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Abstract
Alterations in mitochondrial structure and functions have long been observed in cancer cells.
Targeting mitochondria as a cancer therapeutic strategy has gained momentum in the recent years.
The signaling pathways that govern mitochondrial function, apoptosis and molecules that affect
mitochondrial integrity and cell viability have been important topics of the recent review in the
literature. In this article, we first briefly summarize the rationale and biological basis for developing
mitochondrial-targeted compounds as potential anticancer agents, and then provide key examples of
small molecules that either directly impact mitochondria or functionally affect the metabolic
alterations in cancer cells with mitochondrial dysfunction. The main focus is on the small molecular
weight compounds with potential applications in cancer treatment. We also summarize information
on the drug developmental stages of the key mitochondria-targeted compounds and their clinical trial
status. The advantages and potential shortcomings of targeting the mitochondria for cancer treatment
are also discussed.
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1. Introduction
As an important organelle in the cells, mitochondria not only play a central role in energy
metabolism and calcium homeostasis (Clapham, 2007), but also are essential components of
the apoptotic machinery and sites of reactive oxygen species (ROS) generation (Green and
Reed, 1998). Under physiological conditions, mitochondria are considered as the main
powerhouse of the cells, since this organelle can use glucose, fatty acids, and certain amino
acids as the fuel sources to generate ATP through oxidative phosphorylation. The Krebs cycle
within the mitochondrial provides an essential metabolic platform for effective conversion of
various metabolic intermediates and the production of NADH as the substrate (electron donor)
for the mitochondrial respiratory chain, through which electrons are transported in an orderly
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manner and transmembrane potential is established. The energy stored in the form of
transmembrane potential across the inner mitochondrial membrane is then used for ATP
generation in complex V. In addition to energy production, the important roles of mitochondria
in calcium uptake/homeostasis and in lipid metabolism are essential for normal cellular
function and survival. Importantly, mitochondria also contain potentially lethal molecules,
which when released from this organelle, may cause the death of the host cells. For instance,
cytochrome c is a normal component of the mitochondrial respiratory chain and plays an
essential function in electron transport. However, when cytochrome c is released from the
mitochondria to the cytosol, it binds to the cytosolic protein Apaf-1 in the presence of dATP
to form a protein complex known as apoptosome, which activates the caspase protease cascade
leading to cell destruction. Another mitochondrial protein known as apoptosis-inducing factor
(AIF) can cause caspase-independent apoptosis when it is translocated to the nucleus. Many
factors, including exogenous and endogenous stimuli, can induce the change of mitochondrial
membrane permeability and cause the release of apoptotic factors.

Because of their important functions in energy production and in regulation of cell death,
mitochondria have been considered to be a potentially important target for anticancer drug
development, and this strategy has recently gained momentum (Fantin et al., 2002; Toogood,
2008). Interestingly, numerous notable differences in the structure and function of
mitochondria between cancer cells and normal cells have been reported (Modica-Napolitano
and Singh, 2004). For instance, there are various changes in the size, shape and number of the
mitochondria in liver cancer cells when compared to the corresponding normal cells. It has
also been observed that certain fast growing tumor cells seemed to have fewer and smaller
mitochondria than slowly growing tumors, while certain relatively benign tumors (such as
oncocytic adenomas) exhibited large numbers of mitochondria and high levels of oxidative
enzymes (Maximo and Sobrinho-Simoes, 2000; Modica-Napolitano and Singh, 2002).
Alterations of the inner mitochondrial membrane proteins have also been observed in hepatoma
cells (Chang et al., 1971; Irwin et al., 1978). Consistent with these structural changes,
mitochondrial dysfunction have been observed in various types of cancer cells, evident by a
compromised capacity in mitochondrial ATP generation and an abnormal increase in ROS
generation (Chen, 2007; Pelicao, 2004). It should be pointed out, however, that the
mitochondrial morphological changes and functional alterations observed in one cancer type
or cell line should not be generalized as common mitochondrial abnormalities in all cancer
cells. Although mitochondrial dysfunction is often observed in cancer, it is likely that the
specific alterations may vary depending in the cancer types, tissue origins, disease stages,
proliferation and differentiation states, and microenvironment such as hypoxia.

A prominent metabolic alteration in cancer cells is that they exhibit a substantial increase in
aerobic glycolysis and seem to rely more on this non-oxidative glucose metabolism for
generation of ATP and for production of other molecules for cell growth and proliferation.
This phenomenon, known as the Warburg effect, has been observed in a variety of cancer types
including solid tumors and leukemia (Warburg, 1956). The successful use of positron emission
tomography (PET) imaging in clinical diagnosis of cancer, based on the increased uptake of
glucose in tumor tissues, is an excellent example of the clinical relevance of the Warburg
theory. Although the underlying mechanisms responsible for the Warburg effect remain to be
defined, it has been postulated that mitochondrial dysfunction (respiration injury) may be a
key event that compromises the cancer cell’s ability to generate ATP through oxidative
phosphorylation, and thus forces them to increase glucose fermentation to compensate the
energy supply (Warburg, 1956). Mitochondrial mutations, oncogenic signals, and metabolic
stress are possible factors that can lead to mitochondrial dysfunction (Chen et al., 2007). In
fact, electron transport chain complex activities in mitochondria have been found to be
decreased in certain cancer cells such as hepatoma (Chan and Barbour, 1983; Sun et al.,
1981), and tumor cells (Morris hepatomas and ascites tumor cells) showed markedly reduced
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ATPase activity when compared with that of the normal cells(Pedersen and Morris, 1974).
Mitochondrial DNA (mtDNA, which encodes for 13 key electron transport components)
mutations were detected in various cancers, and certain mutations seemed to be associated with
specific cancers (Modica-Napolitano and Singh, 2004). Moreover, some studies showed that
cancer cells have increased mitochondrial transmembrane potential (Bernal et al., 1982;
Johnson et al., 1981). In addition, mitochondria are major sites of ROS generation in the cells,
and increased ROS generation in cancer cells may reflect an increased leakage of electrons
from the transport complexes (complex I and complex III). The capture of an electron by
molecular oxygen may lead to a formation of superoxide, which can then be further converted
to hydrogen peroxide. Thus, elevated ROS generation in cancer cells may be considered as an
indication of mitochondrial dysfunction, although it should be noted that ROS generation can
also occur by other mechanisms outside the mitochondria, such as reactions catalyzed by NAD
(P)H oxidase (NOX) complex and xanthine oxidase.

