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Abstract
Current therapies for Alzheimer disease (AD) such as the acetylcholinesterase inhibitors and the
latest NMDA receptor inhibitor, Namenda, provide moderate symptomatic delay at various stages
of the disease, but do not arrest the disease progression or bring in meaningful remission. New
approaches to the disease management are urgently needed. Although the etiology of AD is largely
unknown, oxidative damage mediated by metals is likely a significant contributor since metals such
as iron, aluminum, zinc, and copper are dysregulated and/or increased in AD brain tissue and create
a pro-oxidative environment. This role of metal ion-induced free radical formation in AD makes
chelation therapy an attractive means of dampening the oxidative stress burden in neurons. The
chelator desferrioxamine, FDA approved for iron overload, has shown some benefit in AD, but like
many chelators, it has a host of adverse effects and substantial obstacles for tissue-specific targeting.
Other chelators are under development and have shown various strengths and weaknesses. Here, we
propose a novel system of chelation therapy through the use of nanoparticles. Nanoparticles
conjugated to chelators show unique ability to cross the blood–brain barrier (BBB), chelate metals,
and exit through the BBB with their corresponding complexed metal ions. This method may provide
a safer and more effective means of reducing the metal load in neural tissue, thus attenuating the
harmful effects of oxidative damage and its sequelae. Experimental procedures are presented in this
chapter.
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1. Introduction
Alzheimer disease (AD) is a devastating neurodegenerative disease with progressive and
irreversible damage to thought, memory, and language. AD is the most common form of
dementia among people aged 65 and older, progressing slowly from mild forgetfulness to the
need for total care (reviewed in (1)). Unfortunately, an explicative etiology or a viable cure is
not available.

Compared with other tissues, the central nervous system may be particularly susceptible to
oxidative damage (2,3). Accumulating evidence supports the hypothesis that oxidative stress
generated by various mechanisms may be among the major intermediary risk factors that
initiate and promote neurodegeneration, leading to AD (4–12). Oxidation reactions can be
catalyzed by transition metals such as iron and copper (13) and, as such, the likelihood that an
oxidation reaction will take place is probably increased by the regional concentrations of
transition metals (14). Substantial studies show that the metabolism of iron is involved in AD
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and that the concentration of iron in the brain of AD patients is elevated (8,15). Aluminum has
also received attention in AD, although a role has never been convincingly demonstrated.
Nonetheless, aluminum has been found in high concentrations in both senile plaques and
intraneuronal neurofibrillary tangles in the brains of subjects with AD, which suggests that this
metal may be involved in the etiopathology of AD (8,15–19). Aluminum, unlike transition
metal ions, is unable to participate in redox cycles of electron transfer reactions because of a
fixed oxidation state of 3+ in biological systems, but evidence suggests that it can act
synergistically with iron to increase free radical damage (2,20). Strong evidence also shows
that other metals implicated in the development of AD include copper (9,10,21–25) and zinc
(8,21,26–28). In the AD brain, the concentration of zinc is significantly elevated in senile
plaques and the concentration of copper is elevated in the rim of senile plaques. Overall, these
studies indicate that the environmental conditions in AD, due to imbalances of several metals,
have the potential for catalyzing and stimulating free radical formation and enhancing neuron
degeneration. Moreover, growing studies reveal that all of the aforementioned metals that
accumulated in the central nervous system modulate amyloid-β formation and deposition
(29). The metals and amyloid-β can form complexes tightly, which also cause neurooxidative
damage (11,20,24,30–32).

Simultaneously elevated concentrations of various metals promoting oxidative damage, and
hence promoting neurodegeneration, present a complex system of pathophysiology not yet
fully understood. Despite this complexity, metal dysregulation may in fact be the Achilles’
heel of AD, opening a door for chelation therapy. An iron chelator, regardless of synthetic or
natural origin, can have high affinity for iron, but it may also undesirably chelate other metals
in various tissues leading to serious side effects. Affinity for multiple metals such as aluminum,
copper, and zinc may pose useful rather than detrimental since various metals are implicated
as oxidative instigators. Perhaps this may be the reason why desferrioxamine (DFO), a specific
iron chelator with high affinities for aluminum, copper, and zinc has demonstrated some
therapeutic benefits for patients with AD.

