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Abstract 

Obesity and other inactivity related diseases are increasing at an alarming rate especially in 
Western societies. Because of this, it is important to understand the regulating mechanisms 
involved in physical activity behavior. Much research has been done in regard to the psy-
chological determinants of physical activity behavior; however, little is known about the 
underlying genetic and biological factors that may contribute to regulation of this complex 
trait. It is true that a significant portion of any trait is regulated by genetic and biological 
factors. In the case of voluntary physical activity behavior, these regulating mechanisms ap-
pear to be concentrated in the central nervous system. In particular, the dopamine system 
has been shown to regulate motor movement, as well as motivation and reward behavior. 
The pattern of regulation of voluntary physical activity by the dopamine system is yet to be 
fully elucidated. This review will summarize what is known about the dopamine system and 
regulation of physical activity, and will present a hypothesis of how this signaling pathway is 
mechanistically involved in regulating voluntary physical activity behavior. Future research in 
this area will aid in developing personalized strategies to prevent inactivity related diseases.  

Key words: Physical activity, behavior, dopamine, dopamine receptors, dopamine signaling, 
wheel running, motivation 

Introduction 
Voluntary physical activity is important to hu-

man health for many reasons, including the preven-
tion of obesity [22, 138]. The rate of obesity has stead-
ily increased over the last 30 years [184], while at the 
same time the amount of voluntary physical activity 
has decreased [1]. Increases in sedentary lifestyles in 
Western cultures has led to an increase in inactivity 
related diseases such as obesity, cardiovascular dis-
ease, Type II Diabetes, and certain types of cancer 
[118]. Research has shown the benefits of physical 
activity to human health and its importance in in-
creasing resting metabolic rate [154], prevention of 

certain types of cancer [9], prevention of age related 
muscle loss, or sarcopenia [33], and treatment of de-
pression and anxiety [30]. Although the physiology of 
exercise has been well studied, the factors controlling 
voluntary physical activity levels in humans are not 
fully understood. Thus, the main goal of this review is 
to highlight what is currently understood about the 
biological regulating factors of voluntary physical 
activity, in addition to providing a novel hypothesis 
of the role of the dopamine system in regulating vol-
untary physical activity levels. Understanding the 
regulation of physical activity will lead to better un-
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derstanding of inactivity related diseases and lead to 
improved human health. 

Biological Influence on Physical Activity 
 The manifestation of a particular phenotype (in 

this case voluntary physical activity level) is tradi-
tionally thought to be determined by the following 
equation: 

Phenotype = environment + genetics/biological factor 
+ environment/genetic interaction).  

The relative contribution of each of these com-
ponents differs depending on the phenotype in ques-
tion. Several recent genetic studies have investigated 
the level of genetic association with physical activity 
in humans and in animal models. The estimated ge-
netic component for physical activity from these 
studies ranges from 20-80% [42, 73, 82, 87, 91, 92, 114, 
159, 165]. Additional support for the genetic compo-
nent of voluntary physical activity can be found in 
mice selectively bred for high wheel running activity 
[161]. Even after just 10 generations of selective 
breeding for high wheel running, selected animals 
exhibited a 75% increase in wheel running activity 
[161], and after 35 generations selected animals ran 
170% more than controls [120]. Recently, Lightfoot et 
al. (2008) conducted single-gene quantitative trait loci 
(QTL) analysis to determine the genetic locations 
possibly involved in regulation of physical activity. 
QTL analysis allows for the investigation of specific 
areas of the genome that are associated with a given 
trait. Using three wheel running indices in mice as 
indicative of physical activity, one significant QTL for 
distance (Chr. 13), one significant QTL for duration 
(Chr. 13), and two significant QTL for speed (Chr. 13 
and 9) were found, confirming a genetic component to 
the regulation of voluntary physical activity in mice 
[92]. Further work from this group [84], in combina-
tion with the initial QTL analysis, showed that in the 
inbred F2 model used, the single-gene and epistatic 
[gene-gene interactions] QTL together accounted for 
84-100% of the genetically-related phenotypic vari-
ance. Although these studies provide strong evidence 
of a genetic component to physical activity regulation, 
in order to fully understand the exact mechanisms 
regulating this broad behavior it becomes necessary to 
investigate the numerous components such as other 
biological (non-genetic) factors, and the interactions 
between these components (both gene and environ-

ment), that indeed contribute to the manifestation of 
this complex phenotype. 

Where does the genetic/biological regulation occur? 

The site of action of possible genetic/biological 
components affecting physical activity may include 
either peripheral mechanisms (e.g. fiber type, number 
of mitochondria, cell metabolism components, oxygen 
consumption etc.), and/or central mechanisms (e.g. 
brain signaling, neurotransmitters, motivational be-
haviors etc.). Interestingly, work done with animals 
selectively bred for high wheel running, has shown 
very few and/or minimal peripheral differences be-
tween mice selected for high wheel running, com-
pared to control mice [35, 74, 119, 120, 162, 163, 167, 
168]. Peripheral differences alone cannot explain the 
huge differences in wheel running between selec-
tively-bred high active mice and control mice sug-
gesting that a significant portion of the ge-
netic/biological component affecting physical activity 
likely comes from central factors. This hypothesis is 
supported by several studies. First, mice selectively 
bred for high activity have increased Brain Derived 
Neurotrophic Factor (BDNF) in the hippocampal area 
of the brain compared to control mice [72]. Rhodes 
and colleagues also showed that mice selected for 
high wheel running had increased activity as meas-
ured by Fos immunoreactivity in specific areas of the 
brain including the mid-brain [123]. Finally, 
Bronikowski et al. (2004) showed that mice selected 
for high wheel running had a 20% increase in dopa-
mine 2 (D2) and dopamine 4 (D4) receptors in the 
hippocampus as compared to control line mice [16]. 
The gene array used in this study did not contain the 
D1-like receptors, and the hippocampus is not known 
as a brain region mediating dopaminergic mediated 
motivation and reward; however, the authors still 
suggested the data indicate a possible role of the do-
pamine system to an increased motivation to run in 
selected mice [16]. Furthermore, given the fact that 
selected mice and control line mice respond similarly 
to D2-like antagonists [122], but respond differentially 
to D1-like antagonists suggests the D1-like receptors, 
and not the D2-like receptors, in certain areas of 
mid-brain are important in activity regulation in se-
lectively bred high active mice [122, 123]. The results 
from studies on the central nervous system in the se-
lectively bred mice are summarized in Table 1. 
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Table 1: Summary of dopaminergic findings in selectively bred mice for high WR. Evidence from studies in selectively bred 
mice for high wheel running suggest the central regulation of physical activity likely involves the dopamine system. 

