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During replication, RNA viruses rapidly generate diverse mutant
progeny which differ in their ability to kill host cells. We report
that the progeny of a single RNA viral genome diversified during
hundreds of passages in cell culture and self-organized into two
genetically distinct subpopulations that exhibited the competition-
colonization dynamics previously recognized in many classical
ecological systems. Viral colonizers alone were more efficient in
killing cells than competitors in culture. In cells coinfected with
both competitors and colonizers, viral interference resulted in
reduced cell killing, and competitors replaced colonizers. Mathe-
matical modeling of this coinfection dynamics predicted selection
to be density dependent, which was confirmed experimentally.
Thus, as is known for other ecological systems, biodiversity and
even cell killing of virus populations can be shaped by a tradeoff
between competition and colonization. Our results suggest a
model for the evolution of virulence in viruses based on internal
interactions within mutant spectra of viral quasispecies.
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RNA viruses replicate as complex mutant distributions termed
viral quasispecies (1–4). Viral clones diversify upon replication

because of mutation rates in the range of 10−3 to 10−5 substitutions
per nucleotide copied, due to absence (or low efficiency) of proof-
reading-repair functions inviralRNAdependentRNApolymerases
(5–7).Little is knownof theevolutionof virulencewhen a viral clone
diversifies toproduceabroadmutantdistribution.Largepopulation
passages result in fitness gain (8, 9). However, fitness and virulence
are not necessarily correlated traits, as shown with clones of the
important picornaviral pathogen foot-and-mouth disease virus
(FMDV) using cell killing as a marker for virulence (10), or using
Tobacco Etch virus and reduction in seed production in planta as a
marker for virulence (11).
FMDV has been used as a model system to study quasispecies

dynamics (12). A biological clone of FMDV of serotype C
termed C-S8c1 was extensively passaged in BHK-21, resulting in
genetic diversification and fitness increase (13, 14). At passage
143, a monoclonal antibody (MAb) SD6-resistant mutant termed
MARLS was isolated (14). This mutant differed in 32 mutations
from its parental C-S8c1 virus and displayed high fitness and a
103-fold greater ability to kill cells than C-S8c1 (10, 15). In the
present study we have examined the mutant composition of the
population that resulted after 240 serial passages of FMDV C-
S8c1 (Fig. 1). The clonal population diversified into two geno-
typically and phenotypically distinct classes of FMDV genomes
that correspond to competitors and colonizers, as previously
recognized in ecological systems (16, 17). We provide evidence
that cell killing is the result of a compromise between the two
phenotypes that coexist in the populations and develop a
mathematical model for the competition-colonization dynamics.

Results
High Fitness FMDV Clones Were Suppressed by the Dominant
Population. A biological clone of FMDV was passaged in BHK-21
cells at amultiplicity of infection (MOI)of 1–20plaque-forming-units
per cell (PFU/cell) for a total of 240 passages (see SI Appendix).The

populations at passages 200, 219, 225 and 240 were subjected to
three low-MOI passages (0.006–0.02 PFU/cell) to obtain the corre-
sponding populations termed 200p3d, 219p3d, 225p3d, and 240p3d,
respectively, as detailed in Materials and Methods. The four pop-
ulations and their 3d derivatives were analyzed phylogenetically
(Fig. 1A). The results show that the sequenceof the initially dominant
populations is similar to the consensus sequence of passage 200
(p200), although the sequence of the p3d derivatives is similar to
MARLS, aMAb-escapemutant isolated from the same viral lineage
(14), andpreviously characterizedas ahigh-fitness andhigh-virulence
variant (10, 15). To ascertain that the viral population included in-
dividual infectious particles that were either p200 orMARLS, a total
of 16 biological clones derived from the populations at passages 219,
225, and 240 were isolated and their genomic RNA analyzed by nu-
cleotide sequencing. The phylogenetic analysis showed that indeed
two subclasses of genomeswere present and that they segregated into
p200 and MARLS sequences (Fig. 1B). These phylogenetic com-
parisons suggest that MARLS clones might be suppressed by p200
variants replicating in the same population and that the MARLS
variants could become dominant after the three low-MOI passages
(Fig. 1). Therefore, limiting coinfection of cells by MARLS and
p200 genomes permitted the former to attain dominance in the
viral population.

