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Abstract
γ-amino butyric acid type A (GABAA) receptors play an important role in mediating fast synaptic
inhibition in the brain. They are ubiquitously expressed in the CNS and also represent a major site
of action for clinically relevant drugs. Recent technological advances have greatly clarified the
molecular and cellular roles played by distinct GABAA receptor subunit classes and isoforms in
normal brain function. At the same time, postmortem and genetic studies have linked
neuropsychiatric disorders including schizophrenia and bipolar disorder with GABAergic
neurotransmission and various specific GABAA receptor subunits, while evidence implicating
GABAAR-associated proteins is beginning to emerge. In this review we discuss the mounting genetic,
molecular, and cellular evidence pointing toward a role for GABAA receptor heterogeneity in both
schizophrenia etiology and therapeutic development. Finally, we speculate on the relationship
between schizophrenia-related disorders and selected GABAA receptor associated proteins, key
regulators of GABAA receptor trafficking, targeting, clustering, and anchoring that often carry out
these functions in a subtype-specific manner.
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Introduction
Schizophrenia is a complex psychiatric disorder with a strong genetic component, affecting
approximately 1% of the world population (Perala et al., 2007; Tsuang, 2000). To date,
diagnosis relies solely on the presentation of clinical symptoms, which have been framed into
a reliable set of diagnostic criteria that encompass the positive (delusions, hallucinations,
thought disorder), negative (anhedonia, alogia, asociality), and cognitive (deficits in attention,
executive function, and memory) features of schizophrenia (Lewis et al., 2008). Until recently,
schizophrenia had limited prospective therapeutic targets, namely monoamine
neurotransmitter receptors such as the dopamine D2 and serotonin 5HT2A receptors through
the action of typical and atypical antipsychotics (Conn et al., 2008). While these compounds
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do not adequately address the negative and cognitive components of the syndrome, their
efficacy in attenuating psychotic symptoms has led to the suggestion and subsequent
demonstration that an excess in striatal dopamine release underlies the positive symptoms of
schizophrenia (Morrison and Murray, 2005).

In addition to dopamine hyperfunction, a dysfunctional glutamate signaling hypothesis has
also emerged, initially supported by findings that subanesthetic doses of noncompetitive N-
methyl-D-aspartate receptor (NMDAR) antagonists such as ketamine recapitulate
schizophrenia symptoms in healthy human subjects (Krystal et al., 1994; Malhotra et al.,
1996) and exacerbate symptoms in schizophrenic patients (Lahti et al., 1995). Reinforcing this
idea, it has become increasingly apparent, through advances in our understanding of the
underlying biology, that a significant number of emerging candidate risk genes for
schizophrenia are implicated in various aspects of glutamatergic neurotransmission, such as
synaptic architecture (DISC1, Neuregulin-1, Dystrophin/Dysbindin), NMDAR function
(DAAO, D-Serine Racemase), the interaction of glutamatergic and dopaminergic systems
(RSG4, COMT), as well as the function of other glutamate receptors (mGluR3) (Camargo et
al., 2007; Carter, 2006; Harrison and Weinberger, 2005). There is also strong evidence
implicating impairments of γ-aminobutyric acid (GABA) signaling in the pathophysiology of
schizophrenia. This notion, initially based on early findings that GABA has a profound
influence on dopamine activity (Roberts, 1972; Stevens et al., 1974; Van Kammen, 1977), was
ultimately demonstrated through postmortem studies finding reductions in cortical GABA in
schizophrenic patients (Perry et al., 1979). This hypofunctional GABA hypothesis is now
gaining wide acceptance as genetic, molecular, and circuit-based studies clarify the
contribution of GABA signaling abnormalities to the disease, as well as shed light on the
relationship between GABAergic dysfunction and other affected signaling systems. From a
therapeutic standpoint, GABAA receptors (GABAARs) hold enormous potential for
pharmacological modulation and specificity, owing to the high degree of receptor subtype
heterogeneity combined with differential regional, cellular, and subcellular distributions of
receptor subtypes within the brain. Along these lines, GABAAR functional expression and
distribution are under a high degree of subtype-specific regulation, mediated in part by the
interaction of these postsynaptic receptors with a number of accessory proteins (Fig. 2; Table
2). As will be discussed, cognitive deficits are considered to be core features of schizophrenia
(Elvevag and Goldberg, 2000) and there is strong evidence that disturbances in GABA
signaling may contribute to these deficits. Therefore, in this review, we explore the current
clinical, genetic and molecular evidence implicating components of GABA signaling systems,
including GABAAR subunits and some associated proteins, both as they relate to the etiology
of schizophrenia as well as how they may serve as entry points for therapeutic intervention.

