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Abstract
The variational inequality problem (VIP) is considered here. We present a general algorithmic
scheme which employs projections onto hyperplanes that separate balls from the feasible set of the
VIP instead of projections onto the feasible set itself. Our algorithmic scheme includes the classical
projection method and Fukushima’s subgradient projection method as special cases.

1 Introduction
We consider the variational inequality problem (VIP) in the Euclidean space Rn. Given a
nonempty closed convex set X ⊆ Rn and a function f : Rn → Rn, the VIP is to find a point x *
such that

(1)

This problem was well-studied in the last decades, see, e.g., the treatise of Facchinei and Pang
[7] and the review papers by Noor [12] and by Xiu and Zhang [13]. In particular, algorithmic
approaches were investigated, using projections of different types, in order to generate a
sequence of iterates that converges to a solution. See, e.g., Yang [15], Yamada and Ogura
[14], Auslender and Teboulle [3] or Censor, Iusem and Zenios [5], to name but (very) few out
of the existing vast literature. The importance of VIPs stems from the fact that some
fundamental problems can be cast in this form, see, e.g., [7, Volume I, Subsection 1.4].

Some algorithms for solving the VIP fit into the framework of the following general iterative
scheme.

Algorithm 1

Initialization—Let  be a user-chosen positive real sequence, select an arbitrary
starting point x0 ∈ Rn and set the iteration index k = 0.

Iterative step—Given the current iterate xk, calculate the next iterate

where G is a symmetric positive definite matrix, PX is the projection operator onto X with
respect to the G-norm ∥z∥G = 〈z, Gz〉1/2.
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See, Auslender [2] and consult [7, Volume 2, Subsection 12.1] for more details. Such methods
are particularly useful when the set X is simple enough to project on. However, in general, one
has to solve at each iterative step the minimization problem

The efficiency of such a projection method may be seriously affected by the need to solve such
optimization problems at each iterative step.

An orthogonal projection of a point z onto a set X can be viewed as an orthogonal projection
of z onto the hyperplane H which separates z from X, and supports X at the closest point to z
in X. But, of course, at the time of performing such an orthogonal projection, neither the closest
point to z in X, nor the separating and supporting hyperplane H are available. In view of the
simplicity of an orthogonal projection onto a hyperplane, it is natural to ask whether one could
use other separating supporting hyperplanes instead of that particular hyperplane H through
the closest point to z. Aside from theoretical interest, this may lead to algorithms useful in
practice, provided that the computational effort of finding such other hyperplanes favorably
competes with the work involved in performing orthogonal projections directly onto the given
sets.

To circumvent the difficulties associated with the orthogonal projections onto the feasible set
of (1) Fukushima [10] developed a method that utilizes outer approximations of X. His method
replaces the orthogonal projection onto the set X by a projection onto a half-space containing
X, which is easier to calculate. Letting X ≔ {x ∈ Rn | g(x) ≤ 0} where g : Rn → R is convex,
Fukushima’s algorithm is as follows.

Algorithm 2

Initialization—Let  be a user-chosen positive real sequence, select an arbitrary
starting point x 0 ∈ Rn and set the iteration index k = 0.

Iterative step—Given the current iterate xk,

1. choose a subgradient ξk ∈ ∂g(xk) of g at xk and let

2. Calculate the “shifted point”

and then the next iterate xk+1 is the projection of zk onto the half-space Tk with respect
to the G-norm, namely,

3. If xk+1 = xk then stop, otherwise, set k = k + 1 and return to (1).

Since the bounding hyperplanes of the subgradiental half-spaces Tk, used by Fukushima,
separate the current point z from the set X, the question again arises whether or not any other
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separating hyperplanes can be used in the algorithm while retaining the overall convergence
to the solution.

This question presents a theoretical challenge and we are able to offer here answers that hold
under some not too restrictive conditions. Under these conditions, we are able to show that, as
a matter of fact, the hyperplanes need to separate not just the point z from the feasible set of
(1), but rather separate a “small” ball around z from X. This is inspired by our earlier work
[1] on the convex feasibility problem. Whether or not our current restrictions can be relaxed
or removed still remains to be seen.

