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Increasing evidence suggests that regular exercise improves brain
health and promotes synaptic plasticity and hippocampal neuro-
genesis. Exercise improves learning, but specific mechanisms of
information processing influenced by physical activity are
unknown. Here, we report that voluntary running enhanced the
ability of adult (3 months old) male C57BL/6 mice to discriminate
between the locations of two adjacent identical stimuli. Improved
spatial pattern separation in adult runners was tightly correlated
with increased neurogenesis. In contrast, very aged (22 months
old) mice had impaired spatial discrimination and low basal cell
genesis that was refractory to running. These findings suggest
that the addition of newly born neurons may bolster dentate
gyrus-mediated encoding of fine spatial distinctions.
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Human and animal studies have shown that exercise has
profound benefits for cognitive function. In children and

young adults, there is a positive correlation between physical
activity and learning (1, 2). In addition, the aging-associated
decline in human memory function (3) and associated atrophy of
gray matter volume can be attenuated by exercise (2, 4). In
animal studies, both voluntary and forced running paradigms
enhance learning and memory (5–7). Research pertaining to the
underlying mechanisms has revealed significant central physio-
logical and structural changes resulting from exercise. In par-
ticular, in the hippocampus, a brain region important for
learning and memory, running increases neurotrophin gene
expression (8, 9), vascularization (10, 11), dendritic spine density
(12, 13), and synaptic plasticity (6, 9). These exercise-induced
changes are associated with a robust increase in dentate gyrus
neurogenesis in young rodents as well as a reversal of the aging-
related decline in cell genesis (6, 7, 10, 14). The positive asso-
ciation between running and neurogenesis has raised the
hypothesis that newly born hippocampal neurons may mediate,
in part, improved spatial learning associated with exercise.
Although adult hippocampal neurogenesis (15, 16) is a well-

established phenomenon (17, 18), the precise functional rele-
vance of newly born neurons has remained unclear (19). In a
recent study, it was reported that adult neurogenesis may play an
important role in dentate gyrus-mediated pattern separation
(20), the mnemonic representation of inputs with high temporal
and spatial similarity (21, 22). The anatomical basis of pattern
separation rests on the low probability that any two CA3 neurons
will receive mossy-fiber inputs from the same granule cells (23,
24). Furthermore, physiological experiments have shown that
slight environmental differences elicit unique firing rate patterns
in each environment in a small number of dentate granule cells
(21). Interestingly, ablation of adult neurogenesis by x-irradi-
ation or injection of lentivirus expressing dominant-negative Wnt
(25, 26) impaired performance in the radial arm maze only when
the rewarded arm was in close proximity to the sample arm (20).
In addition, in a nonnavigational touch-screen system (27),
irradiated mice could not distinguish between small differences
(20). Although these are important observations, the potential
effects of increased neurogenesis on pattern separation have not
been researched. A relation between enhanced neurogenesis and

improved pattern separation ability would provide additional
evidence for a role of neurogenesis in pattern separation. Thus,
in the present study, running adult and very aged mice were
tested in spatial pattern separation tasks using a touch-
screen system.
Here, we show that running improved discrimination between

stimuli presented close together on a touch screen in adult ani-
mals. There was no effect of exercise with a larger separation
between the stimuli, suggesting that running-associated cellular
changes are not required when inputs are obviously distinct.
Indeed, very oldmicewith lowbasal cell genesis thatwas refractory
to running acquired the task in the larger separation condition
only. Thus, exercise alone, without enhanced neurogenesis, is not
sufficient to improve fine pattern separation ability. Furthermore,
when stimuli were narrowly separated, neurogenesis and per-
formance of individual adult mice were closely correlated. These
findings indicate that exercise enhances distinct encoding of spa-
tial information and that increasedneurogenesismay contribute to
the observed functional improvement.

Results
Running Wheel Activity. Both adult and aged mice made use of the
running wheel, averaging a distance of 23.5 ± 1.79 km (adult
mice) or 5.4 ± 0.68 km (aged mice) per day. This is more than
reported in previous studies (6, 10). The increase in distance
traveled may have been attributable to the use of a saucer-
shaped wheel with low resistance (Fig. 1).