1.1. Iron Chelators in the Treatment of AD
DFO is a hexadentate iron chelator and has been found to significantly slow the progression
of AD in one clinical trial (33). In this study, the chelation of aluminum was examined, but it
is possible that the therapeutic effect may also have been due to removal of iron since DFO
preferably chelates iron (34,35). DFO also has an appreciable affinity for copper and zinc
(34,36). The affinity constants of DFO for Fe(III), Al(III), Cu(II), and Zn(II) are 30.6, 22.0,
14.1, and 11.1 (log K), respectively (37). In this clinical study, copper and zinc were not
monitored. Interestingly, 2 years after the initial publication, a verbal report at the International
Conference on Alzheimer’s Disease (Padua, Italy, 1992) provides evidence that iron and zinc
concentrations are decreased in a postmortem analysis for DFO-treated patients (34,38).

DFO is one of the only two iron chelators approved by the FDA for iron overload disease. DFO
is a hexadentate iron chelator (Fig. 8.1a). Its therapy promotes iron excretion and has led to
great improvements in the quality and duration of life of patients who suffer from β-thalassemia
and other refractory anemias. In addition, DFO also inhibits nigrostriatal degeneration induced
by 6-hydroxydopamine (39). Unfortunately, DFO has serious side effects including
neurotoxicity and neurological changes (13, 33, 40–45). Furthermore, DFO is poorly absorbed
by the gastrointestinal tract and rapidly degrades after administration (46). Therefore, it
requires long subcutaneous administration to yield significant iron excretion (35, 47).
Moreover, some studies show DFO does not easily penetrate the blood–brain barrier (BBB)
due to its hydrophilic nature (48), although this point remains open to debate (49). Some
penetration may occur due to a compromised BBB via lesion sites (48). But the neurotoxicity
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and difficulty of administration and delivery present serious hindrances to the use of DFO for
AD treatment.

Deferiprone or L1 (1,2-dimethyl-3-hydroxyl-4-pyridinone) is a bidentate iron and aluminum
chelator (Fig. 8.1b) approved in Europe, but not in the United States (50). Although L1 has
high oral activity and BBB penetration ability due to its lipophilicity, its use is limited because
of serious side effects (51, 52). In addition, studies have shown that L1 lacks the ability to
remove iron from the brain (49) probably due to strong hydrophilicity of the iron–L1 complex.
Additionally, there is no carrier-mediated transport system available to remove the complex
from the brain. Other L1 derivatives with higher lipophilicity also have the ability to cross the
BBB and complex brain iron, but they also possess considerable neurotoxicity (40, 43, 51).

Currently, FDA has approved another iron chelator (Deferasirox) for treatment of transfusional
iron overload in thalassemia. Deferasirox is a tridentate iron chelator (Fig. 8.1c) with oral
bioavailability (53). However, its long-term profiles are not yet available (54, 55). Furthermore,
its lipophilic nature like L1 may raise questions concerning potential toxicity in AD treatment.

Thus, the use of the currently available iron chelators to simultaneously remove several excess
metals in the brain of AD is limited because of their toxicity and/or poor transference across
the BBB. Most bi- or tridentate iron chelators with small molecular weight and high
lipophilicity have the ability to penetrate the BBB, but show toxicity (56). On the other hand,
hexadentate iron chelators are considered better candidates for chelation therapy than bi- and
tridentate ones because of their lower toxicity before and after chelation (56), but they have
difficulty penetrating the BBB (49,56,57) due to their hydrophilicity and relative high
molecular weight. One strategy to increase the BBB penetration is by enhancing the
lipophilicity of the iron chelators (58); however, this is believed to increase toxicity (59). In
addition, the increase in lipophilicity of iron chelators will decrease the solubility in aqueous
solution with probably a decrease in bioavailability (52). Also, it is possible that some lipophilic
chelators, which normally should cross the brain endothelial cells, are rapidly pumped back
into the bloodstream by extremely effective efflux pumps. These include multiple organic
anion transporter and P-glycoprotein (multidrug resistance protein) (60). Many promising
attempts have been made to develop iron chelators with abilities to penetrate BBB and prevent
oxidative damage (61–67). However, there is a great need to develop safer and more effective
iron chelators for the treatment of AD and other neurodegeneration diseases.