Implications of GABAA receptor structural heterogeneity
The ionotropic GABA type A receptors (GABAARs) mediate the majority of fast synaptic
inhibition in the mammalian brain. These postsynaptic receptors are heteropentamers that allow
the inward flux of Cl- in response to binding of presynaptically released GABA, resulting in
inward, anionic currents that transiently decrease local membrane excitability (Olsen and
Sieghart, 2009). A remarkable feature of the brain GABAARs is the diversity of subunit
isoforms available for assembly into the receptor heteropentamer. At present, 16 subunits, each
encoded by separate genes, have been cloned (α1–6, β1–3, γ1, γ2 [short and long splice forms],
γ3, δ, ε, π and θ) (Barnard et al., 1998; Bonnert et al., 1999; Jacob et al., 2008; McKernan and
Whiting, 1996; Sieghart, 1995; Whiting et al., 1995). Sequence homology places the
GABAAR in the superfamily of ligand-gated ion channels that include the nicotinic
acetylcholine receptor (nAChR), the strychnine-sensitive glycine receptor (GlyR) and the
serotonin type-3 receptor (5HT3R) (Grenningloh et al., 1987; Julius, 1991; Maricq et al.,
1991; Schofield et al., 1987). Subunits of all superfamily members share the same predicted
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transmembrane topology (Fig. 1). These subunit polypeptides contain four transmembrane
domains with a large extracellular N-terminal region, a large intracellular loop between
transmembrane domains 3 and 4 (TM 3 and 4), and a small, extracellular C-terminal domain
(Fig. 1) (MacDonald et al., 2005). When assembled, the native GABAAR subunits are arranged
in a pentameric array such that the second transmembrane region (TM2) of each subunit
contributes to the lining of the chloride channel pore (Fig. 1) (Imoto et al., 1986; Tierney et
al., 1998).

Studies employing recombinant receptor expression as well as immunoprecipitation of native
receptors have demonstrated that, despite an immense number of possible permutations of the
16 GABAAR subunit isoforms that could be combined to form the heteropentamer, native
GABAAR stoichiometry is guided and limited by general rules of assembly. Heterologous
expression studies using various subunit combinations have demonstrated the requirement for
the coassembly of α, β and γ subunits in order to replicate the major electrophysiological and
pharmacological properties of the native GABAAR (Pritchett et al., 1988; Pritchett et al.,
1989). In the brain, the majority of GABAAR subtypes are assemblages of two α, two β and
one γ subunit (Fig. 1) (Chang et al., 1996; Khan et al., 1996; Klausberger et al., 2000). The
most abundant of these, comprising about 40% of the total GABAAR pool in the brain, consists
of two α1, two β2 and one γ2 subunit (McKernan and Whiting, 1996).

GABAARs are sensitive to a considerable number of pharmacological agents
(benzodiazepines, barbiturates, neurosteroids, and ethanol) and different GABAAR subtypes
have been shown to exhibit unique pharmacological profiles (Costa, 1998; Vicini, 1991). The
benzodiazepine-binding site is formed between α and γ subunits (Fig. 1) (Amin and Weiss,
1993; Smith and Olsen, 1995), and the α subunit influences the sensitivity of a given subtype
to different benzodiazepine site ligands (Hadingham et al., 1993). In addition, different subunit
compositions confer different affinities for GABA and determine the desensitization kinetics
and channel properties (Gingrich et al., 1995; Lavoie and Twyman, 1996; Verdoorn, 1994;
Wafford et al., 1993).

As described above, GABAAR subunit heterogeneity leads to pharmacological and functional
diversity, which is paralleled by the differential regional distribution of GABAAR subtypes
throughout the brain as well as at the subcellular level (Fritschy and Brunig, 2003). The
combined efforts of many groups have characterized the differential mRNA and protein
distributions of the GABAAR subunits throughout the brain (reviewed by Olsen and Sieghart,
2009). With respect to GABAAR subcellular distribution, it has been reported for example that
in cerebellar granule cells, GABAARs containing the γ2 subunit are synaptically localized
while those containing the δ subunit in place of the γ2 subunit are localized extrasynaptically
(Fig. 1) (Nusser et al., 1998). In forebrain pyramidal neurons, GABAARs containing the α1
subunit are expressed throughout the somatodendritic region while those containing the α2
subunit are concentrated preferentially at the axon initial segment (Loup et al., 1998; Nusser
et al., 1996). Taken together, subunit structural heterogeneity is the major determinant of
pharmacological profile, channel kinetics, and subcellular localization of distinct GABAAR
subtypes. That these subunits are expressed at varying levels in different cell types throughout
the brain suggests that distinct GABAAR subtypes are regionally distributed in a manner that
is specific for the neural circuits in which they participate. Since the pathological entity of
schizophrenia and related disorders in the adult brain is ultimately characterized by deficits in
neural circuitry (Carlsson, 2006; Lisman et al., 2008), GABAARs are ideal therapeutic targets
because of their putative role in circuit dysfunction (as described below) combined with circuit-
specific expression of subtypes exhibiting unique pharmacological properties.
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Modified GABAAR expression in schizophrenia
The role of DLPFC GABAergic dysfunction in schizophrenia