Area of Brain Methods Finding Conclusions Reference 

Hipocampus Gene Array 24% ↑ D4 receptors 19% ↑ 
D2 receptors 

small changes in gene expression in 
the brain can cause large phenotypic 
changes. D1 receptors were not ana-
lyzed. 

Bronikowski et al., 
2004 

Lateral Hypothala-
mus, Medial Frontal 
Cortex, Striatum 

Fos expression in selected 
mice blocked from wheel 

↑ Fos expression  Different brain regions in control of 
intensity of running vs. motivation 
for running 

Rhodes et al., 2003 

N/A Agonists, Antagonists, 
re-uptake inhibitor 

Differential responses in 
WR in selected mice vs. 
controls 

D1-like receptors likely involved in 
mediating high WR in selected mice 

Rhodes and Garland, 
2003 

 
 Supporting the hypothesis that the dopaminer-

gic system is an appropriate genetic/biological can-
didate in the central control of voluntary physical 
activity are studies that have implicated dopamine 
functioning in the control of motor movement [131], 
reward [139], learning, motivation [111], and emotion 
[147]. Thus, the dopamine system would be a likely 
candidate to help control voluntary physical activity 
because this is a motivated and rewarding behavior 
that involves motor control. However, to this point, 
the majority of studies investigating physical activity 
in humans have treated changes in neurotransmitter 
systems, such as dopamine, as a dependent factor that 
responds to physical activity stimuli such as intensity 
or duration of exercise. States another way, most in-
vestigations treat dopaminergic changes as a conse-
quence of physical activity. Similarly, work done in 
animals has for the most part employed research de-
signs focusing on neurotransmitter systems and “lo-
comotion” in relation to diseases such as Parkinson’s 
disease. However, extensive recent evidence pre-
sented by Garland and colleagues [16, 121-124] with 
mice selectively bred for high voluntary activity indi-
cated a strong central component that may act in an 
independent fashion; i.e. the central component may 
control physical activity levels as part of a ge-
netic/biological regulation scheme (e.g. physical ac-
tivity may be the consequence of dopaminergic func-
tion). This current examination will review the lit-
erature implicating the dopaminergic system as a 
possible independent regulator of physical activity (as a 
separate form of locomotion and energy expenditure) 
in animals, as well as the emerging effort to under-
stand the role the dopamine system plays in the 
regulation of motivation for voluntary physical activ-
ity. Based on the current literature, a novel interpre-
tation of the central biological regulation of voluntary 
physical activity with respect to the dopaminergic 
system will also be presented. 

The Dopaminergic System 
 While an exhaustive review of the structure and 

function of the dopaminergic system is beyond the 
scope of this review, in order to place the potential 
function of the dopamine system within the context of 
the central regulation of physical activity, a short 
overview of the dopamine system is necessary.  

The dopaminergic neurons in the brain originate 
from two distinct areas. The neurons originating from 
the substantia nigra pars compacta project into the 
dorsal striatum via the nigrostriatal tract [60], while 
those neurons originating from the ventral tegmental 
area project into the cortex and ventral striatum (nu-
cleus accumbens) via the mesolimbic tract [36, 89]. 
The dopaminergic neurons interconnect with many 
areas of the brain leading to the implication of the 
dopaminergic system in many central functions in-
cluding reward, learning, motivation, response to 
stimuli, and movement [153]. Figure 1 illustrates the 
important dopaminergic pathways in the brain. Po-
tentially important for the regulation of physical ac-
tivity is the striatum/nucleus accumbens area given 
this area is involved in motivation, reward, and motor 
movement. Also highlighted as part of the basal gan-
glia, is the ventral pallidum because this area may be 
important in integrating dopaminergic signals from 
both motivational/reward centers and motor move-
ment centers in the brain [152]. 

 There are two evolutionarily and genetically 
different subtypes of receptors for dopamine within 
the dopaminergic system, and a total of five known 
distinct receptors [18, 153]. The dopamine D1-like 
receptor family includes the dopamine one (D1) and 
dopamine five (D5) receptors. These receptors contain 
no introns, act by way of Gs-proteins, and activate 
adenylyl cyclase, thus increasing cAMP production 
[85, 169]. The D-2 like receptor family includes the 
dopamine two (D2), dopamine three (D3), and do-
pamine four (D4) receptors. These receptors contain 
introns, act via Gi-proteins, inhibit adenylyl cyclase 
activity, and thus decrease cAMP activity [85, 105]. 
The two dopamine receptor families do not appear to 
act in isolation however, because it has been shown 
that activation of D1 receptors in the rat striatum 
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causes D2 receptors to shift to a “low binding state” 
for dopamine [143]. Likewise, D1 and D2 receptors 
have been shown to physically interact in certain ar-
eas of the brain, possibly working synergistically to 
affect downstream signaling [36]. Dopaminergic sig-

nals also interact with GABA interneurons [2] and 
other neurotransmitter signaling, highlighting the 
many levels of control of the resultant neuronal sig-
naling, and downstream effects.  

 

 

Figure 1: Model of brain dopaminergic tracts. This figure illustrates the known dopaminergic neuronal tracts discussed in 
this review. The nigro-striatal tract (shown in red) consists of dopaminergic neurons originating from the substantia nigra, 
and projecting into the striatum. This tract is thought to be involved in control of motor movement. The mesolimbic tract 
(shown in deep purple) is made of dopaminergic neurons projecting from the ventral tegmental area (VTA) into the nucleus 
accumbens, frontal cortex, and hippocampus. This area is thought to be involved in motivation, reward, and learning. The 
ventral pallidum acts as a limbi-somatic motor interface. Thus, the striatum and nucleus accumbens may play an important 
role in regulating the motivation for physical activity. Dashed arrows indicate specific brain regions, while blunt ended solid 
line arrows indicate dopaminergic neuronal tracts. 