Competitor and Colonizer FMDV Subpopulations. To further analyze
the interaction between p200 and MARLS, the two viral sub-
populations were characterized phenotypically. The MARLS
population and its derived clones killed BHK-21 cells faster than
the p200 population and its derived clones in a cell killing assay
that compared the time needed to kill 104 BHK-21 cells as a
function of the initial number of PFU (10) (Fig. 2 A and B). To
further evaluate this difference, viruses were tested in cell killing-
interference assays (see Materials and Methods). Cells coinfected
by fast-killing MARLS and slow-killing p200 viruses died at a
similar rate as cells infected only by slow p200 viruses, either
using whole populations or individual clones (Fig. 2 C–D). A
possible dose effect was excluded because no alteration of the
cell killing time was observed when cells were infected by twice
the amount of fast viruses. The delay of cell killing could be
attributed specifically to slow (p200) viruses because cells in-
fected by two fast (MARLS) viruses experienced no delay (Fig.
2E). A tradeoff between higher cell killing and lower progeny
production was also rejected because MARLS clone 240c2
production was statistically indistinguishable from p200 clones
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240c1 and 240c13 (KS-test, P > 0.05, SI Appendix). MARLS
clone 240c12 production was slightly higher than that of both
p200 clones (KS-test, P < 0.05). These results demonstrate that
slow p200 viruses directly interfere with the replication of fast

MARLS viruses when coinfecting the same cell. We refer to
p200 viruses as competitors because of their intracellular com-
petitive advantage and to MARLS viruses as colonizers because
of their higher cell killing capacity, which entails a faster dis-
persal upon completion of the infectious cycle.

Mathematical Model of Viral Coinfection Dynamics. To pinpoint the
coevolutionary dynamics of competitors and colonizers, and to
generate testable hypotheses, we developed a mathematical
model of virus dynamics (18, 19) in cell culture that accounts for
intracellular interactions. Two different viruses, whose abun-
dances are denoted by v1 and v2, compete for an uninfected cell
pool of size x and give rise to singly infected and coinfected cell
populations of size y1, y2, and y12, respectively. The dynamics are
given by the ordinary differential equations (ODE)