Studies using functional magnetic resonance imaging (fMRI) during working memory tasks
in schizophrenic subjects indicate that deficits in working memory, the cognitive processes
involved in maintaining and manipulating information, is correlated with disturbances in
dorsolateral prefrontal cortical (DLPFC) activity (Lewis et al., 2004). Furthermore, working
memory deficits as well as disturbances in DLPFC activity are predictive of the severity of
cognitive disorganization in patients with schizophrenia (Perlstein et al., 2001). These deficits
appear to be specific for schizophrenia, as they are not present in individuals with major
depression (Barch et al., 2003) or nonschizophrenia-related psychosis (MacDonald et al.,
2005). At the same time, studies have also revealed that GABAergic interneuron activity is
essential for spatial tuning in the DLPFC during working memory tasks (Rao et al., 1999) and
that local injection of GABAAR antagonists to the DLPFC disrupts working memory
performance in macaque monkeys (Sawaguchi et al., 1989). Thus, in the DLPFC, GABAergic
inhibition controls the timing of principal neuron activities and, in doing so, controls the
temporal flow of information during working memory tasks (Constantinidis et al., 2002).

Alterations in the expression of DLPFC GABAergic signaling components in schizophrenia
Numerous postmortem studies have indicated that mRNA expression of the GABA-
synthesizing enzyme, glutamic acid decarboxylase of 67 kD (GAD67), is reduced in a subset
of GABAergic interneurons in schizophrenic patients (Fig. 2) (Akbarian et al., 1995;Guidotti
et al., 2000;Hashimoto et al., 2008a;Hashimoto et al., 2008b;Hashimoto et al., 2005;Mirnics
et al., 2000;Straub et al., 2007;Vawter et al., 2002;Volk et al., 2002). Although corresponding
decreases in GAD67 protein has only been demonstrated in one of these studies (Guidotti et
al., 2000), these data are likely related to the observed deficits in cortical GABA reported in
early postmortem studies of schizophrenic patients (Perry et al., 1979) as well as a more recent
study in living patients using 2D proton magnetic resonance (Rosso et al., 2006). Interestingly,
these losses in GAD67 were largely confined to parvalbumin (PV)-expressing chandelier and
wide-arbor basket interneurons located in the middle layers of the cortex. PV is a Ca2+-binding
protein that is thought to reduce residual Ca2+ levels in axon terminals during repetitive firing,
but is also postulated to prolong neurotransmitter release by maintaining elevated Ca2+ levels
(Collin et al., 2005;Lisman et al., 2008). These fast-spiking PV-expressing interneurons target
the perisomatic regions (basket interneurons) and the axon initial segments (chandelier
interneurons) of multiple pyramidal neurons simultaneously (Fig. 2) (Conde et al., 1994;Lewis
and Lund, 1990;Peters et al., 1982;Somogyi, 1977) and can thus synchronize the activity of
local pyramidal cell populations (McBain and Fisahn, 2001). Such synchronized networks give
rise to oscillatory activity in the gamma band frequency range (30-80 Hz), which has been
correlated with working memory load in healthy human subjects (Howard et al., 2003;Tamas
et al., 2000) but is impaired in schizophrenic patients (Cho et al., 2006). Thus, disturbances in
executive function of schizophrenic patients, such as working memory, might result from
disruptions in the synchronized firing activity of cortical networks normally coordinated by
PV-interneurons, the latter of which are deficient in GABA release due to a selective loss in
GAD67 expression.