 
 Dopamine receptors differ in their anatomical 

locations on specific neurons, vary in density in spe-
cific regions of the brain, and can be found either 
presynaptically or postsynaptically depending on the 
type of tissue and/or neuron [105]. Dopamine recep-
tor expression is found in nearly all areas of the brain, 
but receptors are most highly expressed in nigrostri-
atal and mesolimbic regions including the striatum, 
VTA, and cortex [27, 68]. The distribution of dopa-
mine receptors in the brain is diverse; however, spe-
cific dopamine receptors are differentially expressed 
at higher or lower levels in particular areas of brain 
[36]. The five known dopamine receptors differ in 
their affinity for dopamine, natural ligands, receptor 

activity, anatomical locations, genetic sequence, and 
thus, physiological activity [18]; however, the dopa-
mine receptors work in concert with each other to 
produce integrated responses and signals in the brain 
and body. 

 Expression levels of the dopamine receptors 
may be important in mediating downstream behav-
ioral responses including voluntary activity. Dopa-
mine receptor expression can be affected by the levels 
of dopamine in the system [55], level and length of 
treatment of pharmacological agents [17], as well as 
other external stimuli mediated through rewarding 
behavior such as sexual activity [102], or exercise [46]. 
However, overall dopaminergic responses and sig-
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naling are also dependent on other factors such as the 
electrical response produced (dopamine signaling can 
act in both an excitatory manner, as well as an in-
hibitory manner depending on the circumstance) [20, 
64, 89], as well as interactions with other neurotrans-
mitters and signaling molecules. For example, the 
dopamine system has been shown to interact with 
glutamate [145], GABA [57], acetylcholine [137], and 
serotonin [39]. Depending on the receptor involved 
and the anatomical location, dopamine receptors ac-
tivate or repress a variety of signaling cascades in-

cluding ERK/MAPK [95], CREB [125], and CAMKII 
[67], by affecting calcium and/or potassium channels 
in the nerve cell [105]. A representative dopaminergic 
synapse is shown in Figure 2. Only possible signaling 
pathways for the D1-like receptors are illustrated. 
Possible signaling pathways in the dopaminergic 
neurons are extensively reviewed by Neve and col-
leagues (2004) [107], and these downstream signaling 
pathways may be important in future investigations 
of the role of the dopamine system and regulation of 
voluntary physical activity. 

 
 

 

Figure 2: Representative dopaminergic synapse. The above illustration is a representative dopaminergic synapse. The 
signaling pathways in the postsynaptic neuron are only representative of D1-like receptor signaling (which increases cAMP). 
D2-like receptors are known to have opposite affects on cAMP activity, and thus slightly different downstream signaling 
cascades. Dopaminergic signaling effects on ion channels and membrane permeability are not shown however, may be 
important in the regulation of behavior such as physical activity. For a full review of the signaling cascades proposed to be 
involved in D1-like and D2-like receptor signaling please refer to Neve et al. 2004 [107]. Abbreviations: AC5 – adenylate 
cyclase 5; ATP – adenylyl tri-phosphate; CREB – cyclic AMP response element binding protein; DARPP-32 – dopamine and 
cyclic AMP-regulated phosphoprotein (thought to be important in positive feedback signaling); D1 – dopamine receptor 1; 
MAPK – mitogen-activated protein kinase; PKA – protein kinase A; PKC – protein kinase C; PLC – phospholipase C; VMAT 
-- vesicular monoamine transporter; c-fos – downstream early gene. 
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 Important in mediating downstream signaling 
are gene expression changes, and dopamine receptor 
signaling has been shown to affect gene expression 
[105]. Several immediate early genes that are activated 
in dopaminergic neurons following stimulation in-
clude those of the Fos family [65, 106, 123, 178]. Fos is 
a transcription factor that is up-regulated in the 
mid-brain in response to stimulation from drugs, or 
other natural rewarding stimuli such as sexual be-
havior or exercise [123, 150]. Fos is the product of the 
immediate early gene c-Fos, and Fos expression has 
been shown to be regulated by dopamine signaling 
[127]. Pharmacological studies show that Fos immu-
noreactivity in the striatum and other key regions of 
the brain is increased following administration of D1 
and D2 agonists [58, 66, 69, 109, 126], suggesting Fos 
may be important as a downstream gene regulated by 
dopaminergic signaling. ΔFosB, a transcription factor 
and also a member of the Fos family of proteins, is 
likewise up-regulated in response to drugs of abuse 
and exercise. The expression of ΔFosB is usually 
longer lasting than Fos, and is thought to be involved 
in long term changes in behavior [106, 178]. Brain De-
rived Neurotrophic Factor (BDNF) also appears to be 
regulated in part by dopamine signaling and has been 
shown to increase as a result of physical exercise [41]. 
Additionally, it is thought that the antidepressant 
effect of exercise is mediated through the dopamine 
system, and increased expression of BDNF [38]. 

Thus, while Fos and BDNF are two examples of 
downstream transcription factors regulated by do-
pamine signaling, the dopamine system potentially 
affects a large number of downstream genes and sig-
naling pathways that may ultimately be important in 
the understanding of the genetic mechanisms in-
volved in regulation of physical activity levels in 
animals and humans. For example, dopamine signal-
ing has also been shown to have direct affects on ex-
pression levels of certain neuropeptides including 
substance P (SP) [54], dynorphin [7, 48, 157], en-
kephalin [83, 158], and orexin [79]. In addition to other 
functions, these neuropeptides can in-turn also 
modulate other gene expression and downstream 
signaling, highlighting the possible indirect effects of 
dopamine signaling on downstream gene expression 
changes. Thus, the point should be made that any 
regulation of voluntary physical activity by dopamine 
signaling may be mediated through not only dopa-
mine receptor expression levels, but also downstream 
signaling pathways including those that affect ex-
pression of transcription factors and other neuropep-
tides known to affect transcription and gene expres-
sion. The current literature, highlighted from this 
point forward, clearly indicate the dopamine system 

has an affect on the regulation of physical activity; 
however, these studies are limited to receptor expres-
sion level changes, pharmacological interventions, 
and other genetic interventions (e.g. knock-out mod-
els). Further research into the downstream mecha-
nisms of control of voluntary physical activity will be 
needed in order to dig deeper into the exact method in 
which this regulation occurs. As explained in later 
sections, reconciling dopamine and reward literature, 
with the exercise science aspect of regulation of 
physical activity may be a good method of investi-
gating the regulation of this complex behavior. 