Touch-Screen Testing. Task training (intermediate separation between
stimuli). Following 1 month of shaping to the touch-screen box, the
adult mice were housed with or without running wheels, were
injected with BrdU over 5 days, and then began task training on
day 38 of the study (Fig. 1C). The average number of days to
complete the task training [i.e., ability of a mouse to complete
acquisition (seven of eight correct choices) and one reversal with
an intermediate separation (Fig. 1A) between the stimuli in one
session of 60 trials for three of a total of four consecutive sessions]
did not differ between the control and running groups. Thus, there
was no significant difference between the groups in days taken to
complete task training [control: 17.22 ± 2.49 days, runner: 14 ±
6.51 days; t(18) = 0.86, P > 0.39].

Probe trials (big and small separation between stimuli). After com-
pletion of task training, mice were presented with either small or
big separations between the stimuli. Mice were trained to reach a
criterion of seven of eight trials correct before reversal of the
position of the stimuli. ANOVA of only the acquisition data
(before the first reversal) with repeated measures (group X
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separation) of trials to criterion revealed a significant effect of
exercise [F(1,18) = 5.30, P < 0.03], a significant effect of separa-
tion [F(1,18) = 34.47, P < 0.0001], and a nonsignificant interaction
between group and separation [F(1,18) = 2.54, P > 0.12]. As we
predicted differences in the small but not the big condition,
planned comparisons using posthoc Fisher’s predicted least-
square difference (PLSD) t tests were carried out and revealed a
significant difference between control and running mice on the
small separation (P < 0.05) but no difference between the groups
when there was a big separation between stimuli (P > 0.24).
These findings suggest that the capacity to make fine distinctions
between similar inputs was enhanced in the running mice. In
addition, a trend toward a correlation (P = 0.13) was observed
between small separation acquisition performance and newly
born neuron density (Fig. 2).
After mice acquired the ability to distinguish between the two

stimuli (in either the big or small condition), the position of the
stimuli was reversed and mice were trained to reach criterion
again. The average number of reversals was analyzed for the big
and small stimulus separations. ANOVA with repeated measures
(group X session) showed a significant interaction for the small
separation condition [F(2,18) = 8.48, P < 0.001] but not for the big
separation condition [F(2,18) = 0.26, P > 0.77]. Specific compar-
isons between groups in the small separation sessions showed that
running mice performed significantly better than control animals
in session 2 (P < 0.002), indicating that runners learned the task
faster than controls. Thereafter, control performance increased to
the same level as the runners. Moreover, regression analysis
revealed a significant correlation between reversal performance
andnewly bornneurondensity (P< 0.03). Thesefindings show that
the mice with the greatest increase in the number of newly born
neurons performed best on themost challenging aspect of the test,
reversals when the separation between locations was small (Fig. 3).
Aged mice. The very old mice exhibited impaired shaping to the
touch screen (Fig. 1C), as evidenced by a failure to complete 30
trials in which the animal must initiate the next trial by an
additional nose poke to the pellet receptacle for 2 consecutive
days in 1 h at 70% correct (Methods, “must initiate” stage).
Although the adult mice averaged 77.31% (±1.80%) correct
across all their days of training, the very old mice only reached
43.03% (±1.01%). Therefore, they underwent modified testing,
with 10 days of intermediate pattern separation in sedentary
conditions, followed by 10 days of testing on the same task after
housing with an exercise wheel (SI Text, training and testing of
aged mice on the intermediate pattern separation task).

Acquisition. Average trials to complete acquisition on the inter-
mediate pattern separation task in block 1 (average score over
10 days) and block 2 (average score over 10 days) were analyzed
by a repeated-measures ANOVA (block × group). There was a
significant interaction between block and group [F(1,6) = 6.851,
P < 0.04]. Specific comparisons showed that there was no sig-
nificant difference between the groups within block 1 [t(6) = 1.28,
P > 0.25] and block 2 [t(6) = 1.52, P > 0.18]. However, paired
comparisons indicated that aged animals housed with running
wheels after completing block 1 needed fewer trials to complete
acquisition [29.4 ± 2.77 to 17.23 ± 1.9, block 1 to block 2,
respectively; t(3) = 4.0, P < 0.03], whereas controls did not
improve between block 1 and block 2 [22.13 ± 2.38 and 24.08 ±
2.57, block 1 to block 2, respectively; t(3) = 0.44, P > 0.69]. These
findings suggest that exercise has a mild beneficial effect on
intermediate pattern separation in very aged mice (Fig. 4A).