These differences between normal cells and cancer cells in their mitochondrial structure and
functions may provide a biological basis to preferentially target cancer cells using agents that
either directly interact with mitochondria or functionally impact the metabolic alterations as
the consequences of mitochondrial dysfunction in cancer cells. As illustrated in Fig 1, the
increase of mitochondrial transmembrane potential in cancer cells may provide a possibility
of utilizing compounds such as rhodamine123 with certain biochemical properties that can be
selectively taken up by the cancer mitochondria and preferentially disturb cancer cell
metabolism or activate the apoptotic cell death process. Similarly, the structural/functional
mitochondrial alterations in cancer cells may render them more vulnerable to damage by certain
pharmacological agents leading to release of apoptotic factors. For instance, targeting Bcl-2
family proteins may cause the opening of mitochondrial permeability pore and release of
apoptotic factors. Furthermore, the increased dependence on glycolysis as a consequence of
mitochondrial dysfunction in cancer cells may serve as a biochemical basis to preferentially
kill malignant cells using proper glycolytic inhibitors such as 3-bromopyruvate (3-BrPA) and
lonidamine. The phenomenon of mitochondrial dysfunction, the signaling pathways that
mitochondrial affect function and regulate apoptosis, and agents that affect mitochondrial
integrity and cell viability have been reviewed previously (Armstrong, 2006;Dias and Bailly,
2005;Galluzzi et al., 2006;Morrison et al., 2009;Ralph and Neuzil, 2009). In this article, we
summarize the recent advances in this research area and review key examples of small
molecules that preferentially target mitochondria in cancer cells directly or preferentially
interfere with cancer metabolism, with a focus on those compounds that may have potential
utility in cancer treatment. The chemical structure these compounds and their status in drug
development will also be indicated when such information is available.

2. Small molecules that directly target mitochondria
2.1 Compounds targeting mitochondria based on altered mitochondrial transmembrane
potential (Δψm)

It has been known for sometime that mitochondria of cancer cells and transformed cells have
significantly higher transmembrane potential than normal cells (Dairkee and Hackett, 1991;
Davis et al., 1985; Johnson et al., 1980; Modica-Napolitano and Aprille, 1987; Summerhayes
et al., 1982). This biological property has been used as a basis to develop compounds that may
preferentially accumulate within the mitochondria of cancer cells. A group of molecules known
as delocalized lipophilic cations (DLCs), with highly hydrophobic structures and positive
charge, seem to be able to accumulate in the tumor mitochondria of tumor due to the highly
negatively-charged microenvironment within the mitochondrial matrix (Modica-Napolitano
and Aprille, 2001). Several members of DLCs have been found to exhibit some degree of
efficacy in killing cancer cells or inhibiting their growth. Although increased transmembrane
potential in cancer cells is necessary for DLCs to achieve selective cytotoxictiy, the overall
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effectiveness of these compounds depends on other factors. For example, cytoplasmic
characteristics are involved in the kinetics of uptake and retention of these compounds
(Modica-Napolitano and Singh, 2002) as well as the ability of these agents to disrupt
mitochondrial function once they have accumulated within the organelle. Although elevation
of mitochondrial transmembrane potential has been observed in various types of cancer cells,
it is important to compare cancer cells with the normal cells of same tissue origins and at similar
developmental stages for their transmembrane potential and cytotoxic responses to these
compounds. This would be particularly important for the evaluation of the anticancer
selectivity of compounds whose action is membrane potential-dependent, including DLCs,
rhodamine-123, and MKT-077 (see below).

Rhodamine-123—

Studies in the early 1980s showed that Rhodamine-123 could function as a specific chemical
probe for the localization of mitochondria in living cells. After cells were incubated with
Rhodamine-123, mitochondria were preferentially stained and revealed as clusters of organelle
in the perinuclear region of src-transformed cells (Chen et al., 1982; Johnson et al., 1980). The
accumulation of Rhodamine-123 in mitochondria depends on its lipophilic and cationic
properties, which helps it cross the double mitochondrial membranes and stay within the
mitochondrial matrix where the microenvironment is negatively charged (Johnson et al.,
1981; Lampidis et al., 1984). By depolarizing the plasma membrane, it was revealed that the
uptake of Rhodamine-123, driven mainly by the mitochondrial membrane potential, was
greater in cancer cells than in normal cells (Davis et al., 1985; Lampidis et al., 1985). High
retention of Rhodamine-123 in mitochondria was observed in transitional cell carcinoma,
adenocarcinoma, chemical carcinogen-transformed epithelial cell lines, and squamous cell
carcinoma lines. Interestingly, the mitochondria of these cancer cells retained Rhodamine-123
for 2 to 5 days, whereas normal cells released Rhodamine-123 within a few hours
(Summerhayes et al., 1982).

Kidney and breast cancer cells that retained Rhodamine-123 longer than non-tumorigenic
epithelial cells were highly sensitive to this compound, as evidenced by significant inhibition
of colony formation (Bernal et al., 1982). Rhodamine-123 also showed selective anticancer
activity in animal tumor models, and this selective toxicity could be further potentiated by
addition of 2-deoxyglucose, an inhibitor of glycolysis (Arcadi, 1986; Bernal et al., 1983; Herr
et al., 1988). A phase I clinical trial of Rhodamine-123 was carried in hormone refractory
prostate cancer patients to determine the maximum tolerated dose (MTD) and its safety/toxicity
profile (Jones et al., 2005). The MTD of Rhodamine-123 was estimated at 96 mg/m2 and that
this compound could be safely administered at monthly intervals. This drug administration
schedule resulted in preferential drug retention in prostatic tumor tissue without detectable
drug accumulation in serum. Therapeutic efficacy, as assessed by the lengthening of PSA
doubling time, was observed in this clinical trial but the data did not reach statistical
significance. Thus, monthly administration of Rhodamine-123 at a dose of 96 mg/m2 seems
not an effective therapeutic schedule. Dose and schedule optimization and combination of
Rhodamine-123 with other therapeutic modalities may improve therapeutic efficacy. Since a
decrease in mitochondrial production of ATP may be compensated by an increase in glycolysis
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in the cytosol to generate ATP, a combination of rhodamine-123 and glycolytic inhibitors such
as 2-deoxyglucose seems to be a logical strategy. It should be noted that some cancer cells may
use fatty acids and amino acids such as glutamine as alternative energy sources for ATP
generation (Vander Heiden et al, 2009), inhibition glycolysis alone may not be sufficient to
cause ATP deprivation. A combination of a glycolytic inhibitor and compounds that disrupt
mitochondria or suppress the alternative energy metabolic pathways in the mitochondria would
be more effective in killing these cancer cells.