Our goal is to present the structural algorithmic discovery that both Algorithm 1 and Algorithm
2 are realizations of a more general algorithmic principle. Once we achieve this we are less
concerned at the moment about the minimal strength of the conditions under which our results
hold. This and generalizations of the new algorithmic structure to algorithms which use two
projections per iteration for the VIP are currently under investigation. Our work is admittedly
a theoretical development and no numerical advantages are claimed at this point. The large
“degree of freedom” of choosing the super-sets, onto which the projections of the algorithm
are performed, from a wide family of half-spaces may include specific algorithms that have
not yet been explored. In Section 2 we present the algorithmic scheme and in Section 3 we
give our convergence analysis. Section 4 discusses special cases.

2 The Algorithmic Scheme
2.1 Assumptions

Let X ≔ {x ∈ Rn | g(x) ≤ 0} where g : Rn → R is convex. Let G be a symmetric positive definite
matrix and denote the distance from a point x ∈ Rn to the set X with respect to the norm ∥ ·
∥G by

For any ε > 0, we denote

Following [10], we assume that the following conditions are satisfied.

Condition 3—f is continuous on X ε for some ε > 0.

Condition 4—f is strongly monotone with constant α on X ε for some ε > 0, i.e.,

(2)

Condition 5—For some y ∈ X, there exist a β > 0 and a bounded set D ⊂ Rn such that
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It is well-known that under Conditions 3 and 4, the problem (1) has a unique solution, see, e.g.,
Kinderlehrer and Stampacchia [11, Corollary 4.3, p. 14].

2.2 The algorithmic scheme
In order to present the algorithmic scheme a few definitions are needed.

Definition 6—Let G be a symmetric positive definite matrix. Given a 0 ≤ δ ≤ 1, a closed
convex set X ⊆ Rn and a point x ∈ Rn,

i. B(x,X,δ) ≔ B(x, δ dist(x, X)) = {z ∈ Rn | ∥ x − z∥G ≤ δ dist(x, X)} is the G-ball centered
at x with radius δ dist(x, X),

ii. for any x ∉ int X, denote by ℋ (x,X,δ) the set of all hyperplanes which separate B
(x,X,δ) from X,

iii. for x,y ∈ Rn, define the mapping

where PH− is the projection operator, with respect to the G-norm, onto the half-space
whose bounding hyperplane is H and such that X ⊆ H−.

The mapping  defined above maps a quadruple (x, y, X, δ) onto a set. A selection from
X,δ(x,y) means that if x ∉ int X a specific hyperplane H ∈ ℋ(x,X,δ) is chosen and PH−(y) is

selected. If x ∈ int X then x is selected.

Let  be a sequence of positive numbers satisfying

(3)

Our algorithmic scheme for the VIP is as follows.

Algorithm 7

Initialization: Let  be a user-chosen positive real sequence that fulfills (3). Choose a
constant δ such that 0 < δ ≤ 1, select an arbitrary starting point x 0 ∈ Rn and set k = 0.

Iterative step: Given the current iterate xk,

1. calculate the “shifted point”

(4)

2. Calculate the next iterate by

(5)

3. If x k+1 = xk, stop, otherwise, set k = k + 1 and return to (1).
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In what follows, we shall denote by Pk the projection operator onto  where Hk is the selected
hyperplane Hk ∈ ℋ (xk, X, δ) Thus, in (5) we have

(6)

The iterative step of this algorithmic scheme is illustrated in Figure 1.

Remark 8—Observe that there is no need to calculate in practice the radius δ dist(xk, X) of
the ball B(xk, X, δ). If there would have been a need to calculate this then it would, obviously,
amount to preforming a projection of xk onto X, which is the very thing that we are trying to
circumvent. All that is needed, when deriving from the algorithmic scheme a specific algorithm,
is to show that the specific algorithm indeed “chooses” the hyperplanes in concert with the
requirement of separating such B(xk, X, δ) balls from the feasible set of (1). We demonstrate
this in Section 4 below.