Reversals. To determine whether the number of reversals in the
intermediate pattern separation task increased with running
between block 1 and block 2, ANOVA with repeated measures
(block × group) was carried out. There was no interaction
between block and group [F(1,6) = 1.80, P > 0.23], suggesting that
running did not improve performance on the more difficult
stimulus reversal task in very old mice (Fig. 4B).

Cell Counts and Phenotype Analysis. BrdU-positive cells in the
dentate gyrus were counted. In adult mice, wheel running sig-
nificantly increased the number [t(18) = 5.04, P < 0.0001] and
density [t(18) = 5.34, P < 0.0001] of BrdU-labeled cells, con-
firming previous studies (6, 7, 9, 10, 14). In addition, 30 cells per
dentate gyrus were analyzed for coexpression of BrdU and NeuN
for neuronal phenotype. There was no difference between the
groups in percentage of BrdU/NeuN-positive cells [t(18) = 1.09,
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Fig. 1. Mice were trained to distinguish between arrays of stimuli displayed
on a touch screen in an operant chamber. (A) Three stimulus arrays were used
during the experiments. (i) Mice were initially trained with an intermediate
separation between stimuli for task training. Thereafter, animals started
probe sessions with big (ii) and small (iii) stimulus separation conditions. (B)
Mice were housedwith or without a runningwheel. (C) Timeline of the study.

Fig. 2. Acquisition of big and small separation between stimuli. Mice were
trained to reach a criterion of seven of eight trials correct. (A) Runners (run)
performed better than controls (con) in acquisition in the small separation
condition (*P < 0.05) but not in the big separation condition (P > 0.24). (B)
Trend toward a correlation between trials to acquisition of the small sepa-
ration and newly born neuron density was observed (P = 0.13). Photo-
micrographs of BrdU-positive cells in control (C) and runner (D) dentate
gyrus 10 weeks after the last injection. (Scale bar: 50 μm)
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P > 0.29], but, overall, the runner group had significantly more
newly born neurons than control animals [t(18) = 5.16, P <
0.0001; Table 1 and Fig. 3F]. In the very aged mice, running did
not increase the number of BrdU-labeled cells [control: 25.3 ±
5.63, runner: 29 ± 4.1; t(6) = 0.54, P > 0.61; Fig. 4 C and D].

Vasculature. Previous work has shown that exercise affects den-
tate gyrus vasculature (10, 28). Coronal sections from the adult
and aged groups were stained with tomato lectin. Blood vessel
density was analyzed in the dentate gyrus, including the molec-
ular layer, using a semiautomatic analysis (Slidebook; Intelligent
Imaging Innovations Inc.). There was a significant increase in
dentate gyrus angiogenesis in adult running mice [t(18) = 2.14, P
< 0.05] (Fig. S1). No change was observed in vasculature in aged
runners [t(6) = 0.47, P > 0.66] (Fig. 4 E and F).

Discussion
To study the effect of exercise on dentate gyrus-mediated pattern
separation, adult and aged mice were tested on a spatial dis-
crimination task (29) carried out in an automated touch-screen

testing system (27, 30). Running selectively enhanced spatial
touch-screen performance when stimuli were presented in close
proximity in adult mice. There was no difference between the
groups when the separation between locations to be dis-
criminated was large. In addition, task performance and neuro-
genesis were positively correlated in adult mice. A physiological
model of newly born cell ablation, the natural decline of neu-
rogenesis to very low levels in old mice, revealed only a very
modest enhancement on the intermediate pattern separation
task in runners that was not accompanied by alterations in
angiogenesis or cell genesis. Taken together, these findings
provide evidence that newly born neurons may contribute to fine
pattern separation.
It has long been known that the hippocampus is important for