The role of metals in the AD development and the usefulness of chelators for AD treatment
have also been demonstrated in the studies with Iodochlorhydroxyquin (clioquinol) (34,68–
70). Clioquinol is a copper and zinc-specific chelator (Fig. 8.1d) with BBB penetrable and is
able to dissolve amyloid-β plaques. With clioquinol therapy, the clinical rate of cognitive
decline is slowed in a subset of AD patients compared with that in controls (71). However,
clioquinol is reported being associated with subacute myelo-optic neuropathy and withdrawn
from the market as an antibiotic. In this regard, the second generation of clioquinol has been
developed and is under clinical investigations (72).

1.2. Nanoparticle Systems with Iron Chelators: Increased BBB Permeability and Lower
Toxicity

Nanoparticles made of natural or artificial polymers ranging in size from about 10–1,000 nm
(60,73) present a possible tool to transport drugs across the BBB (60) and nanoparticles of a
size around or less than 300 nm coated with surfactants such as polysorbate 80 have been
demonstrated to possess this ability (74–76). Recent studies have also shown the possibility of
nanoparticulated drugs for the treatment of AD (77–80). The advantages of nanoparticles
include reduced drug toxicity, improved biodistribution, and therapeutic efficacy (81). The
mechanism by which the nanoparticles deliver drugs into brain may be involved in preferential
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absorption of apolipoprotein E (ApoE) and/or B. The particles also appear to mimic LDL and
interact with the LDL receptor, resulting in their uptake by brain endothelial cells (60,74,82–
84). The transferrin transcytosis systems may be also employed by the particulated drug
delivery systems to deliver drugs into the brain (60,82,85). If an iron chelator can be covalently
bonded to a nanoparticle, the particle may serve as a targeting vehicle to deliver the chelator
to the brain and cross the BBB. There are three advantages to this approach. First, the chelators
need not be lipophilic to cross the BBB. Second, the lipophilic character of the chelator no
longer contributes to potential toxicity. And third, hydrophilic hexadentate iron chelators with
large molecular weights may be used, as previously demonstrated with nanoparticle technology
(75,76).

For iron chelation to be effective, the chelators must be capable of leaving the brain with the
corresponding complexed metal ions. If the nanoparticles are not or controlled biodegradation
and can mimic lipoprotein particles by preferentially absorbing Apo-AI, known to facilitate
the removal of particles from the brain (60,86), the same carrier-mediated transport systems
will be able to carry the iron complex nanoparticles out of the brain. This is in contrast to
lipophilic chelators that can enter the brain, but when complexed, they are unable to cross the
BBB due to a change in their lipophilicity. For example, the distribution coefficient (DC) of
free L1 determined in n-octanol/Tris–HCl buffer system is 0.24, but when complexed is down
to 0.0009 (87). Although L1 can reportedly penetrate the BBB, it fails to remove iron from the
brain (49).

Our studies show that nanoparticles have the potential to transfer chelators in and out brain as
well, thus effectively preventing metal-associated oxidative damage (80,88). This novel
approach of chelation will provide not only a useful means of AD treatment, but also insights
into the mechanisms of AD pathophysiology. It may also show utility in other iron-mediated
neurodegenerative diseases such as Friedreich’s ataxia, Parkinson’s disease, and Hallervorden-
Spatz Syndrome. More studies are warranted to demonstrate the protective efficacy of the
chelator–nanoparticle systems, to evaluate their toxicity and to optimize their capability to
cross the BBB.

2. Materials
All chemicals and biochemicals are purchased from Aldrich-Sigma (St. Louis, MO), unless
specifically mentioned. The materials obtained are used without further purification. Solutions
are prepared following standard protocols.

3. Methods
In order to conjugate nanoparticles covalently, iron chelators must have a functional group to
react with an active moiety on the particle surface. The functional group introduced into the
iron chelators should not possess adverse effects on the chelator-metal binding. Synthetic
methods to produce a series of iron chelators with such functional side chains have been
developed (89–91). The metal binding properties of these chelators and some biological
properties such as the in vitro ability to remove iron from tissue sections of AD brains and
from ferritin (an important protein for iron storage) have been examined (89,90). Methods for
conjugation of various iron chelators to nanoparticles have also been developed. After
conjugation, the amounts of chelator that conjugate to the particles and the ability of the
chelator–particle systems to bind iron are determined. The human plasma protein absorp tion
patterns on iron chelator particle systems and their iron complexes are examined using 2-D
PAGE technology to evaluate the ApoE and Apo-AI absorptions (60,92). These studies indicate
that iron chelator–nanoparticle systems have the potential to enter the brain and bring excess
metals out of the brain, thus effectively preventing metal-associated oxidative damage. As

Liu et al. Page 4

Methods Mol Biol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



prototypes, the syntheses of two kinds of iron chelators containing active functional groups
have been described (see Note 1). Key experiments are briefly described as follows.