In addition to reductions in GAD67 mRNA expression in PV-interneurons, concurrent
reductions in mRNA levels for GAT1 (the high-affinity GABA transporter; Fig. 2) and PV
have also been observed in these interneurons (Lewis et al., 2005;Woo et al., 1998). Moreover,
decreases in GAT1 immunoreactivity (IR) at chandelier cell axon terminals, as well as increases
in the IR of GABAAR α2 subunit at the AIS of pyramidal neurons, which are contacted by
chandelier terminals, have also been described (Fig. 2) (Lewis et al., 2005). As noted in the
previous section, GABAARs containing the α2 subunit are selectively localized to the AIS of
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forebrain pyramidal neurons (Nusser et al., 1996). While the GABAAR α2 is not expressed
only on the AIS of pyramidal neurons, it is worth noting that, when measured in hippocampal
pyramidal neurons, the GABAAR α2 subunit was found to be present in greater than 80% of
all pyramidal cell AIS synapses (Nusser et al., 1996;Nyiri et al., 2001) whereas it is thought
that only 15% of all GABAARs contain the α2 subunit (Fritschy and Mohler, 1995). This is a
significant point since this upregulation of α2 subunit IR is thought to indicate a compensatory
attempt to increase GABAergic synaptic strength precisely at the chandelier-AIS synapse. In
fact, the alterations in GAT1, GABAAR α2 subunit, and PV expression are thought to reflect
compensatory changes that arise in response to the primary pathology of GAD67 loss in these
interneurons (Lewis et al., 2005), which itself is thought to result from altered methylation of
GAD1, the gene encoding GAD67 (Benes et al., 2007;Costa et al., 2003;Huang and Akbarian,
2007;Ruzicka et al., 2007;Tochigi et al., 2008;Veldic et al., 2007). Recently, it has been
reported that in addition to those associated with GABAergic transmission at the chandelier-
pyramidal cell synapse, mRNA expression of GABAAR subunits associated with other
interneurons in the DLPFC is also altered (Hashimoto et al., 2008a). For example, significant
reductions in GABAAR α1, α4, γ2, and δ subunit expression was detected in the distal dendrites
of pyramidal cells, contacted by somatostatin/neuropeptide Y-expressing neurons, in the
DLPFC of schizophrenic subjects (Fig. 2) (Hashimoto et al., 2008a). The reduction in γ2
subunit expression reinforces an earlier study which found a significant reduction in the short
isoform of the GABAAR γ2 subunit (γ2S) over the long isoform (γ2L) in the DLPFC of
schizophrenic patients compared to control subjects (Huntsman et al., 1998). The γ2S isoform
is identical to the γ2L isoform except that the γ2S form lacks an 8 amino acid insert in the large
intracellular loop containing a protein kinase C (PKC) phosphorylation site that, when
phosphorylated, causes a reduction in GABA-mediated current amplitudes (Krishek et al.,
1994). Whether these alterations in γ2 expression reflect cause or consequence of the disease
is not known, however it stands to reason that a preferential reduction in the γ2S isoform might
lead to significant reductions in GABAergic inhibition in the DLPFC since 1) this change
would result in an overrepresentation of GABAAR subtypes containing the γ2L subunit
isoform, 2) observations with recombinant GABAARs containing γ2L suggest the remaining
γ2L-containing subtypes in the DLPFC will exhibit a diminished response to GABA, and 3)
the γ2 subunit is the most ubiquitous synaptic GABAAR subunit in the brain (Olsen and
Sieghart, 2009).

Alterations in GABA signaling components associated with schizophrenia are not restricted
to the DLPFC. Within the granule cell layer of the cerebellum, reductions in the mRNA levels
of GAD65/67, with elevations in the mRNA levels of GABAAR α6 and δ subunits have been
reported (Bullock et al., 2008). In the hippocampus, mRNA levels of GAD65/67 were reduced
in all layers of CA2/3 as well as in the stratum oriens of CA1, as determined by laser-capture
microdissection in postmortem tissue (Benes et al., 2007). Moreover, cortical regions outside
the DLPFC such as the primary visual cortex, primary motor cortex, and anterior cingulate
cortex have also been shown to exhibit reductions in the mRNA levels of GAD67, GAT1, and
GABAAR α1 and δ subunits (Hashimoto et al., 2008b).

GABAAR as a therapeutic target for schizophrenia
Given that cognitive deficits are considered to be core features of schizophrenia (Elvevag and
Goldberg, 2000), and given the strong evidence implicating disturbances in GABA signaling
as contributing to these deficits, it is not surprising that the effects of GABA-modulating drugs
on clinical measures related to schizophrenia, including cognitive and positive symptoms, have
been investigated. One early study investigated bretazenil (Ro 16-6028), a short-acting partial
benzodiazepine agonist, on clinical outcome measures predictive of antipsychotic efficacy in
schizophrenic patients (Delini-Stula and Berdah-Tordjman, 1996; Delini-Stula et al., 1992).
Using semi-quantitative measures of psychosis, results of these studies indicated that
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approximately half of the subjects responded favorably to treatment compared to placebo
control. Other studies have demonstrated the efficacy of diazepam, a classical benzodiazepine
agonist, in preventing psychotic symptom progression in schizophrenic patients (Carpenter et
al., 1999; Kirkpatrick et al., 1989).