Dopaminergic Regulation of “Locomotion” 
and “motor movement” 

 Extensive studies have been conducted to assess 
the role of the dopamine receptors and the dopamine 
system in various behavioral functions [70, 183]. Lit-
erature investigating disease states such as Parkin-
son’s disease is available which emphasizes the role of 
the dopamine system in regulation of raw motor 
movement. Here, it is important to make the distinc-
tion between “locomotion” and “physical activity”. 
The term locomotion in scientific literature generally 
refers to any act of movement, which depending on 
methodology, can operationally differ significantly 
between studies. Conversely, physical activity is gen-
erally defined as purposeful exercise and/or move-
ment that expends a significant amount of energy. 
While there are slight differences between operational 
definitions of locomotion and physical activity which 
are highlighted later in this review, it is still important 
to point out the known dopaminergic involvement in 
locomotion and raw motor movement to understand 
the possible duel faceted role the dopamine system 
might play in regulating physical activity, especially 
since the preponderance of the available literature 
deals with ‘locomotion’ in disease states rather than 
voluntary physical activity.  

 Parkinson ’s disease is a good example to high-
light the role of the dopamine system in regulation of 
motor movement control. Common characteristics of 
Parkinson’s disease include resting tremors, bra-
dykinesia, rigidity, and overall difficulty in motor 
movement as a result of degradation and subsequent 
loss of dopaminergic neurons in the substantia nigra 
area of the brain [3, 185]. One particular animal model 
of Parkinson’s symptoms gives insight into the im-
portance of the dopamine system in locomotor be-
havior and motor movement. Toxin-induced models 
of Parkinson’s commonly involve the use of 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), a toxin which when administered causes 
malfunction and loss of dopaminergic neurons in the 
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brain. When MPTP is administered to mice, reduced 
locomotor function is evident through various tests 
including open field [142], and rotarod assessment 
[129]. Interestingly, there appear to be strain differ-
ences in susceptibility to MPTP and this may be 
caused by genetic differences in the dopamine system 
between different strains of mice [62, 142], suggesting 
genetic differences in the dopamine system may de-
termine susceptibility to locomotor defects.  

  Another important line of evidence supporting 
the involvement of the dopaminergic system in regu-
lation of locomotion and/or motor movement is its 
well studied role in Attention Deficit Hyperactivity 
Disorder (ADHD) [4, 88]. ADHD usually presents in 
childhood, but can also persist into adulthood [156], 
indicating that the central functioning mediating the 
symptoms may sometimes be irreversible. Genetic 
alterations of both the D4 and D5 receptors have been 
implicated as primary mechanisms in ADHD. Drd4 
polymorphisms have been found in both human and 
animal models of ADHD [104]. Additionally, inheri-
tance studies suggest an increased risk of ADHD as-
sociated with particular alleles of DRD4 and DRD5 [4, 
40, 90]. Moreover, inheritance and allelic variant 
studies show an association between DAT, the dopa-
mine transporter gene which is involved in trans-
porting dopamine back into the neuron after it has 
been released into the synapse, and ADHD [40, 50]. 
However, the most compelling evidence regarding 
dopaminergic involvement with ADHD comes from 
pharmacological studies. Stimulants which block 
DAT, resulting in increased synaptic dopamine levels, 
have been shown to significantly reduce the hyperac-
tive symptoms of ADHD [98, 179-181]. A complete 
review of the role of DAT in locomotion and parkin-
sonism can be found by GR Uhl, Movement Disorders, 
2003 [166]. Intriguingly, mice exhibiting high amounts 
of wheel running after many generations of selective 
breeding have been suggested as a potential model of 
ADHD [122, 170]. Garland and colleagues have 
shown that these selectively-bred mice have altered 
dopamine profiles compared to control line mice, as 
well as respond more profoundly to dopaminergic 
acting drugs such as dopamine transporter inhibitors, 
suggesting similar mechanistic pathways as ADHD 
[123, 124]. Whether this model will provide mecha-
nistic insight into the dopaminergic regulation of 
voluntary physical activity and/or ADHD is still un-
known. 

 Human studies using positron emission tomo-
graphy (PET) imaging also provide insight into the 
role of the dopamine system in regulation of motor 
tasks [6, 56, 110]. Lappin and colleagues [81] have 
shown that [11C]-raclopride binding potentials are 

significantly decreased in the sensorimotor striatum 
are of the brain, indicative of increased dopamine 
release, when subjects completed an active motor 
control task (such as a learned sequence of key 
presses) compared to rest conditions, suggesting the 
dopamine release and binding are subject to behavior 
conditions. What is hard to study in humans however 
is whether a priori genetic differences in regional 
dopamine functioning in the brain could affect motor 
control inter-individual differences? Relative to this 
review, it is important to point out that human brain 
imaging studies also show increased dopamine re-
lease in the striatum in response to reward tasks, fur-
ther suggestive of the dopamine system acting as a 
cognitive-motor integration center. 

Dopaminergic Regulation of Motivated Be-
havior  

 Voluntary physical activity essentially has two 
relevant components: a motor movement component 
and a motivational/rewarding component. This mo-
tivational component sets voluntary physical exercise 
apart from general “locomotion” studies. The role of 
the dopamine system in control of motor movement 
was explained above with the examples of Parkin-
son’s Disease and ADHD. However, a role of the do-
pamine system in regulating motivation for physical 
activity can be implied from studies of addiction. It is 
well accepted that the dopamine system is a major 
mediator of addiction to drugs (reviewed extensively 
in Vetulani, 2001; Peirce and Kumaresan, 2006; and Di 
Chiara, 2007) [29, 116, 171]. Specifically, the dopamine 
reward centers are known to involve the neurons in 
the ventral tegmental area which project into the nu-
cleus accumbens and other forebrain regions. It has 
been hypothesized that people who are addicted to 
such things as risky behavior, drugs, and gambling 
may have genetic differences in their dopamine sys-
tem that predispose them to such behavior [173]. This 
hypothesis has been supported by results investigat-
ing the administration of methylphenidate (a psy-
choactive drug) to non-drug users whose D2 receptor 
expression was high in the brain. The administration 
of methylphenidate to these subjects produced a 
feeling of aversion, as opposed to what happened 
when methylphenidate was administered to people 
with low levels of D2 receptor expression; in these 
subjects the drug produced a pleasure feeling [174]. 
Additional evidence in rodents has suggested both 
D1-like and D2-like dopamine receptors, and the do-
pamine transporter gene may be a mediator in addic-
tive behavior [53, 61, 155]. These results can be used to 
hypothesize that the dopaminergic system may play a 
role in the pleasurable/rewarding feelings associated 
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with voluntary physical activity in humans and thus, 
might contribute to the observed variation in animals 
and humans in motivation for physical activity. 