3.1. Synthesis of 2-Methyl-N-(2′-aminoethyl or 3′-aminopropyl)-3-hydroxyl-4-pyridinone
(MAEHP and MAPHP) (see Note 2), An Iron Chelator with Functional Groups for Nanoparticle
Conjugation

1. Mix 3-hydroxyl-2-methyl-4-pyranone with benzyl chloride in a molar ration of 1:1.1
in aqueous methanol solution containing NaOH. Reflux for 6 h with the contents being
constantly stirred on magnetic stirrer.

2. Remove methanol under vacuum and add water. Extract the product 3-benzyloxy-2-
methyl-4-pyranone into methylene chloride.

3. Wash the organic (methylene chloride) layer with 5% (w/v) NaOH followed by water
and dried it over anhydrous MgSO4.

4. Evaorate the solvent under vacuum. Add 1,2-diaminoethane or 1,3-diaminopropane
in aqueous ethanol solution to the residue containing 3-benzyloxy-2-methyl-4-
pyranone reacted and allow the reaction to proceed at the ambient temperature for
about 1 week.

5. Evaporate the solvents and residual diamines under vacuum. Dissolve the residue in
chloroform. Wash the chloroform solution with water and dry it over anhydrous
Na2SO4.

6. Remove the solvent under vacuum and dissolve the residue in methanol. Adjust the
pH to approximately 1.0 with HCl. The product 1-(2′-aminoethyl)-3-benzyloxy-2-
methyl-4-pyridinone or 1-(3′-aminopropyl)-3-benzyloxy-2-methyl-4-pyridinone
separates from methanolic solution as dihydrochloride salt. Collect the
dihydrochloride salts by filtration and recrystallize them from a solution of methanol
and ether to obtain the pure product(s).

7. Mix the products with BBr3 (1.0 M CH2Cl2 solution) in CH2Cl2 and stir overnight at
room temperature under a nitrogen atmosphere.

8. Add water and stirring for an additional 4 h at room temperature. The aqueous phase
containing MAEHP or MAPHP is separated and evaporated under vacuum.

9. The MAEHP and MAPHP are purified further through recrystallization from an
ethanol/ether solution.

3.2. Synthesis of 2-Methyl (or Ethyl)-N-(2′-hydroxyethoxy)methyl-3-hydroxyl-4-pyridinone
(MHEMHP or EHEMHP) (see Note 3), An Iron Chelator with Functional Groups for
Nanoparticle Conjucation

1. Synthesize 3-benzyloxyl-2-alkyl-4-pyridinone as described in Section 3.1, Step 1.

2. Replace the ring oxygen of 3-benzyloxyl-2-alkyl-4-pyranone by a nitrogen atom via
a substitution reaction with aqueous ammonia for 48 h at room temperature.

3. Silylate the 3-benzyloxyl-2-alkyl-4-pyridinone using hexamethyldisilazane under
refluxing and nitrogen gas for 2 h.

1The synthetic procedures are straightforward and product yields are high. The chelators have been characterized using standard methods
such as 1H-NMR, MS, UV-vis, and elemental analysis.
2The chelators are prepared using a modified procedure as described in Scheme 8.1 (91, 95).
3These chelators are synthesized using established methods (Scheme 8.2) (90, 96).
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4. Remove the solvent under vacuum. Dissolve the residue in 1,2-dichloroethane and
then add benzyloxyethoxymethylchloride (see Note 4) in the presence of a catalytic
amount of trimethylsilyl trifluoromethanesulfonate (see Note 5).

5. Stir the mixture at room temperature for 4 h and then treat with an aqueous solution
saturated with sodium bicarbonate.