MKT-077—

The rhodacyanine analogue MKT-077 (also known as FJ-776) is localized in the mitochondria
after the compound enters the cells. Like other lipophilic cations, MKT-077 accumulates
preferentially in the mitochondria of tumor cells due to a higher mitochondrial membrane
potential. A previous study showed that MKT-077 selectively damages mitochondria of
carcinoma cells, as evidenced by a 4-fold higher drug concentration required to obtain a similar
inhibition of respiration in normal cells (Modica-Napolitano et al., 1996). It was also observed
that carcinoma cells exposed to MKT-077 led to a preferential damage to mitochondrial DNA
without a significant loss of nuclear DNA. Interestingly, MKT-077 exhibited a growth
inhibitory effect in human breast, ovary, endometrial, colon and non-small cell lung cancer
cell lines, but not in normal epithelial cells (Petit et al., 1999). In vivo, MKT-077 was able to
inhibit the growth of implanted human renal carcinoma and prostate carcinoma in mice, and
prolonged the animal survival (Koya et al., 1996). A phase I study has been conducted to
evaluate the safety and pharmacokinetics of MKT-077 in advanced solid tumors. This study
showed that MKT-077 was well tolerated in this group of patients with a recommended dose
of 126 mg/m2/week. The main toxicity was hypomagnesemia due to renal loss of magnesium,
which was manageable by administration of magnesium (Britten et al., 2000).

F16—

Through a cell-based high throughput screening of a chemical library, Fantin et al identified a
novel molecule designated as F16 that specifically inhibited the proliferation of Her2-
overexpressing mammary epithelial cells. This molecule exhibited low binding to the
mitochondrial membranes and high accumulation in the mitochondrial matrix, resulting in
mitochondrial damage, opening of the permeability transition pore, cytochrome c release, cell
cycle arrest, and cell death. Besides the apoptosis effect triggered by F16, this compounds also
induced necrosis in tumor cells (Fantin et al., 2002).

Dequalinium—
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Dequalinium is a lipophilic compound with two positive charges and a C-10 aliphatic side
chain. Clinically, this compound has been used as a topical antimicrobial agent for half a
century (Babbs et al., 1956). Like other lipophilic cationic compounds, dequalinium mainly
localized to the mitochondria of tumor cells. Prolonged exposure to dequalinium drastically
altered the morphology of the mitochondria, causing globular change and perinuclear
distribution (Weiss et al., 1987). This compound also inhibits the ability of calmodulin, a
calcium-binding protein, to activate phosphodiesterase and thereby suppresses cell
proliferation (Bodden et al., 1986). Furthermore, dequalinium selectively targeted cancer cells,
impaired carcinoma cell proliferation, migration and invasion and prolonged survival of mice
with implanted bladder and colon cancer (Bleday et al., 1986; Helige et al., 1992; Weiss et al.,
1987).

2.2 Compounds that target cancer mitochondrial respiration
Similar to that observed in embryos or neonates, mitochondria in tumor cells seem to maintain
a low electron transfer activity at approximately 20–30% of that seen in normal quiescent
organelles (Galli et al., 2003). In colorectal cancer, NADH-cytochrome c reductase complex
I and cytochrome oxidase, part of complex IV in the mitochondrial electron transport chain
were observed to be decreased in tumor and peritumor tissues. The enzyme activity of
superoxide dismutase 1 (SOD1), an antioxidant which converts superoxide to hydrogen
peroxide, decreased while the mitochondrial nitric oxide synthase (mtNOS) activity increased
in tumor tissue in advanced stage as compared with the initial stage (Sanchez-Pino et al.,
2007). The relatively lower mitochondrial electron transport chain activity in cancer cells
seems to reflect dysfunction of oxidative phosphorylation of cancer mitochondria. Because the
electron transport chain is a major site of reactive oxygen species (ROS) generation due to
capture of electrons by molecular oxygen, compounds that interfere with the respiratory chain
may promote leakage of electrons and thus, increase the production of ROS, leading to
mitochondrial damage and activation of apoptosis in cancer cells. The killing of cancer cells
by ROS-mediated mechanisms is considered to have therapeutic selectivity against malignant
cells due to their intrinsic high ROS generation (Trachootham et al., 2009).

Arsenic trioxide—

Arsenic trioxide (As2O3) has long been used in traditional Chinese medicine to treat a variety
of diseases. In the 1970s, As2O3 was introduced for the treatment of acute promyelocytic
leukemia (APL) and showed a striking therapeutic effectiveness, with complete remission rates
ranging from 65.6% to 84% in clinical studies conducted in the northeastern region of China
(Shen et al., 1997). Interestingly, As2O3 exerted a dose dependent dual effect on APL cell lines
in vitro, triggering apoptosis at high concentrations (0.5–2.0umol/L) while inducing
differentiation at lower concentrations (0.1–0.5umol/L). Several studies showed As2O3 caused
generation of superoxide and hydrogen peroxide, leading to a decrease of mitochondria
membrane potential and apoptosis (Chen et al., 1998; Iwama et al., 2001; Wang et al., 1996).
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A recent study showed that interfering with the mitochondrial electron transport chain may be
an important mechanism by which As2O3 promoted ROS generation (Pelicano et al., 2003).
In leukemia cells, As2O3 was capable of inhibiting mitochondrial respiration, resulting in a
substantial decrease of oxygen consumption as early as 3 hours, concurrent with the increase
of ROS generation. Since cell death was detected after 24 h of drug treatment, inhibition of
respiration seemed to be a primary event rather than the consequence of cell death. Moreover,
in the presence of the mitochondrial complex I inhibitor rotenone, As2O3 caused further
inhibition which suggested they may act in series. It appears that by interfering with electron
transport in the mitochondria, As2O3 may cause an increase in electron leakage and therefore
promotes ROS generation. Furthermore, a study using respiration-deficient cells revealed that
the rho-0 cells were resistant to As2O3, confirming that the respiratory chain activity is
important for the cytotoxic action of this drug (Pelicano et al., 2003).