the acquisition of memories (31, 32). However, the contributions
of the different hippocampal subfields have only been inves-
tigated more recently. Area CA1 is thought to encode memories
(33), area CA3 is thought to mediate pattern completion (34,
35), and the dentate gyrus is considered important for spatial
pattern separation (21, 22, 36). Evidence from computer mod-
eling (37) studies suggesting that granule cells mediate process-
ing of spatial distinctions was supported by behavioral evidence
from lesion studies (36, 38) and transgenic animals with a
selective knockout of NMDA receptor NR1 (22) as well as in
vivo recordings in different environments (21). However, it has
not been previously investigated whether physical activity can
enhance the function of a task mediated by a specific subfield,
the dentate gyrus, and whether newly born granule cells may play
a role. In the present study, it was shown that exercise produced
improvements in the touch-screen task, providing evidence that
physical activity, and possibly exercise-induced neurogenesis, is
important for discrimination between similar locations.
Physical activity has many functional benefits ranging from

memory to mood and is accompanied by changes in neuro-
transmitters, growth factors, spine density, synaptic plasticity,
and vascularization (11–13, 39). Similar to previous research,
wheel running enhanced angiogenesis in the adult but not aged
dentate gyrus (10). Thus, although we cannot definitively rule out
an explanation of enhanced performance of the adult animals in
terms of angiogenesis, findings in aged runners indicate that
exercise alone, without angiogenesis or neurogenesis, is insuffi-
cient to improve small pattern separation. Indeed, among the
cellular effects of voluntary exercise in the hippocampus,
enhanced dentate gyrus neurogenesis is a striking structural
alteration. Previous studies have reported a positive correlation
between physical activity, neurogenesis, and performance in less
specific hippocampus-dependent spatial maze tasks (6, 7, 10).
However, studies in which newly born cells were ablated in
runners did not always have consistent results. For example,
some researchers found that irradiation of newly born cells in
running mice selectively blocked improvement in a general test
of hippocampal function, water maze learning (40), but not in
contextual fear conditioning (40, 41), whereas others reported
opposite findings (42). We propose that these discrepant findings
might be explained in terms of differences in the requirements
for spatial pattern separation. Because this factor was not
manipulated explicitly in these previous studies and many other
factors differ between these tests, such a suggestion must remain
as conjecture. However, support for this idea comes from the
finding in the present study that running improves performance
in the condition with a high but not a low requirement for pat-
tern separation when other factors are held constant across the
two conditions. Furthermore, previous studies may have been
confounded by possible changes in motor skills. In the present
study, a touch-screen method was used, which has minimal
motor requirements (27, 30).
All animals were sedentary during the habituation and shaping

portion of the experiment in which mice were trained to retrieve

Fig. 3. Reversal of stimulus reinforcement in the big and small conditions. The
reinforcement of the stimuli was reversed each time a mouse reached criterion
so that the previously correct location became the incorrect location and vice
versa. (A) There was no difference between the groups in the big separation
condition in the number of reversals. con, control; run, runner. (B) Runners
performed better than controls in the reversal task when the separation
between stimuli was small (*P< 0.002). (C) Significant correlation between task
performance in the small condition and newly born neuron density was
observed (P < 0.03). Confocal images of BrdU-positive cells in the dentate gyrus
of sections derived from control (D) and runner (E) mice 10 weeks after the last
injection. Sections were immunofluorescent double-labeled for BrdU (green)
and NeuN (red). (Scale bar: 50 μm) (F) Newly born neuron density was increased
in runners as compared with controls (*P < 0.0001).
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a reward pellet and to initiate experiments by touching the
screen. Adult mice were housed with or without wheels once task
training began. There was no effect of running on the average
number of days to master the task when there was an inter-
mediate separation between the stimuli [i.e., the ability of a
mouse to make a series of correct choices in the touch-screen
box (reinforcement of a square on the screen) and to achieve one
reversal for 3 of 4 consecutive days]. Effects of physical activity

on pattern separation performance in adult mice became appa-
rent during probe trials, when stimuli were presented in close
proximity. Runners performed better than controls when the
separation between stimuli was small but did not differ from
controls in the large separation condition. Both acquisition of
the task and the ability to learn that the stimulus was reversed in
location, were enhanced in the small separation condition. The
small separation task is difficult for the mice to acquire and likely
places a high demand on the dentate gyrus. Additional neurons
generated following exercise could benefit performance. It is of
interest that probe trials were carried out 1.5–2 months after the
onset of running, corresponding to the time frame in which newly
born neurons exhibit the greatest amount of synaptic plasticity
(43, 44). Given the difficulty of the task (no mouse achieved
more than three reversals in the small separation condition), the
doubling of the number of highly plastic newly born neurons in
runners appears beneficial. Furthermore, a significant correla-
tion between newly born cell number and task performance in
individual mice was observed. Moreover, these findings are
consistent with recent work suggesting that neurogenesis medi-
ates dentate gyrus pattern separation (20).
In previous studies, researchers have attempted to correlate