6. Discard the aqueous phase. Dry the organic phase over anhydrous Na2SO4 and then
evaporate the solvent under vacuum.

7. Remove the two protection groups simultaneously by hydrogenation with H2/Pt on
active carbon in acidic aqueous ethanol at room temperature for 24 h (see Note 6).

8. Finally, recrystallize the chelators from a 1:1 solution of CH3Cl/MeOH (see Note
7).

3.3. Titration of Chelators with Iron Ions in Buffer Solution
1. To 2.3 mL of 25 mM Tris–HCl buffer, pH 7.5, containing chelators (0.474 mM), add

freshly prepared Fe(NO3) 3 solution (15.1 mM) in Tris buffer gradually in small
aliquots of 5 µL each.

2. Monitor the change in absorbance due to the formation of chelator–iron complexes
photometrically at 450 nm or higher. The chelators and iron form purple complexes
with typical absorption in the visible range over 450 nm, whereas free chelators absorb
maximally 280 nm (see Note 8).

3.4. Iron Removal by Chelators from Ferritin
1. To study the mobilization of iron from ferritin, incubate horse spleen ferritin (9.2 µL

of 100 mg/mL stock solution) with chelators (0.474 mM) in 2.3 mL of Tris buffer
solution (25 mM, pH 7.5) at 37°C for 72 h.

2. Monitor the changes in absorbance due to the formation of iron–chelator complex
spectrophotometrically at different time intervals. The kinetics of the iron release was
investigated for periods up to 72 h (see Note 9).

3.5. Iron Removal by Chelators from AD Brain Sections In Vitro
The ability of chelators to mobilize iron from brain sections can be examined via histochemical
method (80,93).

1. Fix the tissue specimens, collected from the hippocampal region of AD patients
(see Note 10), in methacarn (see Note 11) overnight at 4°C.

4(2-Acetoxyethoxy)methyl bromide can be used to replace benzyloxyethoxymethylchloride (97).
5SnCl4 could also be used as catalyst in the alkylation reaction but might result in separation difficulties and low yields (98).
6The de-protection procedure can be achieved by using BBr3 in CH2Cl2 at 4°C (99–101).
7To evaluate whether the linked (2′-hydroxyethoxy)methyl moiety affected the geometry of the iron binding site in the chelators,
molecular and crystal structures of EHEMHP were determined by X-ray crystallographic analysis. A piece of colorless crystal (0.33 ×
0.33 × 0.11 mm) formed in methanol-ethyl acetate solution was used for X-ray measurement with an Enraf-Nonius CAD-4 diffractometer
equipped with a graphite monochromator of Mo Kα (0.71073 Å) (90). The results indicate that there is no significant change in the
geometry of iron binding site. An ORTEP stereo-view of the EHEMHP molecular structure was depicted in Fig. 8.2.
8Typical titration curves using MHEMHP and EHEMHP as prototype are presented in Fig. 8.3. The endpoints of the titration indicate
the formation of chelator/iron (3:1) complexes (89,90).
9The concentrations of iron–chelator complexes are estimated from εmax values at the wavelength of λmax of the complexes (89,90).
Fig. 8.4 shows the iron removal from ferritin by MHEMHP and EHEMHP as a prototype compared with DFO. It also shows that the
chelators are more effective to remove iron from ferritin than DFO.
10Brain tissue from transgenic mouse models can also be used in this kind of studies (93,102).
11The use of methacarn instead of formalin for fixation can provide more accurate results (93,102).
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2. Place the brain tissues in 50% ethanol, dehydrate in ascending concentrations of
ethanol and finally embed them in paraffin.

3. Thin sections (thickness: 6 µm) of the tissue and mounted on silane-coated slides.

4. Deparaffinize the tissue sections with two changes of xylene (10 min each) and then
re-hydrate through graded ethanol/TBS mixture.

5. Apply 40 µL of PBS containing various concentrations chelator(s) to each section
and incubate overnight at 37°C.

6. At the end of incubation period, rinse the tissue sections thoroughly with TBS.

7. Incubate at 37°C for 2 h in 7% (w/v) potassium ferrocyanide in 3% (w/v) HCl in
water.

8. Rinse the sections Tris–HCl buffer and subsequently incubate in 0.75 mg/mL 3,3′-
diaminobenzidine and 0.015% H2O2 for 5–10 min.