_x ¼ − βxv1 − βxv2
_y1 ¼ βxv1 − βy1v2 − a1y1
_y12 ¼ βy1v2 þ βy2v1 − a1y12
_y2 ¼ βxv2 − βy2v1 − a2y2
_v1 ¼ k1y1 þ ck1y12 − uv1
_v2 ¼ k2y2 þ ð1− cÞ k1y12 − uv2
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Fig. 1. Genetic characterization of p200 and MARLS viruses. (A) Maximum
likelihood reconstruction of consensus nucleotide sequences (nucleotides
1033 through 1154 and 1570 through 3853, see Materials and Methods) of
populations before and after three sequential low-MOI infections (indicated
by “p3d”). (B) Maximum likelihood reconstruction [nucleotides 1033 through
3853; residuenumbering is as described in (10)] of biological clones. Clones are
identified by passage number and clone number (e.g., 225c6). Consensus
reference sequences at passages 0, 200 (p0, p200), and of MARLS virus are
included. Confidence values higher than 80% are indicated.
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Fig. 2. Cell killing and cell killing-interference assays. (A and B)
Cell killing capacity of viral populations and clones, measured as
the time needed to kill 104 BHK-21 cells as a function of the in-
itial number of PFU. (A)MARLS clones: 240c2 (○) and 240c12 (Δ);
p200 clones: 240c1 (▲) and 240c13 (×). (B) Population p200 (▪),
populationp200p5d,MARLSpopulation (□). For eachpoint, the
average and standard deviation from three independent de-
terminations are indicated. (C–E) Cell killing-interferenceassays.
Number of infectious centers required by p200, MARLS, or the
mixtureofbothviruses tokill 104BHK-21 cells in 9.5h; 2×, double
dose of MARLS clone or population. Each bar represents the
mean and standard deviation from triplicate assays. (C) p200
clone and MARLS clone correspond to 240c1 and 240c12, re-
spectively; *The mean of the “Clone mix” is higher than the
mean of the “MARLS clone” with marginal significance (P <
0.08, T-Student). (D) population mix indicates a mixture of
MARLS population and p200 population. *The mean of the
“population mix” is significantly higher (P < 0.05, T-Student)
than themean of theMARLS population. (E) C-S8p260p3d is the
virus recovered by passage of C-S8c1 after 260 transfers in cell
culture and 3 passages at low-MOI; this virus has a virulence
similar to MARLS (10).
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This ODE system describes uninfected cells being infected with
efficiency β, infected cells dying and releasing viral offspring at
rate a, and free virus being produced at rate k and inactivated at
rate u. Because cell monolayers are confluent, no additional
parameters describing any external supply of cells or cell division
are required. The model parameters a and k are indexed by virus
type, and the intracellular competition parameter c denotes the
probability that viral offspring of a coinfected cell is of type 1.
Virus 1 is the competitor and its parameters have been measured
from p200 viruses, whereas virus 2 is the colonizer, characterized
by parameters obtained from MARLS viruses (Table 1). Specif-
ically, competitor viruses are more likely to be produced by co-
infected cells (c > 1/2) as determined by high-MOI infection
experiments (see SI Appendix). Interference is reflected by the
condition a12 = a1, which expresses the delay of colonizers in
cells coinfected by competitors and which was demonstrated in
cell killing-interference assays (Fig. 2 C–E). As shown in the cell
killing experiments (Fig. 2 A and B), colonizers are more effi-
cient in cell killing (a2 > a1), and because the burst sizes
(Ki ¼ ki=ai) of the two viruses are equal, colonizers also replicate
faster (k2 > k1). By introducing a linear change of coordinates
the parameter space of the ODE system can be seen to be 2D
(see SI Appendix). It is given by the rescaled parameters
a ¼ a2=a1, the ratio of cell death rates, and c, the intracellular
competition parameter. The competitors p200 and the colonizers
MARLS differ only in precisely these two parameters (Table 1).
We have solved the ODE system numerically for different

initial viral densities to assess the winner of the competition as
the virus type produced with the highest total abundance. For the
competitor-colonizer region of the parameter space, i.e., for
c > 1/2 and a > 1, the winner of a competition can be either the
competitor or the colonizer, depending on the initial MOI (see
SI Appendix). The advantage of the colonizer decreases with the
initial density of viruses, to the point where the competitor can
outcompete the colonizer under high-density conditions. In the
limit of high MOI, we have also found an analytical solution of
the ODE system which confirms this observation. Competitors
outcompete colonizers in total numbers if their intracellular
advantage c is larger than the critical value

c� ¼ aþ v0
1þ aþ 2v0

In the competitor-colonizer regime (a > 1), this threshold is al-
ways greater than 1/2. Increasing initial viral densities v0 shift the
fitness advantage from colonizers to competitors because
dc�=dv0 < 0. Thus, the model predicts a density-dependent out-
come of the coinfection.

Experimental Test of Model Prediction. To test the density-dependent
outcome of the infection predicted by the model, we determined
the final abundances of viruses for different initial viral densities
both computationally, using the parameters measured from p200

andMARLS (Table 1; an estimate of the values of the parameters is
included in the SI Appendix), and experimentally. The p200 and
MARLS clones and populations were subjected to standard virus
competition assays (see Materials and Methods) at different initial
MOI (see SI Appendix). The average fitness of MARLS relative to
p200 was found to be dependent on the initial density: the higher
the MOI, the lower the relative fitness of MARLS viruses (Fig. 3).
The observed fitness values are in good agreement with the pre-
dicted fitness values and they confirm the predicted power law
dependence of fitness on MOI, although the effect of the space
(2D nature of cell monolayers) may be responsible for the lack of
exact match. In particular, the experimental data validate the main
prediction of the model, namely that fitness is density-dependent
and that both competitors and colonizers can be winners of this
coevolutionary process.

