardiac function and peak exercise oxygen consumption in
chronic heart failure patients. Other partial fatty acid oxidation inhibitors, e.g. trimetazidine,
also showed benefit in a small study of elderly heart failure patients with coronary heart disease
(Vitale et al. 2004). One potential mechanism for the benefit of replacing fatty acid oxidation
with glucose is the higher oxygen efficiency during ATP synthesis. Theoretically, glucose
oxidation requires 11-13% less oxygen than fatty acid oxidation for ATP synthesis (Opie
2004). However, acute depletion of free fatty acid supply to the heart resulted in ~25% oxygen
sparing in normal mouse and human hearts (How et al. 2005, Tuunanen et al. 2006), consistent
with the notion that high levels of fatty acids may stimulate mitochondrial uncoupling proteins
resulting in a decline in oxygen efficiency beyond what is expected from the P:O ratio (Boudina
et al. 2007).

A different class of molecules, such as glucagon-like peptide (GLP), promotes myocardial
glucose utilization via stimulation of insulin secretion and its insulin-mimetic effects. GLP
stimulates insulin signaling, enhances myocardial glucose uptake and reduces circulating fatty
acid levels, and hence promotes glucose utilization via a distinct mechanism from the partial
inhibition of fatty acid oxidation (D'Alessio et al. 1994). Both animal experiments and clinical
studies using GLP for short-term treatment have demonstrated improvement of cardiac
function in heart failure (Nikolaidis et al. 2004, Sokos et al. 2006, Poornima et al. 2008). Taken
together, pharmacological treatments that enhance cardiac glucose utilization appear to protect
against the progression of heart failure, although the molecular mechanisms remain to be fully
defined. An outstanding challenge is to determine whether such metabolic modulations alter
the long-term clinical outcome, i.e. survival rate in heart failure patients.

The Fatty Acid Paradox

Despite the overwhelming evidence suggesting the benefit of increasing glucose utilization in
the failing heart, a recent clinical study showed that fatty acid oxidation remains essential for
cardiac function. Acipimox, a nicotinic acid derivative with profound anti-lipolytic effects,
was used to acutely lower serum fatty acid levels and hence the rate of fatty acid uptake in the
heart. In patients with dilated cardiomyopathy acipimox promoted glucose oxidation but
caused significant falls of cardiac work and efficiency (Tuunanen et al. 2006). In a mouse
model deficient of lipoprotein-lipase in the heart, cardiac dysfunction was observed despite
the upregulation of myocardial glucose utilization (Augustus et al. 2006), suggesting a critical
role of lipase-derived fatty acids in cardiac metabolism. In addition, it has been shown that
endogenous triglyceride metabolism in the failing heart is impaired (O'Donnell et al. 2008),
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indicating that the turnover of the triglyceride pool may also represent a novel target for
metabolic intervention.

Given the predominance of fatty acid oxidation in cardiac energy supply, normalization of fatty
acid oxidation in the failing heart seems to be a logical strategy. However, increasing fatty acid
oxidation via pharmacological intervention in heart failure has yielded conflicting results.
Chronic activation of peroxisome proliferator-activated receptor-alpha (PPARa) with
fenofibrate in rats post Ml or in dogs with pacing-induced heart failure maintained the fatty
acid oxidation gene profile but had modest benefits on the development of heart failure (Morgan
etal. 2006, Labinskyy etal. 2007). Conversely, Young, etal. (2001) demonstrated that although
PPAR agonist treatment after aortic banding prevented down-regulation of fatty acid
oxidation genes, it failed to correct cardiac dysfunction. Furthermore, PPARa agonism has
been shown to worsen post-ischemic injury (Sambandam et al. 2006, Hafstad et al. 2009).
Recently, an interesting series of studies suggested that high fat diet protected against the
development of heart failure in a variety of animal models (Okere et al. 2006, Chess et al.
2009, Rennison et al. 2009). The mechanisms underlying the benefits of high fat diet are
unknown, but the observation again challenges the concept that fatty acids are detrimental to
the failing heart.