Additionally, studies of feeding behavior and 
food intake in animals suggest the dopamine system 
is important in motivated behavior, specifically mo-
tivation for physical activity in order to obtain food 
[112]. Recent studies have begun to investigate the 
increase in activity that results from the starvation 
characteristics of anorexia nervosa, which is some-
times labeled the “drive for activity” [19]. Typically, 
reported symptoms of semi-starvation include slow-
ing of motor movement and lethargy; however, in a 
significant percentage of anorexia nervosa patients 
quite the opposite is observed with anorexic patients 
exhibiting increased physical activity levels [13, 71]. 
Several monoamine neurotransmitters including 
norepinephrine, serotonin [5], as well as dopamine 
have been suggested to play a role in this increased 
motivation for activity in anorexia nervosa [117]. In 
animal models of “activity induced anorexia” the 
dopaminergic system is suggested as a mediator of 
the increased physical activity seen in this disorder 
[52, 117]. Although the exact mechanism is still un-
clear, it has been shown that exercising intensely in-
creases dopaminergic reward signaling [15], and 
subjects with anorexia may exercise excessively in 
order to relieve the “anhedonic state” created by in-
sufficient nutrition [26, 47].  

Thus, although there is much evidence in regard 
to the role of the dopamine system in movement dis-
orders such as Parkinson’s Disease and ADHD, as 
well as behavioral/motivational diseases such as ad-
diction and anorexia; there is still a lack of mechanistic 
evidence on how the dopamine system may mediate 
motivation for physical activity in general. How this 
regulation occurs in the brain will have long lasting 
effects on the prevention of inactivity related diseases 
such as obesity.  

An overview of the role of the dopamine system 
in these four disease states is outlined in Table 2. 

Table 2: The dopamine system in regulation of motor 
movement and addictive behaviors.  

Disease Parkinson's 
Disease 

ADHD Anorexia Addiction 

Possible 
Mechanism 

loss of DA 
neurons 

DRD4/DRD5 
and DAT 

D2/D3? 
Interactions 
with other 
neuropep-
tides 
(orexin) 

D1/D2, 
DAT, al-
tered sig-
naling 

locomotor 
outcome 

lack of mo-
tor control 

Hyperactive 
Phenotype 

↑ drive for 
activity 
(other OCD 
tendencies)

mediates 
motivation 
for pleas-
ure/reward 
seeking 

Dopamine signaling plays a prominent role in several disease states 
having to do with either motor movement or motivational behav-
ior. The four disease states listed in this table are examples of how 
the dopamine system plays an important role in both motor 
movement as well as behavior. This is meant to highlight the mul-
tifaceted role the dopamine system likely plays in regulating moti-
vation for physical activity in healthy populations. Possible 
mechanisms of regulation are listed based on the described litera-
ture. Abbreviations: DA – dopamine; DAT – dopamine transporter; 
OCD – obsessive compulsive disorder. 

Dopaminergic regulation of Physical Activ-
ity: Evidence from animal models in wheel 
running studies 

 There is wealth of literature concerning animal 
models and “locomotion” with respect to the dopa-
mine system. However, “locomotion” is a very broad 
term that can refer to several different types of 
movement including novelty induced, open field, 
drug induced, wheel running, and/or food seeking. It 
is contended that motivated physical activity in the 
form of exercise is also a type of locomotion with 
possibly very different regulatory mechanisms than 
for example, novelty induced locomotion. Eikelboom 
and colleagues [37] have contested that wheel running 
models in animals is the best parallel to human vol-
untary physical activity. Thus, because wheel running 
in animals is an innately controlled behavior that is 
completely voluntary, this section will only focus on 
those studies involving dopaminergic control of 
wheel running levels in animals. 

Wheel Running Studies 

 Evidence for involvement of the dopamine sys-
tem with physical activity levels can be implied from 
wheel running studies conducted in animals. Again, a 
strong case has been made that wheel running in 
animals is an appropriate model of voluntary physical 
activity in humans [37, 148]. Thus, as opposed to the 
drug induced locomotion studies, wheel running 
studies may give more accurate insights into the in-
volvement of the dopamine system in general physi-
cal activity levels in humans. 

Inbred mice strain differences in both dopa-
minergic anatomy and wheel running may prove 
useful in elucidating how genetic differences in 
dopaminergic signaling may differentially regulate 
voluntary physical activity in inbred mice. Lightfoot 
and colleagues screened 13 strains of mice for dis-
tance, duration, and speed on a running wheel, and 
found significant differences between strains in all 
running wheel indices, indicating a significant genetic 
component to regulation of wheel running behavior 
[91]. Additionally, strain differences in dopamine 
anatomy and function have also been shown by vari-
ous authors [8, 100, 103, 108, 141, 146, 160]. For exam-
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ple, Fink and Reis, 1981, showed that BALB/cJ mice 
have more dopamine activity in both the nigrostriatal, 
and mesolimbic pathways in the brain compared to 
CBA/J mice [43]. Combining the knowledge that 
CBA/J and Balb/cJ mice differ in dopaminergic 
anatomy in the mid-brain [43], as well as differ in 
wheel running indices [91], it is reasonable to suggest 
that genetic differences in the dopamine system be-
tween inbred strains of mice may translate into be-
havioral differences, including voluntary wheel run-
ning. Similarly, work done recently in our lab [75] 
suggests expression differences of D1-like receptors as 
well and tyrosine hydroxylase between differentially 
active inbred strains may be important in mediating 
behavior differences in running wheel activity in dif-
ferentially active inbred mice.  

 Supporting the hypothesis that genetic differ-
ences in the dopamine system may mediate physical 
activity behavioral differences in animal models is 
work done using selective breeding. Bronikowski and 
colleagues (2004) investigated gene expression 
changes in the hippocampus region of the brain and 
found that mice selectively bred for high wheel run-
ning had a 20% increase in D2 and D4 receptor ex-
pression (D1-like receptors were not analyzed in this 
study) compared to control line mice [16]. Also, Rho-
des et al. (2003) investigated patterns of brain activity 
in mice selected for high wheel running, and found 
that certain areas of the brain exhibited increased ac-
tivity (as measured by Fos expression) in selected 
animals compared to the control animals [123]. Sev-
eral of the regions identified in this research, includ-
ing the nucleus accumbens, striatum, prefrontal cor-
tex, and lateral hypothalamus are regions associated 
with high dopaminergic activity. Another study by 
Waters et al. (2008) in rats selectively bred for high 
aerobic capacity showed that the high capacity rats 
exhibited increased wheel running activity compared 
to controls while also exhibiting increased dopa-
minergic activity in the striatum area of the brain 
compared to low aerobic capacity rats [177]. The au-
thors suggested that artificial selection may have 
acted upon the dopamine system because the dopa-
mine system is involved in motivation and that wheel 
running activity is a motivated behavior [177]. Given 
the knowledge from genetic studies of dopamine and 
wheel running in both inbred and selectively bred 
mice, it is warranted to investigate further the con-
nection between the dopamine system and wheel 
running in animals.  