3 Convergence
First we show that if Algorithm 7 stops then it has reached the solution of the VIP.

Theorem 9
If xk+1 = xk occurs for some k ≥ 0 in Algorithm 7, then xk is the solution of problem (1).

Proof—First assume that f(xk) ≠ 0, then xk+1 = xk is possible only if the radius of B(xk,X, δ) is
zero which implies that xk ∈ X since δ > 0. By definition, Pk(y¯) is the solution of the problem
min , where  is the half-space determined by Hk and X ⊆ . Applying

[4, Theorem 2.4.2] with the Bregman function , whose zone is Rn, for the set
, we get

where here ∇h(ȳ) = Gȳ, ∇h(Pk(ȳ)) = GPk(ȳ). So, we have

(7)

Taking w = x̄, ȳ = zk in (7) we get

(8)

which, by (4), implies that for all 
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Since we assume that x k+1 = xk

so we get

and then , and x k+1 = xk lead to

On the other hand, if f(xk) = 0, then (8) holds with zk = xk, i.e.,

or, by (6) and x k+1 = xk,

which is true for all x̄ ∈ X since  and the proof is complete.

In the remainder of this section we suppose that Algorithm 7 generates an infinite sequence
 and establish the next lemmas that will be useful in proving the convergence of our

algorithmic scheme. The next lemma was proved in [8] for G = I and under the assumption
that E is compact.

Lemma 10
Let A, E and F be nonempty closed convex sets in Rn, such that A ⊂ E ⊂ F. For any point x
∈ F, let y be the point in E closest to x. Then we have

(9)

Furthermore,

(10)
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Proof—Since y is the optimal solution of the problem min , it must satisfy
the inequality (see, e.g., [4, Theorem 2.4.2])

Thus, for all e ∈ E,

and, since A ⊂ E, we get

which proves (9). In order to prove (10), let z̃ ∈ A be the closest point to x ∈ F. Then, using
(9), we obtain

which completes the proof.

Lemma 11
Let ȳ ∈ Rn be an arbitrary point. Then, in Algorithm 7, for all k ≥ 0, we have the inequalities

Proof—This follows from Lemma 10 with A = X, E =  and F = Rn. The next lemma is
quoted from [10, Lemma 2].

Lemma 12

Let  and  be sequences of nonnegative numbers, and let μ ∈ [0,1) be a constant.
If the inequalities

hold and if , then .

Lemma 13

If Condition 5 is satisfied, then any sequence , generated by Algorithm 7, is bounded.

Proof—The proof is structured along the lines of [10, Lemma 3]. First assume that f(xk) ≠ 0.
Let y ∈ X be a point for which Condition 5 holds and let M > 0 be such that ∥x − y∥G < M, for
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all x ∈ D, where D is a bounded set given in Condition 5. Lemma 11 implies that, for each
zk ∈ Rn,

(11)

Therefore,

(12)

Thus, if ∥xk − y∥G ≥ M, then we have, by (12) and Condition 5,

(13)

From Demmel [6, (5.2), page 199] we have

where υ is the largest eigenvalue of G −1, so that

(14)

where ν is the smallest eigenvalue of G. By (13) and (14)

Since limk→∞ ρk = 0, the last inequality implies

(15)

provided that k is sufficiently large. On the other hand, since y ∈ X,

Using the triangle inequality with G-norms and (14) we obtain
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so that

(16)

for all sufficiently large k, where ε > 0 is a small constant. Inequalities (15) and (16) imply that
 is bounded. If f(xk) = 0 we have by (6) and (11)

which implies (16) and the rest follows.