spatial memory of individual animals with newly born cell number,
with varied outcomes. During aging, some researchers reported a
positive correlation between a decline in learning and a decreased
number of newly born cells (45), whereas others showed an
opposite link between cell genesis and performance (46). In the
present study, a positive correlation between the number of newly
born neurons and task performance in individual mice was
observed. In the acquisition phase of the small separation task,
there was a trend toward a correlation between performance and
neurogenesis.However, the associationwas significant only for the
most difficult aspect of the study, the ability of the mouse to dis-
tinguish between small separations that were reversed in location
each time themouse reached criterion. This relation was observed
without a phenotype shift in the percentage of newly born neurons
between control and runner groups, in agreement with some
(47, 48) but not other (10, 14, 49) reports. Differentiation may
depend on exercise intensity (50) and use of a wheel with low
resistance in the current study may account for the observed dif-
ference. The correlation between performance in the small con-
dition and neurogenesis in individual adult animals suggests that
newly born neurons may become incrementally important as the
requirement for pattern separation increases.
Aged animals were only tested in the intermediate pattern

separation task because they did not achieve the set criterion for
testing in the small separation condition. Exercise resulted in a
modest improvement in task acquisition upon comparison before
and after running. There was no effect of physical activity on the
ability to distinguish between intermediate separations that were
reversed in location. Exercise did not enhance cell genesis in
these very aged mice, which differs from previous observations in
18-month-old male C57BL/6 runners (10). This suggests that at
very advanced age, cell genesis becomes refractory to running,
possibly attributable to loss of plasticity of rapid amplifying type
2 progenitor cells (18). In addition, there was no change in
dentate gyrus angiogenesis in the aged mice, similar to previous
observations (10). It remains unclear what may mediate the
slight improvement in performance. However, this physiological
model of virtually ablated cell genesis supports the hypothesis
that neurogenesis is important for spatial pattern separation.
In summary, the present study shows that running increases

neurogenesis and promotes the ability to make fine spatial dis-
tinctions on a touch-screen task that is not dependent on motor
skills. In addition, an exercise-induced increase in the number of
newly born neurons was correlated with enhanced performance,
suggesting that neurogenesis may play a role in spatial pattern
separation. Furthermore, very old mice with low basal cell gen-

Fig. 4. Intermediate spatial pattern separation in aged mice. Mice (n = 8)
were trained for 10 days under sedentary conditions (block 1). Thereafter,
mice were divided into sedentary (n = 4) and runner (n = 4) groups, injected
with BrdU over 5 days, and trained for an additional 10 days on the same
task (block 2). (A) Running improved performance on acquisition of the task
in block 2 as compared with block 1 (P < 0.03). (B) Reversal performance was
not influenced by exercise. con, control; run, runner. The number of BrdU-
labeled cells did not differ between controls (C) and runners (D) at 17 days.
(E and F) Lectin-stained vessel density was quantified using imaging soft-
ware. There was no change in dentate gyrus vasculature in running aged
mice (F) as compared with controls (E). (Scale bar: 100 μm.)

Table 1. Survival of BrdU+ cells and neurogenesis

Control Runner

BrdU+ cells 1,286 (144) 2,956 (274)*
BrdU+/mm3 3,303 (357) 7,153 (555)*
% neurons 81 (2.5) 85 (2.1)
Total neurons 1,062 (143) 2,483 (219)*
Neurons/mm3 2,731 (362) 6,009 (432)*
Volume, mm3 0.45 (0.0082) 0.47 (0.0087)

Adult C57BL/6 mice (n = 20) were assigned to either the control (n = 9) or
runner (n = 11) group after completion of shaping and before the onset of
task training in the touch-screen system. Mice received five daily BrdU (50
mg/kg) injections. Survival, density of BrdU-labeled cells, and volume of the
dentate gyrus were determined 10 weeks after the last BrdU injection. Phe-
notype of the surviving cells was determined by immunofluorescent double-
labeling for BrdU and NeuN (neurons). The density and percentage of BrdU-
positive cells double-labeled for NeuN are presented. All data are presented
as means (SE).
*Significantly different from controls (P < 0.0001).
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esis that was refractory to running were able to acquire only the
larger separation task, showing that running in the absence of
cellular and vascular plasticity is not sufficient to improve pattern
separation ability. Taken together, our findings indicate that
exercise-induced neurogenesis improves dentate gyrus-mediated
encoding of distinct spatial representations.