 Further elucidation of the role of the dopamine 
system in wheel running comes from investigations of 
the effects of pharmacological interventions (specifi-
cally psychoactive drugs) on wheel running in mice. 

The selectively bred mice mentioned above (see Gar-
land et al. 2006 for a complete description of these 
selectively bred mice) [51] responded differently 
(wheel running amounts) than controls to several 
dopaminergic acting drugs including D1-like and 
D2-like agonists and antagonists, suggesting a dopa-
minergic involvement in regulation of wheel running 
in these selected animals [122, 124]. Specifically, se-
lected animals significantly reduced their wheel run-
ning by decreasing their speed as compared to control 
animals in response to cocaine and GBR 12909 [124]. 
Both of these drugs act by inhibiting DAT which ef-
fectively increases the amount of dopamine in the 
synapse. In another study, Rhodes and colleagues 
(2003) showed that a DAT inhibitor (Ritalin, 15mg/Kg 
and 30mg/Kg) decreased wheel running in selected 
animals, but increased wheel running in control ani-
mals. A non-selective dopamine agonist (apomor-
phine, 0.25mg/Kg and 0.5mg/Kg) decreased wheel 
running more in control animals compared to selected 
animals at higher doses. Additionally, a selective 
D1-like antagonist (SCH-23390, 0.025-0.1mg/Kg) de-
creased wheel running in the control animals more 
than selected animals, while a selective D2-like an-
tagonist (raclopride, 0.5-2.0mg/Kg) had similar effects 
on both selected and control animals [122]. These re-
sults suggest that D1-like receptors and DAT were 
involved in mediating the differences seen in wheel 
running between the selected animals compared to 
controls, but not the D2-like receptors.  

Earlier studies by Schumacher and colleagues 
(1994) using mice classified as high active, or low ac-
tive based on performance in a running wheel test, 
also showed differential locomotor responses to do-
pamine agonists such as apomorphine, bro-
mocriptine, and amphetamine between the high ac-
tive and low active mice. Specifically, bromocriptine 
and amphetamine stimulated physical activity more 
in the low active mice compared to the high active 
mice, suggesting a decreased functioning of the 
mesolimbic dopamine system in the high active mice 
[140]. A study conducted in 2004 by Leng and col-
leagues showed that C57Bl/6 mice, after 
pre-treatment with MPTP (a dopaminergic neuro-
toxin), exhibited significantly reduced wheel running 
after treatment with a tyrosine hydroxylase inhibitor 
which effectively reduced dopamine synthesis, high-
lighting the importance of dopamine itself, in addition 
to individual dopamine receptors, in the regulation of 
locomotion in the form of wheel running in mice [86]. 
Additionally, C57L/J mice (previously shown to be 
high active in the form of wheel running) [91] sig-
nificantly reduce wheel running in response to a 
D1-like agonist, but do not significantly change wheel 
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running behavior in response to a D1-like antagonist, 
dopamine re-uptake inhibitor, or a tyrosine hydroxy-
lase inhibitor [76]. C3H/HeJ mice (previously shown 
to be low active) [91] did not respond to the D1-like 
agonist or antagonist, but did significantly increase 
wheel running in response to a dopamine re-uptake 
inhibitor [76]. Genetic differences in the dopamine 
system between C57L/J mice and C3H/HeJ mice 
could explain the differential response to dopaminer-
gic acting drugs. Specifically, it appears that signaling 
through D1-like receptors is important in mediating 
the high activity observed in C57L/J mice, while do-
pamine half-life and presence in the synapse may be 
more important in mediating wheel running behavior 
in low active C3H/HeJ mice. 

 As is apparent, a preponderance of evidence 
suggests that the dopamine system is involved in the 
regulation of wheel running behavior in mice. From a 
genetic aspect, studies suggest inbred strains of mice, 
as well as mice selectively bred for high amounts of 
wheel running differ not only in the amount of 
physical activity performed, but also in dopaminergic 
anatomy, and thus function, in the mid-brain. Simi-
larly, pharmacological studies provide insight into the 
possible role of the dopamine system in regulation of 
wheel running behavior. However, it is still unclear 
whether the dopamine system is acting in an inde-
pendent fashion to control physical activity or if there 
are possible dependent changes in the dopamine sys-
tem due to physical activity which is in-turn mediat-
ing activity behavior.  

Going Further: Linking the Dopamine Sys-
tem and Regulation of Physical Activity in 
Humans 

 It is known that exercise acts as an independent 
agent to cause changes in various neurotransmitter 
systems, specifically the dopamine system, 
noradrenergic systems, and the serotonergic system 
[101]. For example, exercise increases the amount of 
dopamine released and metabolized in certain areas 
of the brain [176]. In this respect, changes in the do-
pamine system act in a dependent fashion in response 
to exercise (e.g. the exercise itself caused a change in 
dopaminergic signaling). However, this dependent 
change in the dopamine system is usually accompa-
nied by a positive reinforcing response in which the 
dopamine system in-turn acts in an independent 
fashion causing changes in behavior to seek reward-
ing and/or pleasurable responses [183]. Even though 
we can postulate that seeking rewarding and/or 
pleasurable responses in humans leads to increased 
physical activity, evidence is still lacking as to 

whether the dopamine system is actually working in 
an independent role in influencing voluntary physical 
activity (e.g. can dopaminergic differences cause 
changes in motivated physical activity in humans?). It 
has been shown that dopamine neurons in the stria-
tum are primarily responsible for changes in motor 
activity [136], while dopaminergic function in the nu-
cleus accumbens is involved in anticipatory behavior 
(anticipation of a reward or “motivation”) [12, 115, 
134]. From an anatomical perspective, it is important 
to point out that locomotor control areas of the brain 
(striatum, nigro-striatal pathways), and re-
ward/motivational areas of the brain (nucleus ac-
cumbens, ventra tegmental area), are integrated by 
neural connections through regions such as the ven-
tral pallidum. Thus, although collectively the basal 
ganglia neurons control distinct areas of the brain, 
these regions do not act in isolation, and it is certainly 
likely that motivation for exercise involves an inte-
grated control from several of these regions. Dopa-
mine depletion studies in the nucleus accumbens of 
rodents show a decreased motor activity response to 
certain drugs [25], and dopamine depleted animals 
showed lack of motivation for more effortful tasks [24, 
133]. Thus, there is overlap between the motivational 
aspects and motor control aspects of brain neurology 
[130], with the dopamine system mediating both por-
tions. This multifaceted role of the dopamine system 
provides reason to investigate the relationship be-
tween dopaminergic activity in the brain and amount 
of voluntary physically activity that the organism un-
dertakes. 