9. Finally, dehydrate tissue sections through graded ethanol, put coverslip, and examine
using differential interference microscopy (see Note 12).

3.6. Conjugation of Iron Chelators with Nano or Microsphere Particles
As a prototypic procedure (see Note 13), a simple method of particle–chelator conjugation by
forming an amido bond is presented. Monodispersed polystyrene particles with carboxyl
groups on the surface (Bangs Laboratories, Fishers, IN) were used to conjugate MAEHP or
MAPHP as prototypic chelators, each of which contained a free primary amino group available
for the conjugation (see Note 14).

1. Prepare a suspension of carboxylated particles by pipetting and vortexing and
immediately transfer into a micro-centrifuge tube.

2. Remove the supernatant by centrifugation.

3. Re-suspend the particles in 0.01 N NaOH solution, mix well, and repeat the process.

4. Wash the particles twice with 0.1 M of MES (2-[N-morpholino] ethane sulfonic acid)
buffer (pH 5.0) and once with cold Milli-Q water.

5. Carboxyl groups on the particles are to be activated by adding cold Milli-Q water
containing N-cyclohexyl- N′-(2-morpholinoethyl)carbodiimide methyl-p-
toluensulfonate (CMC, 0.01M) and incubating for 10 min at 4°C with slow tilt
rotation.

6. After removing the supernatant, add CMC solution again along with MES buffer (0.3
M, pH 5.0).

7. Vortex the mixture and incubate as described above for 30 min.

8. Wash the activated carboxyl groups containing particles twice with cold 0.1MMES
as quickly as possible and resuspend in MES buffer (0.1 M, pH 5.0) containing excess
MAEHP or MAPHP (0.01M) (see Note 15).

12The results show that chelators are capable of depleting iron from the AD brain tissue sections (Fig. 8.5), which depends on the chelator
chemical structures and concentrations used (80,103). This method also provides a useful tool to screen potential chelators for mobilization
of iron from the AD brain.
13A variety of covalent bonds including amido, amino, ether, and thioether can be easily formed for linking chelators and particles, which
are dependent on the existing functional groups located on chelator side chains and on the surface of particles (94,104,105).
14The preparation of the chelator–particle conjugates is presented in Scheme 8.3 (103).
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9. Vortex the mixture followed by incubation for 30 min at room temperature with tilt
rotation.

10. Wash twice the chelator–particle systems with 0.1 M MES buffer and PBS, store in
PBS at 4°C.

11. Determine the yields of chelator conjugation by measurements of the free chelator
concentrations in the solutions before and after conjugation using UV-visible
spectrometer (or HPLC) at the wavelength of maximum absorption (94).

12. Concentrations and size distributions of the chelator–particle systems could be
determined using a Beckman Coulter Multisizer II in a counting cuvette containing
Isoton II diluent or using a Coulter N4 Plus Sub-micron Particle Sizer.

3.7. Reaction of Chelator–Particle Systems with Ferric Iron
1. Add an aliquot of freshly prepared ferric iron solution (Fe(NO3)3, 0.002 M in MES

buffer 0.01 M, pH 5.0) to MES (0.01 M, pH 5.0) solution containing suspended
MAPHP–particle systems as prototype, or plain particles as a control.

2. Allow the mixture to rotate at room temperature for 4 h. The iron–chelator–particle
systems and supernatant are separated by centrifugation.

3. Wash the systems thoroughly with MES buffer 5 times to remove non-complexed
iron ions.

4. After combination of the supernatants, add excess MAPHP in MES buffer (0.01 M)
to complex the iron ions that does not react with the chelator–particle systems. The
visible absorbance of the iron–MAPHP complex is measured using UV-visible
spectrophotometry at a maximum wavelength of 455 nm (ε 3.02 × 103) after the
chelating reaction reached equilibrium.

5. Obtain a standard curve for iron concentration by measuring several solutions of iron–
MAPHP complex with known iron concentrations to estimate the amount of non–
complexed iron with the chelator–particle systems (see Note 16).

3.8. Protein Absorptions of Chelator–Particle Systems and Chelator–Particle Systems with
Iron

The absorbed proteins on chelator–particle systems and chelator–particle systems with iron,
which are obtained by reaction of ferric iron with chelator–particle systems, were evaluated
using 2-D PAGE analyses.