Discussion
We have described rapid self-organization in the progeny mutant
spectrum of a single viral clone into two different ecological
niche specialists. The coexistence of the two strategies relies on
intracellular reproductive success due to interference (competi-
tion) and on intercellular spread due to increased virulence
(colonization) (17, 20). The rapid quasispecies rearrangement
was probably facilitated by a high mutation rate (21–23) and the
fact that cell killing in RNA viruses can be modulated by a small
subset of mutations at potentially many different genomic sites
(10, 11). The suppression of colonizers by competitors at high
viral density can lead to the attenuation of a viral population.
This mechanism could also explain the previous observation of
mutant suppression or density-dependent selection in dissimilar
viral systems such as vesicular stomatitis virus (24, 25), FMDV
(26), and bacteriophages φ6 and φX174 (27, 28). In these stud-
ies, a subset of clones or subpopulations that showed high
fitness in low-MOI infections was outcompeted under high-MOI
conditions. The faster replicators under low-MOI conditions
probably acted as colonizers, whereas the suppressors at high-
MOI acted as competitors. Defective interfering particles main-
tenance in high-MOI infections strongly attenuates viral in-
fections (29), whereas serial bottleneck (low-density) transfers
maintained the cell killing capacity of an FMDV clone despite its
reduced replicative fitness (10). Fitness determinants of FMDV
are scattered along the viral genome (9, 10) whereas BHK-21 cell-
killing determinants mapped mainly in the nonstructural protein-
coding region (10).
Mutants with a high cell-killing efficiency that replicate in

independent cells may have a selective advantage because they
spread faster (30–32). However, viruses share gene products
inside coinfected cells allowing the progression of dominant-
negative mutants (24, 33–35) during processes such as pathogen-
derived resistance (36), lethal defection (34, 37), or pseudotype
formation (38). Therefore, unlike in bacteria or protozoa (39,
40), coinfection would tend to attenuate virus populations. Our
model might also explain the attenuation of a clone of FMDV

Table 1. Parameters and estimated values of the model of virus competition in cell culture

Parameter∗ Value Description Method of measurement†

a1 0.14 h−1 Cell killing rate of virus 1 Counting of live cells
a2 0.25 h−1 Cell killing rate of virus 2 Calculated from the basic reproductive ratio
u 0.28 h−1 Viral inactivation rate Slope of exponential decay of infectivity
β 7.8·10−8 ml h−1 Infectivity rate‡ Calculated from the basic reproductive ratio
c 0.62 Probability of a coinfected cell to produce virus 1 Specific RNA quantification in high-MOI infections
K 250 1 Burst size Titration of viral progeny after complete cell lysis

∗See SI Appendix for details.
†Virus 1 and virus 2 correspond to p200 (competitor) and MARLS (colonizer) viruses, respectively.
‡The initial number of susceptible cells was x0 = 2 × 106 cells in a volume of 2 ml.
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after mice-to-mice transfers because attenuated strains were only
isolated in organs in which the virus spreads locally thereby in-
creasing the probability of coinfection (41). Coinfection of cells
by two or more viral particles must be abundant in vivo, as
judged by the frequency of viral recombinants that are described
as epidemiologically relevant for many viral systems (42–44).
Recombination could be enhanced by the fact that double in-
fections of cells might be more frequent than expected from dual
hits occurring at random as documented for some virus-host
systems (45, 46). Coinfection of cells has been described in HIV
and Dengue infections (47, 48). The analyses with FMDV
reported here document that mutants within a viral quasispecies
behave as ecological entities and follow competition-colonization
dynamics. This compromise, which ensues from intrapopulation
self-organization, can modulate the cell killing capacity of the
entire viral population. In addition to implications for virulence
as a trait that can be modulated in complex viral populations, the
results reinforce the concept that mutant spectra can act as a unit
of selection (4, 22, 33, 34).