 The fact that exercise is often used as a treatment 
in depression illustrates the dependent role of the 
dopamine system in response to physical activity. It 
has been shown that exercise alleviates symptoms of 
depression, most likely mediated through changes in 
the central nervous system in the brain [34]. Along 
this same line of thought, the benefits of physical ac-
tivity on the brain seem to be primarily mediated 
through catecholamine systems. Exercise and/or 
physical activity is known to increase neurotransmit-
ter production and metabolism [30, 32, 96], which are 
thought to lead to changes at the molecular and cel-
lular level that improve neuronal plasticity [45, 101], 
cognitive functioning [151], learning [182], and overall 
mood [32], all aspects that protect brain function. Mice 
that perform voluntary physical activity in the form of 
wheel running produce more brain-derived neuro-
trophic factor (BDNF), causing an increase in synap-
togenesis and neurogenesis, neuron survival, and 
increased learning capacity, all leading to possible 
protection from cognitive decline [23]. Similarly, it has 
been shown that moderate physical activity decreases 
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the risk of Parkinson’s Disease [94, 164], as well as 
helps alleviate and slow the progression of symptoms 
of the disease [44, 80].  

 Training studies have also shed light on the de-
pendent changes in the dopamine system in response 
to exercise in the form of training. Rats who undergo 
endurance training show increased D2 receptor 
binding over the lifespan compared to control ani-
mals, suggesting that endurance training provides 
some protection from age related loss of D2 receptor 
functioning [97]. Likewise, rats exposed to treadmill 
running have increased Fos expression in the striatum 
area of the brain mediated through D1 receptors [93]. 
Similarly human exercise training studies show de-
pendent changes in neurotransmitter systems, in-
cluding the dopamine system [10, 14, 21, 63, 77, 113], 
in response to exercise, and these cause and effect 
changes are likely due to dopamine’s involvement in 
control of sympathetic nervous activity [99]. In these 
particular studies dopamine was treated as the de-
pendent variable in response to exercise, or training.  

However, some research suggests that not only 
is dopaminergic functioning altered in response to 
exercise, but perhaps the dopaminergic system also 
acts in an independent fashion to regulate physical 
activity levels. For example, a study in humans using 
PET imaging showed no changes in dopamine D2 
receptor availability in the caudate putamen after 
treadmill running (submax); however, the subjects 
used in this study were already persons with a history 
of regular exercise [175]. It is plausible to assume that 
one reason no difference was seen from baseline, is 
that dopamine release in the striatum may not have 
been the true dependent variable in this methodology. 
It would be interesting to compare PET imaging of 
regular exercisers to non-exercisers in the case that 
dopamine signaling may work in an independent 
manner in relation to physical activity, and even 
training in some circumstances. Further support for 
an independent role of dopamine and physical activ-
ity comes from genetic studies linking single nucleo-
tide polymorphisms in the DRD4 [59], and DRD2 
genes [149], with physical activity levels in humans. 
Similarly, aging studies suggest an independent 
mechanism of action for the dopamine system and 
regulation of physical activity levels. It is known that 
a decline in physical activity over the lifespan is most 
likely due in part to a decline in the functioning of the 
dopaminergic system [128]. However, as mentioned, 
studies show that physical activity in the form of ex-
ercise can slow the rate of decline in functioning of the 
dopamine system, and increase quality of life. Thus, 
the benefits of physical activity on central nervous 
system functioning suggests that the dopamine sys-

tem can have both a dependent and independent 
mechanism of action in regulation of physical activity 
levels. 

 It is clear that the dopaminergic system is af-
fected by physical activity (dopaminergic function = 
dependent variable), and it is plausible that the 
amount of voluntary physical activity is regulated at 
least in part by the dopamine system (dopaminergic 
function = independent variable). The mechanisms 
behind this correlation are yet to be fully understood. 

Dopamine, Reward, and possible implica-
tions for Physical Activity Regulation 

 A full neurobiological discussion of the role of 
the dopamine system in reinforcement and reward is 
outside the scope of this review; however, a brief 
discussion of the reward pathways is necessary to 
relate the proposed relationship of the dopamine 
system to regulation of physical activity. In the past 
several decades it has become increasingly clear from 
studies in drug addiction that dopaminergic signaling 
mediates behavioral responses to rewarding stimuli 
[139]. Rewards, in and of themselves, provide three 
basic functions including eliciting a behavior, pro-
viding reinforcement (or positive feedback so as to 
increase the frequency or intensity of the behavior), 
and provision of some type of pleasurable feeling or 
response [139]. With the context of these three basic 
functions, it is clear that drugs of abuse are “addic-
tive” because they provide all three functions of a 
“reward”. It is generally accepted that the dopamine 
system is implicated in reward and reinforcing 
mechanisms as evidenced by the results of psy-
chostimulant administration [28, 183]. Specifically, the 
administration of psychostimulant drugs increases 
dopamine release and signaling in the mesolimbic 
areas of the brain, while withdrawal of these drugs 
causes a decrease in dopamine signaling in these areas 
and this response appears to be mediated by both D1 
and D2 receptors [49, 78]. Studies suggest that D2 
receptors are responsible for mediating the 
self-reinforcing effect of drugs, while the D1 receptors 
act in a permissive fashion to facilitate the response. 
Cocaine self-administration studies suggest the D2 
receptors are responsible for mediating further moti-
vation to seek cocaine, while the D1 receptors may 
mediate a reduced drive to seek further cocaine rein-
forcement [144].  