1. Incubate separately the chelator–particle systems that are overcoated with polysorbate
80 at room temperature and the chelator–particle systems with iron (100 µL of each
system, 2.5% w/v in PBS buffer) in 1 mL of citrated human plasma for 5 min at 37°
C (92).

2. After separating by centrifugation, wash the systems four times with Milli-Q water.

15The particles are rapidly washed with cool Mill-Q water since the active intermediate ester is unstable and undergoes hydrolysis.
Alternatively, a water-soluble N-hydroxyl compound like sulfo-N-hydroxysuccinimide (NHS) could be added to increase the coupling
yield. This is because NHS is known to form a more stable intermediate ester by replacing the oacylisourea intermediate formed by
carbodiimide. The NHS-formed ester is less susceptible to hydrolysis but still highly reactive toward amino groups (106,107).
16Interestingly, this bi-dentate iron chelator converts to hexandentate chelators after conjugation to particles because the particles
provided backbone linkages. This phenomenon greatly improved the metal binding stability and lowered toxicity associated with metal–
chelator complexes. DFO still retains its hexadentate iron binding property after conjugation to particles (103).
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3. Elute the adsorbed proteins from the particle surface with a protein solubilizing
solution (5% SDS), 5% dithioerythritol, 10% glycerol, and 60 mM Tris, pH 6.8)
(92).

4. In the first dimension of the 2D-PAGE analysis, isoelectric focusing (IEF), the
proteins are separated according to their isoelectric points (pI). Carry out the IEF in
glass tubes of inner diameter 2.0 mm using 2.0% pH 3.5–10 ampholines for 9,600 V-
h.

5. In the second dimension of SDS-PAGE, the separation is based on molecular weight
(MW). Equilibrate each tube for 10 min in 62.5 mM Tris, pH 6.8, buffer containing
2.3% SDS, 50 mM dithioerythritol, and 10% glycerol.

6. Seal to the top of a stacking gel that is on the top of a 10% acrylamide slab gel (145
× 145 × 0.75 mm).

7. Perform SDS slab gel electrophoresis for about 4 h at 12.5 mA/gel.

8. After SDS-PAGE, dry the gels between sheets of cellophane and silver-stained (92)
(see Note 17).
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Fig. 8.1.
Chemical structures of chelators: (a) DFO; (b) L1; (c) deferasirox; and (d) clioquinol.
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Fig. 8.2.
ORTEP stereoview of chelator EHEMHP.
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Fig. 8.3.
Titration of MHEMHP (IIa) and EHEMHP (IIb) with iron.
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Fig. 8.4.
Removal of iron from ferritin by the chelators of MHEMHP (IIa), EHEMHP (IIb), and DFO.
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Fig. 8.5.
Lesion-associated chelatable iron in AD brain sections was depleted with iron chelator
(MAEHP as a prototypal chelator), which was detected histochemically with a modified Perl
Stain. Saline- (a) and MAEHP-treated (b) sections.

Liu et al. Page 19

Methods Mol Biol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.6.
Images of plasma protein patterns examined by 2D PAGE. (a) Plasma; (b) CNPS (MAPHP
conjugated) coated with polysorbate 80; and (c) ICNPS.
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Scheme 8.1.
Synthesis of 2-methyl-N-(2′-aminoethyl (n = 2) or 3′-aminopropyl (n = 3))-3-hydroxy-4-
pyridinone: (a). benzylchloride/NaOH; (b) NH2(CH2) nNH2, n = 2, 3; and (c). BBr3 in
CH2Cl2 at 4°C or hydrogenation with H2/Pt on active carbon.
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Scheme 8.2.
Synthesis of 2-methyl (or ethyl)-N-(2′-hydroxyethoxy)methyl-3-hydroxy-4-pyridinone: (a).
PhCH2Cl/NaOH/refluxing/6 h; (b). NH4OH/rt./48 h; (c). hexamethyldisilazane/
chlorotrimethylsilane; (d). Benzyloxyethoxy-methylchloride, trimethylsilyl
trifluoromethanesulfonate in 1,2-dichloroethane; and (e) H2, Pd/C, AcOH in 95% EtOH. R =
Me or Et.

Liu et al. Page 22

Methods Mol Biol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Scheme 8.3.
Conjugation of iron chelators (MAEHP, n = 2 and MAPHP, n = 3) with particles.
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