Vitamin E analogues—

Alpha-tocopheryl succinate (α-TOS), a redox-inactive vitamin E analogue, exhibited strong
pro-apoptotic and anticancer activity by causing rapid production of ROS (Stapelberg et al.,
2005; Wang et al., 2005; Weber et al., 2003).α-TOS also seems to be able to inhibit the anti-
apoptotic function of Bcl-xl and Bcl-2 by disrupting their binding by the Bak BH3 peptide
(Shiau et al., 2006). The molecular target of α-TOS was recently identified (Dong et al.,
2008). Dong et al revealed that this compound is a competitive inhibitor of the UbQ sites (Qp
and QD) in Complex II thus inhibiting succinate dehydrogenase (SDH) activity in the
mitochondrial electron transport chain. Knockdown of CybL made cancer cells resistant to α-
TOS mediated killing, and addition of MitoQ overcame the α-TOS-mediated inhibition of MTT
reduction driven by succinate. Reconstitution of a functional complex II in the CybL mutant
cells led to normalization of SDH activity and reestablished sensitivity to α-TOS (Dong et al.,
2008). In addition, Vitamin E analogues selectively inhibited a diverse range of malignant cells
including melanomas, colon cancer and breast cancer in experimental animals (Dong et al.,
2009; Neuzil et al., 2007). Higher esterase activities in normal cells can hydrolyze α-TOS into
α-TOC (alpha-tocopheryl) and attenuate their activity. The selectivity of Vitamin E analogues
against cancer cells seems to depend on their ability to target and down-regulate certain
abnormally activated pathways such as PI3K/AKT and NF-kB (Constantinou et al., 2008).

Resveratrol—
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Resveratrol (3,5,4′-trihydroxystilbene) is a natural compound found in certain fruits,
particularly in some grapes and blueberries, and has been suggested to have cancer
chemopreventive properties. This compound seems to inhibit cellular events associated with
tumor initiation, promotion, and progression (Jang et al., 1997). It was found that the
mitochondrial respiratory chain (complexes I–III) was inhibited by resveratrol in mice. By
competing with DUQH2, resveratrol decreased complex III activity and lowered ROS levels
(Zini et al., 1999). Though considered as an antioxidant, resveratrol was shown to induce
apoptosis through the mitochondrial pathway (Juan et al., 2008; Vetvicka et al., 2007).
Interestingly, resveratrol seems to interfere with important signaling pathways such as PI3K/
AKT, JAK/STAT, and the MAPK cascade (Filomeni et al., 2007; Madan et al., 2008; Roy et
al., 2009). Moreover, this compound attenuated HIF-1α and VEGF expression induced by
lysophosphatidic acid (Park et al., 2007).

Rotenone—

Rotenone, a strong inhibitor of mitochondria complex I (Chance et al., 1963), is often used as
a pesticide and insecticide. Interestingly, this compound at the concentration which blocks
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electron flow through complex I, did not significantly affect cell viability or growth in B
lymphoma cells (Armstrong et al., 2001), suggesting ATP generated outside the mitochondria
might be sufficient to support cell survival in these lymphoma cells. It has been observed that
chronic rotenone treatment could result in increased superoxide production, leading to
mitochondrial alteration (Koopman et al., 2005). However, reports on the effect of rotenone
on cellular ROS levels have been conflicting, with both increase and decrease of ROS observed
in cells treated with rotenone (Deshpande et al., 2000; Torres-Roca et al., 2000; Vrablic et al.,
2001 ; Armstrong et al., 2001; Kitamura et al., 2002; Koopman et al., 2005; Pelicano et al.,
2003). The reasons for these opposite results are unclear. Differences in the cellular genetic
backgrounds, mitochondrial functional states and different rotenone concentrations used in
these studies might possibly contribute to the variations in ROS observed. While rotenone is
a potent and specific inhibitor of complex I and has been commonly used as a biochemical
tool, its utility as an anticancer agent is unclear, although its cancer preventive potential has
been suggested (Yoshitani et al., 2001).

2.3 Compounds affecting cancer mitochondrial membrane permeability
A traditional model for mitochondrial membrane permeability transition pore (MPTP) was a
multi-protein structure between the inner and outer mitochondrial membranes comprised of
several proteins such as adenine nucleotide transporter (ANT), voltage dependent anion
channel (VDAC) and cyclophilin D (Chipuk et al., 2006). As a voltage-dependent,
cyclosporine-A-sensitive and high-conductance inner membrane channel, MPTP can
depolarize the mitochondrial potential by its opening. Abnormal opening of MPTP may result
in the collapse of mitochondrial membrane potential and the release of apoptotic factors from
the mitochondria to cytosol, leading to cell death. Some studies also found certain differences
in MPT between normal and malignant cells. For instance, in mitochondria of certain hepatoma
cells, the adenine nucleotide exchange function of ANT was decreased and the sensitivity to
bongkrekic acid (an inhibitor of adenine nucleotide exchange and formation of MPTP) was
also diminished. The expression of ANT2, a gene that is usually repressed in quiescent cells
was up-regulated in several tumor cells (Modica-Napolitano and Singh, 2002). These
differences may provide an opportunity to preferentially target MPTP in cancer cells for
therapeutic purpose. However, it should be noted that the absence of one or more ANT or
VDAC isoforms in animal models by gene knockout did not inactivate the mitochondrial pore,
suggesting that what would constitute the necessary components for the standard model of
MPTP complexes might need to be reconsidered and further characterized (Baines et al.,
2007; Berridge et al., 2009; Kokoszka et al., 2004; Krauskopf et al., 2006). Regardless of the
putative roles of ANT or VDAC as the components of MPTP, several compounds have been
shown to effectively induce changes in mitochondrial membrane permeability and exhibit
anticancer activity.

Honokiol—
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Extracted from Magnolia officinals, honokiol has been used for the treatment of thrombotic
stroke, anxiety and gastrointestinal diseases for a long time. Honokiol can induce not only
cancer cell death through caspase-dependent and independent apoptosis but also necrosis
through mitochondrial permeability transition pore (Filomeni et al., 2007; Ishitsuka et al.,
2005). Honokiol also exhibited an antioxidant effect and inhibited lipid peroxidation in the
mitochondria (Haraguchi et al., 1997; Lo et al., 1994). Recently, it was found that honokiol
could selectively kill esophageal adenocarcinoma cells which expressed higher levels of
antioxidant molecules and seemed well adapted to tolerate ROS stress (Chen et al., 2009a).
Mechanistically, honokiol was able to cause a decrease in mitochondrial transmembrane
potential, which could be inhibited by pretreatment with cyclosporine A, suggesting that the
cyclosporine-sensitive MPTP is a possible target of Honokiol. Although treatment of
esophageal cells with honokiol led to increased ROS generation, this seemed not the critical
event in honokiol cytotoxicity, since antioxidants didn’t affect honokiol induced cell death.
Cyclophilin D seems to play a key role in mediating the cytotoxicity of honokiol, since a
knockdown of cyclophilin D by siRNA partially suppressed honokiol-induced cell death (Chen
et al., 2009a).