Recently, a clinical study was carried out to test the effect of benzodiazepines on working
memory performance in schizophrenic subjects. Curiously, this study concluded that
lorazepam, a relatively non-selective GABAAR positive allosteric modulator, exacerbated
working memory deficits in schizophrenic patients, while flumazenil, a GABAAR partial
inverse agonist, ameliorated working memory deficits in these patients (Menzies et al.,
2007). While the efficacy of a partial inverse agonist in improving working memory does not
appear to be in line with the hypothesis that GABA deficiencies contribute to deficits in working
memory, flumazenil has been reported to enhance learning and memory in rodents, presumably
by increasing arousal and anxiety (Lal et al., 1988). This arousal- or anxiety-related effect may
reflect the broad binding profile of flumazenil, however it has also been reported that α5
subunit-selective inverse agonists, such as alpha5IA, improve working memory in rodents
(Chambers et al., 2004; Dawson et al., 2006; Sternfeld et al., 2004). This is consistent with
studies showing that the GABAAR α5 subunit is highly enriched in the hippocampus over other
brain regions (Fritschy and Mohler, 1995) and that α5 null mutant mice exhibit enhanced
cognition (Collinson et al., 2002). While these studies point toward the α5-selective alpha5IA
as a candidate for overcoming cognitive deficits associated with schizophrenia, prolonged
clinical studies have been excluded since a metabolite of this compound was shown to be highly
insoluble leading to renal toxicity in preclinical studies (Atack, 2008). Moreover, α5-selective
compounds, such as alpha5IA, have not been tested in rodent models of schizophrenia. Since
it is postulated that hippocampal hyperactivity may underlie the excessive dopamine release
associated with psychosis (Lodge et al., 2009; Lodge and Grace, 2008), antagonizing a
GABAAR subtype highly enriched in the hippocampus might be expected to exacerbate
psychotic symptoms. Nevertheless, these studies underscore the potential utility of GABAAR
subtype-selective compounds in addressing the cognitive deficiencies central to schizophrenia
psychopathology.