Lemma 14
Let X be a nonempty closed convex set X ⊆ Rn and let 0 < δ ≤ 1. Let W ⊂ Rn be a nonempty
convex compact set, let W\X ≔ {x ∈ W | x ∉ X}. Denote by σ(x) a selection from X,δ(x,x),
then there exists a constant μ ∈ [0,1) such that

Proof—Since σ(x) is, by definition, the closest point to x in the convex set H −, and X ⊆ H−,
we get

(17)

This holds because

(18)

and, by Lemma 10, we get

(19)

(18) and (19) imply (17). On the other hand, since σ(x) is a selection from X,δ(x,x) and x ∉
X, we have that σ(x) = PH−(x) where H ∈ ℋ(x,X,δ), so

(20)

Censor and Gibali Page 9

J Nonlinear Convex Anal. Author manuscript; available in PMC 2010 March 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(if x ∈ X then both sides of (20) are zero.) Since δ is a positive constant such that 0 < δ ≤ 1,
we have

so, by (17), for all x ∈ W\X

Since also 0 ≤ 1 − δ2 < 1, taking  ∈ [0,1), we get

which completes the proof.

Lemma 15

For any sequence , generated by Algorithm 7, we have limk→∞ dist(xk,X) = 0.

Proof—Assume that f(xk) ≠ 0, by (10) of Lemma 10 we have

and, by Lemma 14, there exists a constant μ ∈ [0,1) such that

(21)

On the other hand, the nonexpansiveness of the projection operator and reuse of (14) implies

Therefore,

(22)

Let sk = PX (Pk (xk)), namely,
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Then, by the triangle inequality, we get

Now, since sk ∈ X, we have

From the last three inequalities we get

and, using (21) and (22), we have

So the result of this case is obtained by Lemma 12 and (3). In case f(xk) = 0, (11) becomes

and, by Lemma 12 with  and bk = 0, for all k ≥ 0, the desired result is
obtained.

Lemma 16

For any iterative sequence  , generated by Algorithm 7, .

Proof—Assume first that f(xk) ≠ 0, using the triangle inequality with G-norms we have

(23)

where the last inequality follows from (22) and the equality

Since , we have
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thus,

By Lemma 15 and (3) we now obtain the required result. In case f(xk) = 0, (23) becomes

where the last inequality follows from . By Lemma 15 and taking limits as k → ∞, we
get the required result.

Theorem 17

Consider the VIP(X, f) (1) and assume that Conditions 3-5 hold. Then any sequence ,
generated by Algorithm 7, converges to the unique solution x* of problem (1).

Proof—By Lemma 15, xk ∈ Xε, for all sufficiently large k, where Xε is the set given in
Conditions 3 and 4. (We assume without loss of generality that the value of ε is common in
both conditions.) From Condition 4 we have

and

So, we obtain

(24)

Let λ be an arbitrary positive number. Since x * satisfies (1), it follows from Lemmas 13 and
15 that the following inequalities hold, for all sufficiently large k,

Censor and Gibali Page 12

J Nonlinear Convex Anal. Author manuscript; available in PMC 2010 March 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(25)

Using the Cauchy-Schwarz inequality

By Lemma 13,  is bounded, and with Condition 3 we get that  is also bounded.
Lemma 16 guarantees

(26)

for all sufficiently large k. Applying (25) and (26) to (24), we obtain

(27)

Let us divide the indices of  as follows

Equation (27) implies, due to the arbitrariness of λ, that for f(xk) = 0

Now consider the indices in Γ̄ and suppose that there exists a ζ > 0 such that

(28)

By Lemma 11

So, we get
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Since λ in (27) is arbitrary, we choose λ = αζ2/4,

provided that k are sufficiently large. So,

By Lemma 13,  is bounded, thus Condition 3 implies that  is also bounded. So
there exists a τ > 0 such that

so that,

provided that k are sufficiently large. Then there exists an integer k̄ ∈ Γ̄ such that

(29)

By adding the inequalities (29) from k = k̄ to k̄ + ℓ, over indices k ∈ Γ̄, we have
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for any ℓ > 0. However, this is impossible due to (3), so there exists no ζ > 0 such that (28) is
satisfied. Thus, {xk}k∈Γ ̄ contains a subsequence {xk}k∈Γ ̂, Γ ̂ ⊆ Γ ̄ converging to x *, and so there
is a subsequence {xk}k∈Γ∪Γ ̂ of the whole sequence  converging to x *. In order to prove
that the entire sequence  is convergent to x *, suppose to the contrary that there exists a
subsequence of  converging to x̂ ∈ X, x̂ ≠ x*. Since, by Lemma 16,

, there must exist a ζ > 0 and an arbitrarily large integer j ∈ Γ ̄ such that

(30)

However, if j is sufficiently large, we may apply an argument similar to that used to derive
(29), and obtain the inequality

which contradicts (30). Therefore, the sequence  must converge to the solution x *.