Substrate Preference Switch versus Maintaining Metabolic Capacity and

Flexibility

Concerns of excessive fatty acid oxidation were raised in hearts with ischemia-reperfusion
injury and in cardiac dysfunction observed in animals or patients with obesity and diabetes
(Kudo et al. 1995, Aasum et al. 2003, Buchanan et al. 2005). Under both conditions, the
inefficiency of cardiac work and impaired contractile function associated with high fatty acid
oxidation can be corrected by promoting glucose oxidation (Bersin et al. 1997, Hafstad et al.
2007). The notion that increased glucose metabolism is protective against the ischemia-
reperfusion injury is further supported by the observations that overexpressing GLUT1 protects
the ischemic heart, whereas deletion of insulin-sensitive glucose transporter (GLUT4) is
detrimental (Tian et al. 2001, Luptak et al. 2007).

The results of targeting substrate preference in diabetic hearts are quite mixed. Treatment with
PPARa or PPARY activators in animal models of diabetes reduced fatty acid oxidation and
increased glycolysis and glucose oxidation, but yielded inconsistent outcomes with regard to
functional improvement (Aasum et al. 2002, Carley et al. 2004, How et al. 2007). An important
consideration here is that the commonly used type 2 diabetes rodent models (also used in these
studies) have defects in leptin signaling, which causes cardiomyopathy independent of
substrate metabolism (Barouch et al. 2003). Nevertheless, in type 1 diabetes model treatments
with ACE inhibitors or B-blockers increased cardiac glucose utilization, decreased fatty acid
oxidation, and improved cardiac function, although the causal relationship could not be defined
in these studies (Arikawa et al. 2007, Sharma et al. 2008).

In a recent study (Yan et al. 2009), the cardiac-specific GLUT1 transgenic mouse, which had
demonstrated increased myocardial glucose uptake and oxidation, was fed a high fat diet
(HFD). The wild-type animals on HFD demonstrated the expected increase in cardiac fatty
acid oxidation, while the GLUT1 transgenic hearts maintained high glucose oxidation despite
comparable levels of obesity and insulin resistance in both genotypes. The resistance to
increased fatty acid oxidation in the GLUT1 transgenic heart was attributed to a number of
glucose-dependent changes in the gene expression that restrict fatty acid oxidation and promote
glucose oxidation. Surprisingly, the protection against the high fatty acid oxidation was
associated with elevated oxidative stress and cardiac dysfunction in GLUT1 transgenic mice
with diet-induced obesity. This was unexpected, given the mounting evidence suggesting that
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aswitch of substrate utilization towards glucose would be beneficial. An important point raised
by the study is that the molecular remodeling caused by excessive reliance on one substrate
(glucose in the case of GLUT1 mice and fatty acids in the case of obesity and diabetes)
compromises the flexibility of the metabolic network and prevents the heart from utilizing the
most efficient substrate.

In conclusion, the genetic and pharmacological studies show that the optimal cardiac function
depends on the ability of the heart to utilize all carbon substrates. Thus, the ultimate goal of

modulating cardiac metabolism for therapeutic purposes is not to shift the substrate utilization
towards one end of the spectrum or the other but rather to sustain the flexibility of the network.
Metabolic therapy in the future should include treatments that improve insulin sensitivity and
sustain mitochondrial function hence satisfying the enormous energy requirement of the heart.
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Figure 1.
Cardiac metabolic network for substrate utilization. Highlighted in solid colors are key

regulatory sites for carbohydrates and lipids metabolism. The molecular targets of several
transcriptional and/or signaling pathways in the regulation of substrate selection are also
illustrated. ACC2: acetyl CoA carboxylase 2; ACS: acyl-coA synthetase; AMPK: adenosine
monophosphate-activated protein kinase; ATP: adenosine triphosphate; CD36: cluster of
differentiation 36 (fatty acid transporter); CPT1: carnitine palmitoyl transferase I; ETC:
electron transport chain; FATP: fatty acid transport protein; G-6-P: glucose-6-phosphate;
GLUT: glucose transporter; GYS: glycogen synthase; LDH: lactate dehydrogenase; MCD:
malonyl CoA decarboxylase; MCT: monocarboxylate transporter; PDH: pyruvate
dehydrogenase; PDK: pyruvate dehydrogenase kinase; PGC1-a: peroxisome proliferator-
activated receptor-gamma coactivator 1 alpha; PPARa: peroxisome proliferator-activated
receptor alpha; TAG: triacylglycerol; TCA: tricarboxylic acid cycle.
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Table 1