Methods
Subjects. Twenty 3-month-old and eight 22-month-old male C57/BL6 mice
(Jackson Laboratories) were individually housed in a temperature-controlled
(22 °C) room with a 12-h light/dark cycle (lights on 7:00 AM to 7:00 PM). Mice
were given ad libitum access to water and were food-deprived to 85% free
feeding weight throughout the study. Following pretraining in the touch-
screen system, mice were housed under control (adult: n = 9, aged: n = 4) or
exercise (adult: n = 11, aged: n = 4) conditions for the remainder of the study.

Mouse Touch Screen. The testing apparatus consisted of a sound-attenuating
box containing a standardmodular chamber (Med Associates; height = 23 cm,
width = 30 cm, depth = 25 cm) with clear plexiglas walls, a metal frame, and a
floor consisting of metal bars spaced 1 cm apart. The operant chamber was
fitted with an infrared touch screen (Craft Data Ltd.), a pellet receptacle
with light illumination and head entry detectors, a 14-mg pellet dispenser, a
3-W house light, and a tone generator (Med Associates). The infrared sen-
sors eliminated the need for force for nose poke detection. A plexiglas
“mask” containing six windows (2.5 × 2.5 cm, equally spaced 0.5 cm apart)
≈1.6 cm from the floor of the chamber positioned in front of the touch
screen allowed the presentation of stimuli on the touch screen to be spa-
tially localized and prevented the mouse from accidentally triggering the
touch screen (e.g., with its tail) (Fig. 1A).

Shaping. Habituation. On the first 2 days of shaping, animals were placed in
operant boxes with the screen switched off, the house light on, and the
magazine filled with food pellets for 15 min each day to become accustomed
to the box.
Pavlovian training. On day 3, animals underwent Pavlovian conditioning. A
white square stimulus was presented randomly in one of five possible
locations on the screen (all locations were on the bottom of the screen and
were aligned horizontally). Each pellet delivery was combined with a tone.
The intertrial interval (ITI) was 30,000 ms. The screen did not need to be
touched, but if the mouse touched any part of the screen, including a nonlit
area, a tone was generated and a pellet was given. Mice were given 30
automated Pavlovian training trials for 1 day.
“Must touch” stage. Once Pavlovian training was complete, animals moved on
to the “must touch” stage. Each trial began with the presentation of one
white square stimulus displayed randomly in one of five possible locations.
The mouse was rewarded for touching the white stimulus part of the screen;
in such case, a tone was presented and a reward was given. A touch to a
location that did not contain a square was scored as incorrect; no tone was
generated, no reward was given, and the stimulus remained on the screen
until it was touched. The next trial began after the food pellet was eaten (i.
e., when an exit from the pellet receptacle was detected). The ITI was 5,000
ms. Mice continued on to the next stage of training when they completed a
criterion of 30 trials in 1 h at 70% correct.
“Must initiate” stage. Stimuli were presented in the same manner as in the
previous stage. A reward was only given for correct stimulus touches. After
reward collection, the animal was required to initiate the next trial by an
additional nose poke to the pellet receptacle. Mice continued training until
each animal completed 30 trials in 1 h at 70% correct for 2 consecutive days.
The adult mice averaged 77.31 ± 1.80% across all their days of training. The
very old mice only reached an average of 43.03 ± 1.01%. Therefore, the
aged mice were tested in a modified version of the pattern separation task
as described in SI Text (training and testing of aged mice on the inter-
mediate pattern separation task).

Exercise and BrdU Injections. On completion of shaping, adult animals were
divided into two groups: control (CON, n = 9) and exercise (RUN, n = 11) and
running wheels were added to the cages of the exercise group. Wheels were
linked to a bicycle computer (Sigma Sport USA) to measure daily running
distance (51). One day thereafter, mice were given daily i.p. injections of
BrdU, 50 mg/kg, over 5 consecutive days (Fig. 1 B and C).