A similar approach in targeting specific GABAAR subtypes for improving working memory
in schizophrenia has exploited the restricted localization of α2 subunit-containing GABAARs
to the pyramidal neuron AIS, combined with the putative role chandelier neuron inhibition
plays in generating pyramidal cell network oscillations (Lewis et al., 2005; Lewis et al.,
2004). Moreover, the compensatory upregulation of α2-containing receptors in schizophrenia
suggests that further agonism at this receptor subtype might be beneficial. Thus, treatment with
a α2-selective benzodiazepine site agonist would be predicted to selectively potentiate GABA
responses predominately at chandelier interneuron synapses onto pyramidal cell AIS, raising
the possibility of enhancing DLPFC pyramidal cell network oscillations at the gamma band
frequency. The development of the α2/3-selective compound, TPA023, suggests that this is
indeed a feasible and attractive pharmacological approach, since this compound exhibits
minimal liabilities normally associated with benzodiazepines such as sedation, ethanol
interaction, dependence, and withdrawal effects (Atack et al., 2006). Moreover, a small proof-
of-concept clinical trial conducted by David Lewis et al. (University of Pittsburgh) has tested
this hypothesis with the Merck compound MK-0777, a GABAAR α2/3-selective
benzodiazepine-like compound, on 15 male subjects with chronic schizophrenia (Fig. 2). The
authors found that, compared to placebo control, MK-0777, administered over four weeks,
improved subject performance in three tasks for working memory and/or cognitive control, as
well as increased gamma band power during one of these tasks (Lewis et al., 2008). This study
provides preliminary evidence that selectively potentiating the postsynaptic response of α2
subunit-containing GABAARs results in cognitive improvement in schizophrenia, providing
a potential new adjunctive therapy that could ameliorate the cognitive deficits of this disorder.
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In addition to benzodiazepines, GABAARs are also sites for endogenous neuroactive steroids
such as allopregnanolone, which potentiate the response to GABA with greater potency than
benzodiazepine binding (Majewska et al., 1986; Morrow et al., 1990; Morrow et al., 1987).
Interestingly, it has been shown that the atypical antipsychotics olanzapine (Marx et al.,
2000; Marx et al., 2003) and clozapine (Barbaccia et al., 2001; Marx et al., 2003) elevate
endogenous allopregnanolone to levels that are sufficient to modulate GABAAR-mediated
neuronal activity. Furthermore, it was shown that administration of allopregnanolone
significantly potentiated olanzapine-induced, but not risperidone- or haloperidol-induced,
inhibition of the conditioned avoidance response and apomorphine-induced climbing, two
rodent models used to predict antispsychotic efficacy (Ugale et al., 2004). These studies support
a hypothesis in which atypical antipsychotics such as olanzapine may ameliorate psychotic
symptoms, in part, through the action of elevating allopregnanolone levels. The role it may
play in the pathophysiology of schizophrenia and its therapeutic potential in humans is not yet
clear, however it has recently been shown in postmortem studies that allopregnanolone levels
are reduced in the parietal cortex of schizophrenic subjects compared to controls (Marx et al.,
2006). Moreover, a recent proof-of-concept pilot trial of another neuroactive steroid,
pregnenolone, demonstrated clinical efficacy in improving cognitive and negative symptoms
in schizophrenic subjects (Marx et al., 2009). Pregnenolone and its derivative pregnenolone
sulfate have been shown to enhance learning and memory in rodents (Akwa et al., 2001;
Darnaudery et al., 2002; Flood et al., 1992, 1995; Ladurelle et al., 2000; Mayo et al., 1993;
Meziane et al., 1996; Pallares et al., 1998; Vallee et al., 1997; Vallee et al., 2001), likely due
in part to the ability of pregnenolone sulfate to act as a positive allosteric modulator at the
NMDA receptor (Bowlby, 1993; Irwin et al., 1994; Wu et al., 1991). Interestingly,
pregnenolone is the biosynthetic precursor to allopregnanolone and administration of
pregnenolone resulted in serum increases in allopregnanolone in this trial (Marx et al., 2009).
Furthermore, the levels of serum allopreganaolone were strongly correlated with cognitive
improvement as measured by composite Brief Assessment of Cognition in Schizophrenia
(BACS) score (Marx et al., 2009). Thus, it is conceivable that metabolism of pregnenolone to
allopregnanolone contributed to its efficacy in this study. To date, however, it is unclear why
neurosteroids such as allopregnanolone might enhance cognition or atypical antipsychotic
efficacy when these molecules are thought to be more potent than benzodiazepines and
barbiturates in potentiating GABAAR activity. This is especially puzzling in light of the above
studies showing that lorazepam, a relatively non-selective GABAAR positive allosteric
modulator, exacerbated working memory deficits in schizophrenic patients, while flumazenil,
a GABAAR partial inverse agonist, ameliorated working memory deficits in these patients
(Menzies et al., 2007). The answer might be related to the increased sensitivity to
allopregnanolone of GABAARs containing a δ subunit in place of a γ subunit (Belelli et al.,
2002; Bianchi et al., 2002; Wohlfarth et al., 2002) combined with the notion that these δ-
containing receptors are localized extrasynaptically (Nusser et al., 1998) and mediate tonic
rather than phasic inhibition, the former of which can be enhanced by neuroactive steroids
(Stell et al., 2003). Thus, treatment with allopregnanolone might represent yet another approach
to selectively targeting specific GABAAR subtypes, though the consequences of targeting these
extrasynaptic receptors are not fully understood in the context of schizophrenia.

Experimental genetics studies linking GABA hypofunction and
schizophrenia

At present, few experimental genetics studies have specifically addressed the role of GABA
hypofunction in the etiology of schizophrenia and related psychiatric disorders. One notable
study that has begun to address this issue, conducted by Heldt et al.(Heldt et al., 2004),
generated mutant mice in which the 65 kD isoform of GAD was deleted. These mice exhibited
robust deficits in prepulse inhibition (PPI) of the acoustic startle response, a behavioral
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phenomenon in which the response to a startling acoustic stimulus is suppressed when the
startling stimulus is preceded by a weaker one. PPI is used as a measure of intact sensorimotor
gating, a mechanism that 1) results in the attribution of salience to behaviorally relevant sensory
stimuli at the expense of irrelevant stimuli, 2) is largely influenced by mesolimbic
dopaminergic neuron activity, and 3) is deficient in untreated schizophrenic patients as well
as in a variety of other psychiatric disorders, including bipolar disorder. Interestingly, the PPI
deficits exhibited by these GAD65-/- mice were reversed by the atypical antipsychotic
clozapine.