4 Special Cases of the Algorithmic Scheme
Our general algorithmic scheme (Algorithm 7) includes as a special case the classical projection
method of Algorithm 1. This can be seen by using δ = 1 in Algorithm 7, which reduces the
family of potential half-spaces to a singleton which includes only the half-space that supports
X at the projection of zk (of (4)) onto X.

Another important special case is obtained from Algorithm 7 if we choose the convex function
g(x) ≔ dist(x, X). This is no restriction since any convex set X can be presented in this way
and Fukushima’s method of Algorithm 2 is obtained as a special case of our algorithmic
scheme.

4.1 An interior anchor point algorithm
To illustrate that additional algorithms can be derived from Algorithm 7 we present below an
algorithm that uses other hyperplanes to project on. This particular realization requires that
(the interior) int X is nonempty. The idea of using an interior point as an anchor to generate a
separating hyperplane appeared previously in [1] for the convex feasibility problem, and in
[9] for an outer approximation method.

Algorithm 18
Initialization: Let y ∈ int X be fixed and given. Select an arbitrary starting point x 0 ∈ Rn and
set k = 0.

Iterative step: Given the current iterate xk,

1. if xk ∈ X set xk = xk+1 and stop.

2. Otherwise, calculate the “shifted point”

(31)

and construct the line Lk through the points xk and y.
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3. Denote by wk the point closet to xk in the set Lk ∩ X.

4. Construct a hyperplane Hk separating xk from X and supporting X at wk.

5.
Compute x k+1 = , where  is the half-space whose bounding hyperplane is
Hk and X ⊆ , set k = k + 1 and return to (1).

The iterative step of this algorithm is illustrated in Figure 2. We show that Algorithm 18
generates sequences that converge to a solution of problem (1) by showing that it is a special
case of Algorithm 7.

Theorem 19—Consider the VIP(X, f) (1) and assume that Conditions 3–5 hold and that int
X ≠ ∅. Then any sequence , generated by Algorithm 18, converges to the solution x* of
problem (1).

Proof: First assume that G = I, the unit matrix. Algorithm 18 is obviously a special case of
Algorithm 7 where we choose at each step a separating hyperplane which also supports X at
the point wk. The stopping criterion is valid by Theorem 9. In order to invoke Theorem 17 we
have to show that for such an algorithm δ > 0 always holds. By Lemma 13,  is bounded
and, since xk ∉ X, we have

(32)

and we also have

Defining d ≔ dist(y, bd X), since y ∈ int X,

From the boundedness of  we know that there exists a positive N such that ∥y − wk∥2 ≤
N, for all k ≥ 0. Combining these inequalities with (32) implies that

which shows that the algorithm is of the same type of Algorithm 7 with δ ≔ d/N > 0.

To show convergence for a general symmetric positive definite matrix G we recall thatall norms
are equivalent in Rn so that there exists constants M 1 and M 2 such that, for all x ∈ Rn,

Actually,
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where ρ(G) is the largest eigenvalue of G (see, e.g., [6, Equation (5.2), page 199]). So, we get

thus,

where d̂ ≔ dist(y, bd X). Also,

So, by (32) and the last three inequalities, we get

(33)

where M ̂ ≔ M 1/(M 2(ρ(G))2) and this completes the proof.
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Figure 1.
Illustration of the algorithmic scheme in Algorithm 7.
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Figure 2.
Illustration of Algorithm 18: Interior anchor point
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