Betulinic acid—
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3β-Hydroxy-lup-20(29)-en-28-oic acid (Betulinic acid), a plant-derived pentacyclic
triterpenoid, possesses some intriguing pharmacological effects including anti-inflammation,
anti-HIV-1, and anticancer effects (Cichewicz and Kouzi, 2004). Betulinic acid was reported
to exhibit selective cytotoxicity against several types of tumors including neuroectodermal
tumor, colon cancer, and melanoma (Fulda and Debatin, 2000; Fulda et al., 1999; Jung et al.,
2007; Pisha et al., 1995). A study found that betulinic acid triggered an apoptotic pathway
independent of CD95 ligand/receptor interaction. The cytotoxic action of this compound
appeared to be p53-independent. Moreover, betulinic acid showed high efficacy in
neuroblastoma cells resistant to CD95 and doxorubicin (Fulda et al., 1997). Using isolated
mitochondria in vitro, Fulda et al demonstrated that betulinic acid could directly trigger
mitochondrial permeability transition without the involvement of a Z-VAD-fmk-inhibitable
caspase (Fulda et al., 1998). Another study also found that betulinic acid induced a significant
mitochondrial depolarization independent of caspase activation, while cyclosporine A (CsA)
completely prevented mitochondrial depolarization caused by cyclophilin D (Mullauer et al.,
2009). Upon mitochondrial permeability transition, apoptogenic factors such as cytochrome c
and AIF were released into the cytosol and caspase 8 was cleaved (Fulda et al., 1998).

Bcl-2 inhibitors—Bcl-2 is an integral inner mitochondrial membrane protein, the
overexpression of which blocks apoptosis (Hockenbery et al., 1990). In some tumors like non-
Hodgkin’s lymphoma, Bcl-2 is overexpressed or deregulated, which is correlated with drug
resistance and poor prognosis. Antisense oligonucleotides specific for Bcl-2 RNA sequences
have been shown to reduce Bcl-2 protein level and specifically suppressed proliferation of
cancer cells or enhanced their sensitivity to chemotherapeutic drugs (Campos et al., 1994;
Kitada et al., 1994). Antisense oligonucleotides form specific DNA:RNA duplexes leading to
RNA degradation and causing cell death (Manion and Hockenbery, 2003). The apoptotic effect
of antisense Bcl-2 was mediated by caspase 9, caspase 3 and cytochrome c release from
mitochondria. Pretreatment of cancer cells with antisense Bcl-2 potentiated apoptosis induced
by dexamethasone, adenovirus-mediated delivery of p53, or paclitaxel in drug resistant
myeloma cells (Dong et al., 2008). Mechanistically, a decrease of Bcl-2 protein would release
Bad from the Bcl-2/Bad complex, leading to association of Bad with the MPTP component
and opening of the pore. G3139, also known as oblimersen sodium, is an 18-mer synthetic
phosphorothioate oligodeoxynucleotide with a sequence complementary to a portion of human
Bcl-2 mRNA (O’Brien et al., 2005). Combination of G3139 with doxorubicin exhibited a
synergistic effect in a breast cancer xenograft model (Lopes de Menezes et al., 2000). G3139
has now entered clinical trails in combination with chemotherapeutic agents in a variety of
tumors such as leukemia, small cell lung cancer, multiple myeloma and prostate cancer (Badros
et al., 2005; Iwama et al., 2001; O’Brien et al., 2005; Pepper et al., 1999; Rudin et al., 2004).

Small molecular weight compounds have been developed as potent inhibitors of Bcl-2 family
proteins. Gossypol, a natural compound initially identified as an antifertility agent for male in
China, is the prototype of BH3 interacting small molecule that showed inhibition of Bcl-2, Bcl-
XL and Mcl-1 (Kang and Reynolds, 2009). Gossypol seems to be able to directly act upon
Bcl-2 molecules present on the mitochondrial outer membrane. It can block Bcl-XL
heterodimerization with Bax or Bad, and promote caspase-3 activation and cytochrome c
release in Bcl-2 and Bcl-XL overexpressing cells (Meng et al., 2008; Oliver et al., 2005; Shiau
et al., 2006). Since gossypol exhibited potent killing in multiple cancer cells (Meng et al.,
2007; Vetvicka et al., 2007), it has been introduced into clinical trials in CLL, hormone
refractory prostate cancer, and advanced breast cancer (Politzer, 2008; Stein et al., 1992; Van
Poznak et al., 2001). Several gossypol derivatives are currently under development as potential
anticancer agents. Another small molecule, ABT-737 was identified by using nuclear magnetic
resonance (NMR)-based screening. ABT-737 binds with high affinity to Bcl-XL, Bcl-2, and
Bcl-w, and antagonizes their anti-apoptotic effect, leading to sensitization of cancer cells to
chemotherapy and radiation (Oltersdorf et al., 2005). Besides inducing the classic features of
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apoptosis such as caspase activation and cytochrome c release, ABT-737 also induced
mitochondrial inner membrane permeabilization (MIMP) leading to outer mitochondrial
membrane rupture and matrix swelling in leukemia and lymphoma cells (Vogler et al., 2008).
The apoptotic function of ABT-737 was also found to be associated with diminishing
intracellular GSH and increased ROS (Howard et al., 2009). Moreover, the combination of
ABT-737 and CPT-11 or bortezomib can upregulate pro-apoptotic molecule Noxa expression
in colorectal cancer cells and melanoma cells (Miller et al., 2009; Okumura et al., 2008).

2.4 Compounds targeting mtDNA
The human mitochondrial genome contains 16.5 kb DNA which encodes 13 respiratory chain
subunits. The lack of protection by histones and the relatively weak DNA repair capacity in
mitochondria seems to make mitochondrial DNA more vulnerable to damage. By comparing
mtDNA from primary bladder, head and neck, and lung cancers with the mtDNA from the
blood samples in all cases, and the corresponding normal tissues where available, Fliss et al
revealed a high frequency of mtDNA mutations in tumor cells (Fliss et al., 2000). Most of the
mutations were T-to-C and G-to-A base transitions, which might be related to ROS derived
mutagens. A majority of the mutations were homoplasmic which implies the mtDNA mutation
gain substantial replicative advantage. Seventy percent of colorectal cancer cell lines were
found with mtDNA mutations, most of which were transitions at purines, again consistent with
a ROS related derivation (Polyak et al., 1998). MtDNA also plays a role in affecting cellular
response to chemotherapy drugs (Singh et al., 1999). Due to the important role of respiratory
chain in mitochondrial ATP generation, compounds that target mtDNA are likely to
significantly affect cellular energy metabolism and cell viability.