Mouse models of altered cardiac metabolism. LVVH: left ventricular hypertrophy; HF: heart failure; GOX: glucose
oxidation; FAO: fatty acid oxidation; GLUT1: glucose transporter 1; PPARa: peroxisome proliferator-activated
receptor alpha; —/—: knockout; PGC1-a: peroxisome proliferator-activated receptor-gamma coactivator 1 alpha;
PDK4: pyruvate dehydrogenase kinase 4; CIRKO: cardiomyocyte-selective insulin receptor knockout; MCD:

malonyl CoA decarboxylase; GLUTA4: glucose transporter 4; GLUT4H: cardiac-specific glucose transporter 4;
M/MtCK: muscle and mitochondrial isoforms of creatine kinase. CD36: cluster of differentiation 36 (fatty acid

1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duosnue Joyiny vd-HIN

transporter); FATP1: fatty acid transport protein 1.

overexpression

with | FAO

survival

Mouse Model Metabolic Profile Cardiac Phenotype References
LVH/HF in Switch to fetal Decreased function, energetics, and (Allard et al. 1997,
Wild-type metabolic profile with switch to Barger et al. 1999, Tian

1 fetal metabolic phenotype 2003)
GOX and glycolysis
and | FAO
GLUT1 1 GOX and glycolysis Improved function, energetics, and (Liao et al. 2002, Luptak

et al. 2005)

overexpression

number with abnormal
ultrastructure

PPARa 1 FAO at the expense Development of cardiomyopathy (Finck et al. 2002)
overexpression of glucose
PPARa null | FAOwith 1 GOX and Impaired function and energetics with (Watanabe et al. 2000,
lactate oxidation increased Campbell et al. 2002,
workload, age-associated development Luptak et al. 2005,
of cardiac Loichot et al. 2006)
fibrosis
PGCla —/- | FAO Reduced function at baseline and (Arany et al. 2005,
impaired with Arany et al. 2006)
physiological challenge; accelerated
heart failure
PGCle 1 in mitochondria Development of cardiomyopathy (Lehman et al. 2000,

Russell et al. 2004)

PDK4
overexpression

1in FAO and | GOX

Exacerbation of heart failure in
cardiomyopathy
model; decreased survival

(Zhao et al. 2008)

cardiomyopathy; No change or
decreased
function after ischemia

PDK4 /- No change in GOX or Preserved cardiac function and (Wende 2009)
glycolysis decreased fibrosis
CIRKO 1 GOX and glycolysis Reduced heart mass with lower cardiac (McQueen et al. 2005,
with | FAO function Sena et al. 2009)
MCD —/- No change in Normal cardiac function at baseline; (Dyck et al. 2006)
metabolism at improved
baseline; 1 function after ischemia
GOX during
reperfusion
GLUT4-null Normal glucose uptake Marked cardiac hypertrophy and (Katz et al. 1995, Stenbit
with | fatty acid fibrosis; et al. 2000)
metabolic genes reduced longevity
GLUT4H /- 1 basal glucose uptake Modest cardiac hypertrophy with (Abel et al. 1999, Tian et
and | insulin- preserved al. 2001)
stimulated glucose function, poor response to ischemia/
uptake reperfusion
M/MtCK —/- |CK activity and Impaired energetics with 1 workload; (Saupe et al. 1998,
Iphosphocreatine development of hypertrophy and LV Nahrendorf et al. 2005)
levels dilation
CD36 —/— 1 GOXand | FAO | lipid accumulation, Improves lipotoxic | (Irieetal. 2003, Kuang et

al. 2004, Koonen et al.
2007, Yang et al. 2007)
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