Task Training. Two days after the last BrdU injection, animals were tested on a
spatial discrimination task (30). Animals were placed in the operant boxes
with six-hole masks (Fig. 1A). White squares (the stimuli) were presented in
two of the six possible locations, aligned in a row along the bottom of the
screen. The two stimuli were in positions 2 and 5 if position 1 was the fur-
thest left, and each position was numbered consecutively from left to right.
Only one of the squares was reinforced with the tone and pellet, and the
correct side was counterbalanced between mice. When the mouse had
achieved the criterion of seven of eight trials correct (i.e., it had completed
the acquisition phase), the reinforced stimulus was reversed (i.e., the pre-
viously incorrect location became the correct location, and vice versa). When
the mouse completed this first reversal (by again getting seven of eight trials
correct on the new side), the reward contingency was again reversed. This
procedure continued for 60 trials, or a maximum of eight reversals. On the
next day, the mouse was presented with the same stimuli, and the correct
side was the same as the side that was last correct in the previous session;
that is, if a mouse started with position 5 correct and achieved acquisition
and completed two reversals to criterion (the session therefore ending
during its third reversal), it would start with position 2 being the correct
stimulus on the next day. Mice were given task training until they were able
to complete to criterion with at least one reversal for 3 of 4 consecutive days.
Thereafter, they continued to probe trials.

Probe Trials. Forprobetrials, themousewaspresentedwithoneofeitherasmall
or a big separation condition (counterbalanced so that half of the animals in
eachgroupwerefirst presentedwith thebig separationand the animals in the
other half of the groupwere presentedwith small separations; Fig. 1A). In the
big separation condition, the two stimuli were presented in positions 1 and 6,
and in the small separation condition, stimuli were presented at positions 3
and 4. The same rules for criterion applied, except that probe trials were given
for a finite number of days. Each mouse was given each separation (small or
big) alternating every 2 days per block over 12 days of testing. For example, if
they started with the big separation, they would be presented with that
condition for 2 days, then the small condition for 2 days, and then the big
condition again for 2 days until testing was complete.

Histology/Immunohistochemistry. Animals were deeply anesthetized with
sodium pentobarbital (Merial) and perfused transcardially (SI Text, histology/
immunohistochemistry).
Quantity and phenotype of newly born cells. Immunohistochemistry for BrdU and
immunofluorescent double-labeling for BrdU and Neuronal Nuclei (Neun) were
performedonfree-floating40-μmcoronal sections thatwerepretreatedforBrdU
immunohistochemistry by denaturingDNA, as described previously (6, 14). BrdU-
positive cells were counted in a 1-in-6 series of sections (240 μmapart) through a
×20objective (BX51;Olympus) throughout the rostrocaudalextentof thegranule
cell layer (SI Text, quantity and phenotype of newly born cells). To analyze the
phenotype of the newly born cells, a 1-in-12 series of sections (480 μmapart) was
double-labeled with BrdU and NeuN, and was analyzed by confocal microscopy
(Fluoview FV1000 Olympus). Thirty BrdU-positive cells per adult mouse were
analyzed for the coexpression of BrdU and NeuN for neuronal phenotype. The
ratio of BrdU-positive cells colabeling with NeuN was determined.
Vasculature. Lectin staining (Lycopersicon esculentum; Vector) was used to
visualize hippocampal blood vessels as described previously (10, 28) (SI Text,
vasculature). For quantification of blood vessel density, the hippocampus
was imaged at ×10 magnification using the confocal microscope with
identical parameters for each image (Fluoview FV1000; Olympus). Specifi-
cally, eight 3-μm-thick optical sections through the hippocampus were taken
from six equidistant sections (240 μm apart) from each brain. Thereafter, the
z-stacks were merged using Slidebook (Intelligent Imaging Innovations, Inc.).
Using this program, the outline of the dentate gyrus, including the hilus and
molecular layer, was traced by the experimenter, who was blinded to the
treatment groups. Subsequently, the density of lectin-stained vessels was
calculated by the software.

Statistical Analysis. All statistical analyses were carried out using Statview
(Abacus Corporation) (SI Text, statistical analysis).
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