Cisplatin—
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Cisplatin (CDDP) was found to preferentially bind to mtDNA about 50 times more than to
nuclear DNA, resulting in NADH-ubiquinone reductase inhibition and decreased ATP
generation (Murata et al., 1990). After exposure to one dose of cisplatin during gestation, mice
showed higher cisplatin-mtDNA adduction levels than corresponding genomic DNA adduct
levels in maternal and fetal brain and liver tissues. The high levels of cisplatin adduction in
mtDNA may impair its function and lead to cell death (Giurgiovich et al., 1997). Since CDDP
binds to nuclear DNA and mtDNA, both mechanisms of action likely contribute to the
anticancer activity of this compound.

Topoisomerase inhibitors—

The 4-quinolone antibiotics nalidixic acid and ciprofloxacin, inhibitors of the bacterial type II
topoisomerase, caused a time-dependent decrease in mtDNA content associated with a
reduction in mitochondrial respiration and an increase of lactate production due to upregulation
of glycolysis (Petit et al., 1999). DNA topoisomerase II isolated from calf thymus mitochondria
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was inhibited in vitro by amsacrine (m-AMSA), etoposide (VP-16) and teniposide (VM-26)
(Lin and Castora, 1991). Etoposide, a topoisomerase II poison widely used in cancer treatment,
can induce cytochrome c release in a caspase-independent manner. Low concentrations of
etoposide predominantly caused nuclear DNA damage, while higher concentrations result in
a direct effect on the mitochondria through mitochondrial pore transition (Robertson et al.,
2000). The contribution of mtDNA damage induced by topoisomerase inhibitors to their
anticancer activity is unclear. Interference of nuclear DNA processing is considered the main
mechanism by which this class of compounds exerts their anticancer activity. It should also be
pointed out that mitochondrial damage has been associated with cardiotoxicity of doxorubicin.

Ditercalinium—

Ditercalinium (NSC 335153) is a bis-intercalating agent which accumulates mainly in the
mitochondria (Fellous et al., 1988). Treating mouse and human cells with ditercalinium caused
a specific elimination of mtDNA and inhibited its replication (Okamaoto et al., 2003).
Ultrastructural studies showed a complete loss of mitochondrial cristae and depletion of
mtDNA after ditercalinium treatment (Segal-Bendirdjian et al., 1988). This compound exhibits
in vivo antitumor activity in animal models.

Vitamin K3—

Although vitamin K3 (menadione) does not target mitochondrial DNA directly, this compound
exhibited specific inhibitory affect on DNA polymerase γ (pol γ), the mitochondrial enzyme
responsible for mtDNA replication. A recent study showed that at the concentration of 30 μM,
Vitamin K3 inhibited pol γ activity by 80% without affecting other DNA polymerases, and led
to mitochondrial dysfunction, ROS generation, and apoptosis (Sasaki et al., 2008). Vitamin
K3 also induced mitochondria-related apoptosis in breast cancer cells (Akiyoshi et al., 2009;
Marchionatti et al., 2009). Some recent studies have found its inhibitory effect on pancreatic
cancer cells (Osada and Yoshida, 2009). The effect of Vitamin K3 on blood coagulation and
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its clinical usefulness have long been recognized, but its use as a potential anticancer agent
still remains to be evaluated.

3. Compounds that target altered metabolisms associated with mitochondrial
dysfunction

In cancer cells with mitochondrial dysfunction, one important metabolic alteration is the
increase of glycolytic activity, which provides ATP as well as other metabolic intermediates
for cancer cells to survive and proliferate. Altered expression and activities of enzymes in
glycolysis and the tricarboxylic acid (TCA) cycle have been observed in various cancers
(Kroemer and Pouyssegur, 2008). These enzyme changes contribute to or promote the
preference of cancer cells to aerobic glycolysis and thus have prompted researchers to test
whether targeting these enzymes will have any therapeutic benefit. Some of these compounds
described below have indeed been shown to be useful in targeting cancer cells with high
‘glycolytic phenotype’ and also enhance their sensitivity towards other chemotherapeutic
agents.

3-Bromoyruvate

Hexokinase (HXK) (D-hexose 6-phosphotransferase) is the first enzyme in the glycolytic
pathway and converts glucose to glucose-6-phosphate via transfer of a phosphate group from
ATP to the 6-carbon of glucose. Four isoforms of HXK exist (I–IV) and are expressed in various
tissues ((Katzen and Schimke, 1965)). HXKII has been found to bind onto the mitochondria
(Robey and Hay, 2006) and has been shown to have elevated activity in H-91 hepatoma cells
compared to the control liver samples (Bustamante and Pedersen, 1977). Known for high
glucose catabolism ((Shatton et al., 1969; Weinhouse et al., 1972) a hepatocellular carcinoma
model, generated via liver implantation of the rabbit VX2 tumor, was tested with 3-
bromopyruvate (3BrPA) (Ko et al., 2004). Isolated tissue samples exhibited greater lactate
production and higher hexokinase activity in implanted VX2 tumors compared to normal liver
samples isolated from the same animal. In addition, the VX2 tumors showed greater
distribution of HXK activity to the mitochondria compared to the normal liver tissue. Total
mitochondrial HXK activity and mitochondrial respiration was inhibited with 3BrPA (Ko et
al., 2004). Recent work by Chen et al found 3BrPA to cause a covalent modification of
mitochondria-bound HXKII, leading to disruption of interaction between AIF (Apoptosis
Inducing Factor) and HXKII (Chen et al., 2009b). HXKII and AIF released from the
mitochondria leads to induction of cell death, revealing another mechanism of action of 3BrPA
(Chen et al., 2009b). In addition, 3BrPA exhibited greater potency against lymphoma and colon
cancer cells cultured under hypoxic conditions, and was very effective in killing cancer cells
with defective mitochondria (Xu et al., 2005).
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Dichloroacetate