Another key study, conducted by Yee et al. (Yee et al., 2005), generated mutant mice lacking
the GABAAR α3 subunit (α3KO). The authors also demonstrated that these α3KO mice exhibit
deficits in PPI and, further, the PPI deficits were reversed by administration of the dopamine
D2 receptor antagonist haloperidol. Since the GABAAR α3 subunit is a major isoform
expressed in dopaminergic neurons of the ventral tegmental area (Okada et al., 2004), a likely
scenario is one in which the loss of function of a major GABAAR subtype leads to disinhibition
of these dopaminergic neurons, resulting in an excess in striatal dopamine, which is thought
to underlie deficits in PPI (Lisman and Grace, 2005). Thus, distinct GABAAR subtypes may
play a prominent role not only in regions involved in cognitive disturbances such as the DLPFC,
but also within the dopaminergic mesolimbic system, which is heavily implicated in the
positive symptoms of schizophrenia. While this last point has not been directly tested, it would
be interesting to determine whether the α2/3-selective compound MK-0777 (described above)
might also influence dopamine release as well as dopamine-related behavioral phenotypes in
animal models of schizophrenia. One such model is based on methylazoxymethanol (MAM)-
administration to pregnant rats during a narrow gestational window (gestational day 17),
resulting in preferentially reduced GABAergic interneurons and elevated VTA activity,
resulting in excessive dopamine release in response to amphetamine challenge in adult
offspring (Lisman et al., 2008). These studies raise the interesting possibility that attenuation
of GABAergic inhibition may be related to the hyperdopaminergic state, a major
neurochemical hallmark of schizophrenia pathology. This concept has been reviewed
extensively (Grace et al., 2007).

Human genetics studies linking GABAAR subunits to schizophrenia and
related disorders
The chromosome 5q GABAAR gene cluster and schizophrenia

The genes encoding the GABAAR α1 (GABRA1), α6 (GABRA6), β2 (GABRB2), γ2
(GABRG2), and π (GABRP) subunits form a cluster in human chromosome 5q34-q35, a region
that in a meta-analysis had been shown to be the second most compelling schizophrenia
susceptibility locus in the genome (Lewis et al., 2003). A genome-wide linkage scan in
Portuguese Island families identified 5q31-5q35 as a susceptibility locus for both schizophrenia
and psychosis (Sklar et al., 2004). A further association study of this GABAAR gene cluster
identified SNPs and haplotypes in GABRA1, GABRA6 and GABRP associated with
schizophrenia in a Portuguese sample (Petryshen et al., 2005). In the same study, Petryshen
and colleagues also looked for effects of disease-related haplotypes on microarray mRNA
expression of GABAAR subunits and found that a haplotype within GABRA1 was associated
with reduced expression of GABAAR α6 subunit mRNA in schizophrenia patients. An
additional haplotype in GABRA1 was associated with increased expression of a set of genes
functionally related to GABAAR function (a group of pre-synaptic proteins and a group of
neurotransmitter receptors). Together, this not only implicates the α1 subunit risk alleles in
GABAAR-specific alterations in expression but also suggests that this subunit can influence
the expression of other relevant proteins, further highlighting the crucial role the GABAARs
may play in the etiology of this disease.
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The GABAAR β2 subunit and schizophrenia
In an initial Chinese population-based study, positive associations were identified between
intronic SNPs and haplotypes in the GABAAR β2 subunit gene (GABRB2) and schizophrenia
(Lo et al., 2004). This initial finding was later replicated with other samples in multiple
independent linkage and association studies (Liu et al., 2005; Lo et al., 2007a; Lo et al.,
2007b; Petryshen et al., 2005; Yu et al., 2006). In fact, in a recent meta analysis of 12 candidate
genes associated with schizophrenia, only the GABRB2 association survived corrections for
multiple testing for all the meta analyses performed in the study (Shi et al., 2008). Interestingly,
a postmortem study exploring the validity of these genomic associations using real-time PCR
found that mRNA expression for the long isoform of the β2 GABAAR subunit (β2L) was
decreased to a greater extent than that for short isoform (β2S) in the DLPFC of schizophrenic
patients (Zhao et al., 2006). Thus, the expression of alternative splice forms of the GABAAR
β2 subunit might be differentially affected in schizophrenia. Although the functional
consequences of this is not fully understood, a putative calcium-calmodulin dependent kinase
II (CaMKII) phosphorylation site is present within the large intracellular loop of the β2L
isoform but not in the β2S isoform (McKinley et al., 1995). Moreover, it was demonstrated
that recombinant β2L-containing GABAARs exhibit greater GABA-mediated current rundown
compared to β2S-containing receptors, and it has been suggested that differential
phosphorylation may account for these distinct electrophysiological properties (Zhao et al.,
2006). Taken together, GABRB2 is the strongest candidate GABAAR subunit gene associated
with schizophrenia, implicated by several independent reports including a follow-up validation
study and two independent meta-analyses (Allen et al., 2008; Liu et al., 2005; Lo et al.,
2007a; Lo et al., 2004; Lo et al., 2007b; Petryshen et al., 2005; Shi et al., 2008; Yu et al.,
2006; Zhao et al., 2006; Zhao et al., 2007). While β2 subunit-containing GABAARs are the
most abundant in the brain (McKernan and Whiting, 1996), it is worth noting that β2-containing
GABAARs are highly enriched over β1- and β3-containing GABAARs in the globus pallidus
of the rat (Schwarzer et al., 2001), the major target for GABAergic medium spiny output
neurons of the striatum. These medium spiny neurons receive dopaminergic inputs from both
the substantia nigra and ventral tegmental area and are thought to be critical components of
the circuitry underlying psychosis associated with excess dopamine release. This, combined
with the importance of the β subunits in GABAAR trafficking (Jacob et al., 2008) may prove
critical in understanding the genetic basis for hypofunctional GABA systems in schizophrenia.