Materials and Methods
Cells, Viruses, and Infections. Infections of BHK-21 cell monolayers with FMDV
have been previously described (10, 15, 26). The FMDVs used in the present
study are the initial clone C-S8c1 (p0, GenBank NC 002554) (49) and viral
populations derived by passage of p0 at high MOI (1-10 PFU/cell). They are
labeled by “p” followed by the passage number (e.g., p200, GenBank
FJ824812). MARLS (GenBank AF274010) is a monoclonal antibody-escape
mutant of FMDV C-S8c1, selected as a minority component from p213 (15).
Biological clones were obtained by dilution and plating in semisolid agar

medium (50). Clones are labeled with the number of the population, fol-
lowed by “c” and a clone number (e.g., p240c1). Specifically, p240c1 and
p240c13 have a MARLS sequence, and p240c2 and p240c12 have a p200
sequence, as shown by phylogenetic analysis (see Fig. 1). Serial low-MOI
passages (MOI = 0.006–0.02 PFU/cell) were carried with p200, p219, p225,
and p240 to obtain populations p3d after three low-MOI passages, and p5d
after five low-MOI passages (see SI Appendix). Population p200p5d was
employed throughout the study as the reference MARLS population. C-
S8p260p3d derives from C-S8c1 after 263 passages at high-MOI (1-10PFU/
cell), and its cell killing capacity is similar to that of MARLS (10).

Competition Between Viruses. Competition between viruses was carried out as
described previously (10). Briefly, known numbers of PFU of the two viruses
were adsorbed onto BHK-21 cell monolayers for 1 h at 37 °C; then the
monolayers were washed to remove unadsorbed virions, and the infection
was allowed to proceed until complete cytopathology. Viral RNA specific
for each virus, present in the cell culture supernatants was quantitated by
real-time RT-PCR. The primers that specifically amplify MARLS and p200
sequences are CACGTACTATTTTTCTGATTTG and CACGTACTACTTTTCT-
GATCTG, respectively. Relative fitness values were calculated as described in
the SI Appendix.

Cell-Killing Assay. The capacity of FMDV to kill BHK-21 cells was measured as
previously described (10). The assay consists in determining the minimum
number of PFU required to kill 104 BHK-21 cells after variable times of in-
fection. The experiments were performed using multiwell M96 plates see-
ded with 104 BHK-21 cells per well and then infected by serial dilutions of
the virus to be tested, following the standard infection protocol. At differ-
ent times postinfection the cells were fixed with 2% formaldehyde. The
results are expressed as the logarithm of the number of PFU (PFU/mL of the
virus used for the infection) as a function of the time needed to kill the 104

BHK-21 cells. Control viruses with previously measured cell killing capacities
were included in all of the experiments. Cell viability was measured by cell
counting after trypan blue staining (37).

Cell Killing-Interference Assay. The cell killing assay was adapted to measure
the interference that FMDV variants exerted on the killing of BHK-21 by other
variants, as follows. Monolayers of 5·105 cells were infected at high-MOI (> 20
PFU/cell) with either individual variants or with an equal number of PFUs of
the two variants (killing and interfering) to be tested. After a 1 h adsorption
period, cells were detached by trypsin-EDTA treatment, washed, serially di-
luted, and applied onto fresh monolayers of 104 cells. The monolayers were
overlaid with semisolid agar. At 9.5 h postapplication, the minimum number
of infected cells required to kill 104 BHK-21 cells was measured.

Viral Phylogenies. Phylogenetic trees were inferred by maximum likelihood,
using the Tamura-Nei substitution model with Gamma distributed hetero-
geneous rates (TN-8Γ) (51). The genomic regions chosen for sequence com-
parison included the capsid-coding region and provided a sufficient average
number of mutations in the consensus sequence and among individual
clones to achieve the required resolution in the phylogenetic analyses (9, 10,
15, 52, 53). Nucleotides 1154 through 1570 were not considered in the
analysis presented in Fig. 1A because some populations contain a proportion
of genomes harboring internal deletions (52).
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