A key mechanism of action of dichloroacetate (DCA) is via inhibition of pyruvate
dehydrogenase kinase (PDK), leading to activation of pyruvate dehydrogenase (PDH). PDH
is responsible for the conversion of pyruvate into acetyl-CoA thereby allowing it to enter the
TCA cycle. Phosphorylation of PDH by PDK results in inhibition of the pyruvate
dehydrogenase activity. Bonnet et al showed DCA was able to reduce hyperpolarized
mitochondrial membrane potential in glioblastoma, non-small-cell lung and breast cancer cells
but not in noncancerous cell lines (Bonnet et al., 2007). Analysis of metabolic parameters upon
DCA treatment in A549 lung cancer cells showed it was able to reduce both glycolysis and
fatty acid oxidation while increasing glucose oxidation. In addition, DCA was able to induce
apoptosis, elevate H2O2 production and activate the Kv1.5 potassium channel in A549 cells
(Bonnet et al., 2007). Treatment of head and neck squamous cell carcinomas by DCA showed
a dose dependent reduction in phosphorylated PDHα in primary UM-22A cells (McFate et al.,
2008). However, such reduction was not seen in the metastatic UM-22B cell line which
exhibited a higher ratio of phosphorylated PDHα to total PDHα, greater basal PDK1 levels and
lactate. Interestingly, the UM-22B cells were more sensitive to DCA than the UM-22A cells.

Lonidamine

Lonidamine (LND) derived from indazole-3-carboxylic acid, exhibits both antispermatogenic
and antineoplastic properties. LND exhibits a plethora of effects on cells, its primary effect
being an energy modulator in cancer cells. LND has been shown to inhibit glycolysis due to
inhibition of hexokinase II (Floridi et al., 1981a) which is often found elevated in cancers
(Bustamante and Pedersen, 1977). Use of LND was found to deplete ATP, inhibit oxygen
consumption in Ehrlich’s ascites tumor cells and lactate production under aerobic and
anaerobic conditions (Floridi et al., 1998; Floridi et al., 1981a; Floridi et al., 1981b). Minimal
apoptosis was observed with individual LND or radiation treatment but was significantly
increased upon their combination in radio-resistant malignant melanoma cells (Miyato and
Ando, 2004). LND was also found to enhance the cytotoxicity of several chemotherapeutic
agents including doxorubicin ((Floridi et al., 1998; Zupi et al., 1986), cisplatin (Raaphorst
(Pratesi et al., 1996; Raaphorst et al., 1991) and others such as carmustine (BCNU) and 4-
hydroperoxycyclophosphamide (4-HC) (Rosbe et al., 1989). Multiple clinical trials of
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lonidamine with or without other chemotherapy drugs have been carried on in non small cell
lung cancer, breast cancer, ovary cancer and glioblastoma (Berruti et al., 2002; De Lena et al.,
2001; De Marinis et al., 1999; Oudard et al., 2003; Portalone et al., 1999).

Oxamate

Oxamate inhibits lactate dehydrogenase (LDH), an NADH-dependent enzyme responsible for
the conversion of pyruvate to lactate. LHD-A activity was shown to be elevated in several
mouse tumor mammary epithelial cell lines in comparison to immortalized, non-transformed
mammary epithelial cells (Fantin et al., 2002). Goldberg et al showed that the glycolytic rate
was reduced, via measurement of lactate production, in HeLa S3 cells treated with oxamate
(Goldberg and Colowick, 1965). Furthermore, cell growth and glucose uptake were also
inhibited by this compound. This study also supported LDH as a target of oxamate by using
α-ketobutyrate as a substitute for pyruvate. Addition of α-ketobutyrate reversed the inhibition
of growth and glucose uptake in the presence of oxamate in HeLa cells. However, α-
ketobutyrate by itself inhibited cell growth. Generation of recombinant human LDH-A showed
oxamate competitively inhibited the enzyme, and was also confirmed in vitro (Thornburg et
al., 2008). Both in vitro and in vivo growth inhibition was seen with oxamate treatment in
MDA-MB-231 breast adenocarcinoma cells. Depletion of ATP in HeLa cells by oxamate also
appears to contribute to its growth inhibition and enhance doxorubicin-mediated cytotoxicity
(Hamilton et al., 1995). Additionally, oxamate was shown to inhibit the activity of human
recombinant aspartate aminotransferase (AAT) ((Rej, 1979; Thornburg et al., 2008). AAT
functions with malate dehydrogenase, a TCA enzyme which oxidizes malate to oxaloacetate,
to help shuttle the two metabolites between the mitochondria and cytosol.

4. Summary
Conventional chemotherapy using cytotoxic agents tends to damage both tumor and normal
cells and cause significant toxic side effects, which compromise the therapeutic outcomes. The
emergence of targeted therapy which is based on the concept of specifically targeting critical
molecules unique to cancer cells may provide promising means of selectively killing malignant
cells. However, cancer may be caused by multiple genetic alterations and environmental
factors. As such, there are many potential targets in cancer cells but no single critical target
can be readily identified in most cancer types, perhaps with an exception of Bcr-Abl in CML.
This situation makes the development of targeted therapy a challenging task (Green, 2004).
Mitochondria structural and functional alterations associated with malignant transformation
seem to be a common phenomenon observed in many types of cancers. Utilizing these
differences to preferentially target mitochondria of cancer cells may be a logical strategy to
achieve therapeutic selectivity. Several classes of small molecules that directly target
mitochondria at specific sites or indirectly impact the metabolic alterations in cancer cells with
dysfunctional mitochondria seem to exhibit promising anticancer activity. Since many of these
small molecules have mainly been tested in cancer cell lines and in animal tumor models,
clinical trials are needed to further test their potential for use in clinical treatment of cancer
patients. Table 1 provides a list of compounds that target mitochondria or impact the metabolic
alterations associated with mitochondrial dysfunction in cancer cells. The modes of action of
these compounds and their clinical trial status are also indicated. It is important to recognize
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that cancer cells may be able to tolerate inhibition of mitochondrial function by upregulation
of glycolysis and other survival mechanisms. As such, a combination of mitochondria-targeted
agents with glycolytic inhibitors and other chemotherapeutic drugs may be required to achieve
maximum efficacy. However, caution must be exercised to prevent potential increase in toxic
side effects. A comprehensive understanding of mitochondrial biology in cancer cells and the
interaction between cellular metabolism and drug action is essential in developing
mitochondrial-targeted agents for cancer treatment.