 More recent evidence has led researchers to 
suggest that the dopamine system is specifically in-
volved in the motivational aspect of reward for natu-
ral stimuli such as food. Dopamine depletion and 
dopamine antagonist studies in the nucleus accum-
bens of animals show that appetite for food is not re-
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duced under these conditions; however, the motiva-
tion to engage in effortful tasks for food is signifi-
cantly reduced [132]. Thus, the dopamine system ap-
pears to regulate certain aspects of the “wanting” in-
stead of the “liking” of natural rewards such as food 
[11]. Drugs of abuse are typically thought of as artifi-
cial rewards, while actions such as sexual behavior, 
food, and/or exercise can be termed “natural re-
wards.” Traditionally, it has been assumed that drugs 
of abuse initiate the natural reward system in the 
brain, mainly the dopamine system, and thus act in a 
similar fashion as natural rewards. This theory, which 
is based on the notion that the dopaminergic system 
mediates the reinforcing properties of natural re-
warding stimuli, has been known as the “General 
Anhedonia Model” [135]. As stated, this theory may 
not be the entire picture as it appears that the dopa-
mine system may mediate the motivation for natural 
rewards, and not necessarily the reinforcement 
mechanism at least in the case of food rewards. Thus, 
the dopamine system and its role in mediating reward 
is complex, and the exact mechanisms through which 
the dopamine system mediates reward signaling to 
natural rewards such as physical activity is not 
known. However, it is increasingly clear from genetic 
studies involving locomotion and wheel running, as 
well as evidence from reward signaling in response to 
naturally rewarding behavior that the dopamine sys-
tem plays a role in the regulation of physical activity 
in regard to mediating the natural rewarding proper-
ties of this behavior. The mechanism for dopaminer-
gic regulation of a complex behavior such as motiva-
tion for physical activity is likely to be multifaceted, 
but as this review highlights, many potential avenues 
of study including but not limited to dopaminergic 
interaction with downstream signaling molecules, 
other neurotransmitters and neuropeptides, and the 
relative role of genetics vs. environment in this regu-
lation could shed light on this important question.  

Proposed Model for Dopaminergic Regula-
tion of Physical Activity 

 As already outlined in this review, it is well 
known that exercise induces changes in neurotrans-
mitter systems as well as endorphin release and sig-
naling. These changes typically depend on intensity 
and duration of exercise. To date, most studies inves-
tigating changes in neurotransmitters due to exercise 
treat the neurotransmitter changes as the dependent 
variable. Studies involving motor movement and/or 
locomotion, wheel running, and addiction however, 
provide evidence for a regulatory role of the dopa-
minergic system on voluntary physical activity. Fur-
thermore, it is warranted to propose a dual role for the 

dopamine system in the genetic and biological regu-
lation of physical activity. First, it appears that 
physical activity in the form of exercise itself and/or 
training produces beneficial changes in the dopamine 
system including increased dopamine signaling as 
well as increased BDNF levels in the brain. In this 
role, dopamine signaling is acting in a dependent 
fashion to mediate central changes in response to 
physical activity. Second, it is also apparent from the 
growing amount of literature on the role of the do-
pamine system in motivation for natural rewards, that 
the dopamine system creates a positively reinforcing 
condition in which the dopamine system acts in an 
independent fashion controlling the “wanting” 
and/or motivation for natural rewarding stimuli such 
as physical activity. Thus, it is proposed that dopa-
minergic signaling acts in both a dependent and in-
dependent fashion in the regulation of physical activ-
ity (proposed schematic outlined in Figure 3). 

 Going back to the equation mentioned in the 
first part of this review, any phenotype is affected by 
both genetic and environmental components, as well 
as biological interactions:  

Phenotype = environment + genetics/biological factor 
+ environment/genetic interaction). 

Genetic studies involving dopamine and loco-
motion outlined in this review provide a solid basis 
for genetic differences in the dopamine system medi-
ating behavioral differences in regard to physical ac-
tivity in animals. A metanalysis of genetic alterations 
which produce increased “locomotor activity” was 
elegantly described by Viggiano [172] in which he 
describes the number of genes involved in regulating 
“hyperactivity” in animals is likely to be numerous, 
and include those involved in regulation of chate-
cholamines such as dopamine. Similarly, Dishman 
[31] reviewed and described a multifaceted approach 
to understanding the gene/environment interactions 
that must be understood in order to research the role 
of inactivity in the development of obesity. Here too, 
it was suggested that candidate genes be searched for 
in the area of “motivational systems” of energy ex-
penditure and energy intake [31]. Thus, the current 
review narrows the focus of these previous reviews to 
suggest genes and gene/environment interactions 
within the dopamine system are indeed the major 
contributor to the regulation of voluntary physical 
activity levels in animals and humans due to its role in 
locomotor behavior as well as motivation. Not cov-
ered in this review, but still very important, are the 
biological interactions that may also be playing a role 
in dopaminergic regulation of physical activity. The 
dopamine system does not act in isolation, and is af-
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fected by interaction with other neurotransmitter 
systems such as serotonin. Other biological, epige-
netic, and/or environmental factors such as hormonal 
influences may also play an important role in this 
regulation. A proposed model for this regulation is 
outlined in Figure 3. The dopamine system appears to 
be a central component determining the phenotype of 
voluntary physical activity in that dopaminergic sig-
naling is determined in part by genetics, is also in-
fluenced by the environment, and can interact with 

the environment and other biological components. 
Thus, it is proposed that the dopamine system acts in 
a dual role – both dependently and independently to 
regulate levels of physical activity performed by a 
given animal. As a result, it is important to take a 
multifaceted yet systematic and narrowed approach 
in future research to seek out the underlying mecha-
nisms of this genetic/biological regulation of physical 
activity in order to improve human health and pre-
vent inactivity related diseases.  

 

 

Figure 3: Proposed Schematic of the role of dopamine system in the central regulation of physical activity. It is proposed 
that the dopamine system can act in both an independent and dependent manner in regard to regulation of physical activity. 
Both genetic factors, and biological factors that interact with the genetic machinery, are important in second messenger 
signaling, and downstream gene expression changes to dopaminergic neuronal signaling. Likewise, it is also possible that 
physical activity (i.e. intensity and duration of exercise) can cause changes in neuronal signaling as well, possibly mediating a 
reinforcing behavioral mechanism. Proposed differential effects on physical activity of D1-like vs. D2-like receptor expres-
sion, DAT function, and Tyrosine Hydroxylase function are included. Dashed lines indicate unknown signaling pathways or 
environmental interactions. 
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