Abbreviations

PET positron emission tomography

ATP adenosine triphosphate

mtDNA mitochondrial DNA

DLCs delocalized lipophilic cations

SOD1 superoxide dismutase1

mtNOS mitochondrial nitric oxide synthase

ROS reactive oxygen species

As2O3 arsenic trioxide

APL acute promyelocytic leukemia

NAC n-acetyl cysteine

α-TOS alpha-tocopheryl succinate

UbQ ubiquinone

Cyb cytochrome B

SDH succinate dehydrogenase

α-TOC alpha tocopherol

dUQH2 decyl-ubiquinol

Mn-SOD mitochondria SOD

MPTP mitochondrial membrane permeability transition pore

ANT adenine nucleotide transporter

VDAC voltage dependent anion channel

MMP mitochondrial inner membrane permeabilization

mt mitochondrial

m-AMSA amsacrine

etoposide VP-16

teniposide VM-26

TCA tri-carboxylic acid

HXK hexokinase

3BrPa 3-bromopyruvate

DCA dichloroacetate

PDK pyruvate dehydrogenase kinase
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PDH pyruvate dehydrogenase

H2O2 hydrogen peroxide

LND lonidamine

BCNU carmustine

4-HC 4-hydroperoxycyclophosphamide

LDH lactate dehydrogenase

AAT aspartate aminotransferase
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Figure 1.
Overview of possible sites and functions of mitochondria as potential targets for anticancer
therapy. (1) Certain compound, often with positive charge, may preferentially accumulate in
the mitochondria of cancer cells due to the elevated transmembrane potential (Δψm), with the
inner surface of the inner mitochondrial membrane being highly negatively-charged. (2)
Mitochondrial DNA, which encodes 13 key components of the respiratory chain complexes,
are vulnerable to damage by certain DNA-interacting compounds due to the unique structure
of mitochondrial DNA, lack of histone protection, and relatively weak DNA repair capacity
in the mitochondria. (3) Inhibition of mitochondrial respiration through targeting the electron
transport complexes has been shown to elevate ROS production, deplete ATP and induce
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apoptosis. (4) Targeting the mitochondriapermeability transition pore (MPTP) may alter
Δψm, induce change in membrane permeability, and result in a release of apoptotic factors.
(5) Enzymes of the glycolytic pathways are often found elevated in cancer cells with
mitochondrial dysfunction, likely being a mechanism to compensate energy supply and provide
metabolic intermediates for cell growth and proliferation. Inhibition of glycolytic enzymes has
been shown to preferentially kill cancer cells, especially those with significant mitochondrial
dysfunction or under hypoxic conditions. 3BrPA, 3-bromopyruvate; HXK, hexokinase; LDH,
lactate dehydrogenase; PDH, pyruvade dehydrogenase; PDK, pyruvate dehydrogenase kinase;
Δψm, mitochondria transmembrane potential; mtDNA, mitochondrial DNA (Δψm). MPTP,
mitochondrial permeability transition pore.
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Table 1

Compounds that target mitochondria or impact the metabolic alterations associated with mitochondrial
dysfunction in cancer cells.

Class Compounds name Status Cancer type Reference

Targeting mitochondria transmembrane potential

Rhodamine123 Phase I clinical
trial

Prostate cancer Jones et al.,
2005

MKT-077 Phase I clinical
trial

Solid tumors Britten et al.,
2000
Propper et
al.,1999

F16 Pre-clinical testing Breast cancer, fibrosarcoma,
intestinal cancer

Fantin et al.,
2002

Dequalinium Pre-clinical testing Colon cancer, meloma,
bladder cancer

Bleday et al.,
1986; Helige
et al., 1992;
Weiss et al.,
1987

Targeting cancer mitochondrial respiration

Arsenic trioxide In clinical use and
clinical trials in
various cancer
types.

APL, Liver cancer,
melanoma, AML, glioma,
CLL, lymphoma, breast
cancer, non-small cell lung
cancer, pancreatic cancer

Bael et al.,
2008, Chang
et al., 2009,
Fox et al.,
2008, Shen
et al., 1997,
Kindler et
al.,2008, Niu
et al.,1999,
Tarhini et
al.,2008

Vitamin E analogue Phase II study Melanoma, prostate cancer,
colorectal cancer,
mesothelioma, breast cancer

Tsavachidou
et al.,2009
Neuzil et al.,
2007

Resveratrol Phase II clinical
trials

Colorectal cancer, myeloma,
follicular lymphoma

Jang et al.,
1997;
Goldberg et
al.,2003;
Walle et al.,
2004; Meng
et al., 2004;
Boocock et
al.,2007;
Vitaglione et
al.,2005;
Levi et al.,
2005

Rotenone Experimental tool Chance et
al., 1963

Targeting mitochondrial membrane permeability

Honokiol Pre-clinical testing Esophagus cancer Chen et al.,
2009a

Betulinic acid Pre-clinical testing Brain tumor, colon cancer,
melanoma

Fulda &
Debatin,
2000; Fulda
et al., 1999;
Jung et al.,
2007; Pisha
et al., 1995

Bcl-2 inhibitors (Gossypol) Phase III clinical
trial

Small cell lung cancer,
prostate cancer, breast cancer,
lymphoma, leukemia

Van et al.,
2001
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Class Compounds name Status Cancer type Reference
O’Brien et
al., 2005
Glenn et al.,
2009

Targeting mtDNA

Cisplatin In clinical use Lung cancer, breast cancer,
ovarian cancer, germ cell
tumor, sarcoma

Sculier et al.,
2009, Besse
et al., 2009,
Decatris et
al., 2004,
Murata et al.,
1990, De et
al.,1989

Topoisomerase inhibitors (Etoposide) In clinical use Lymphoma, lung cancer, brain
tumor, germ cell tumor

Fischer et
al., 2008,
Kondaqunta
et al, 2006,
Mascaux et
al., 2000
Lawrence et
al., 1993

Ditercalinium Pre-clinical testing Fibrosarcoma, cervical cancer Rodríguez et
al., 2009,
Okamaoto et
al., 2003

Vitamin K3 Pre-clinical testing Pancreatic cancer Akiyoshi et
al., 2009 
Marchionatti
et al., 2009
Osada &
Yoshida,
2009

Targeting metabolic alterations

3-Bromopyruvate Pre-clinical testing Hepatoma, colon cancer,
lymphoma

Bustamante
and
Pedersen,
1977;

Dichloroacetate Phase II clinical
trial

Brain tumor, some solid
tumor, Non-small cell

Xu et al.,
2005 Bonnet
et al., 2007;
McFate et
al., 2008

Lonidamine Phase III clinical
trial

lung cancer, breast cancer De Marinis
et al., 1999;
Berruti et al.,
2002

Oxamate Pre-clinical testing Cervical cancer, Goldberg et
al., 1965;
Hamilton et
al., 1995
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