The GABAAR β1 subunit and bipolar disorder
A growing number of genetic variants that confer risk for psychiatric disorders such as
schizophrenia and bipolar disorder are beginning to emerge by whole genome association scans
(GWAS), an unbiased approach to detect correlations between genetic variation and disease
susceptibility (Hirschhorn and Daly, 2005). This approach employs microarray platform
technologies to examine hundreds of thousands of individual single-nucleotide polymorphisms
(SNPs) across genomes of large cohorts of cases and healthy controls (Hirschhorn and Daly,
2005). Recently, the Wellcome Trust Case Control Consortium (WTCCC) undertook a GWAS
study of ∼3000 shared controls and ∼2000 cases for each of seven human diseases including
bipolar disorder (WTCCC, 2007). While this study did not include cases formally diagnosed
with schizophrenia, there is increasing evidence pointing to an overlap in genetic susceptibility
for schizophrenia and bipolar disorder (Craddock and Owen, 2005). Among the highest ranked
GWAS signals in the bipolar disorder dataset of the Wellcome Trust study, which was derived
from 1868 cases, was the GABRB1 gene encoding the GABAAR β1 subunit (WTCCC,
2007). In a follow-up study, the GABRB1 risk allele identified in the Wellcome Trust study
was found to be strongly associated with a subset of cases (279 of the 1868 bipolar cases) that
met the criteria for schizoaffective bipolar type, a phenotype characterized by psychotic
symptoms (delusions and/or hallucinations) (Craddock et al., 2008). Moreover, when only
these 279 schizoaffective bipolar cases were tested for association at other GABAAR genes,
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additional significant associations for GABAAR α4, α5, and β3 were revealed (Craddock et
al., 2008). Interestingly, no association to GABAAR genes were found when those 1589 cases
that did not meet the criteria for schizoaffective bipolar type were compared to control subjects
(Craddock et al., 2008).

Specificity of GABAAR modification to schizophrenia etiology
While the above studies relate schizophrenia and similar disorders to altered GABAAR subunit
expression and genetic variation, it remains to be firmly established whether these alterations
1) are in fact etiological rather than compensatory or in some other way a response to the disease
process, particularly with respect to GABAAR subunit expression, and 2) are specific to
schizophrenia and related disorders rather than common features of psychiatric disorders.
Indeed, the increase in GABAARAR α2 subunit immunoreactivity in the axon initial segment
of cortical pyramidal neurons of subjects with schizophrenia is thought to play a compensatory
role in response to reduced GABA release by PV-containing interneurons (Volk et al., 2002).
This, however, does not preclude the value of α2-containing GABAARs as therapeutic targets
for schizophrenia, as has recently been demonstrated (Lewis et al., 2008). Moreover, this
increase appeared to be specific for schizophrenia since it was shown that the increase in α2
immunoreactivity was not detected in matched subjects with major depressive disorder, even
when this disorder was accompanied by psychotic symptoms (Volk et al., 2002). Thus, the
increase in α2 subunit immunoreactivity at cortical pyramidal neuron axon initial segment does
not appear to be characteristic of psychosis in general.

It might also be argued that these changes in α2 subunit expression are related to comorbid
substance abuse since 1) numerous reports have demonstrated that genetic variation in the gene
encoding the α2 subunit is strongly associated with risk for alcoholism (Covault et al., 2004;
Covault et al., 2008; Dick et al., 2006; Edenberg et al., 2004; Fehr et al., 2006; Lappalainen et
al., 2005; Soyka et al., 2008) and drug abuse (Agrawal et al., 2006; Drgon et al., 2006), and 2)
substance abuse, including that of alcohol and cannabis, is the most common psychiatric
comorbidity among patients with schizophrenia (Cantor-Graae et al., 2001; Mueser et al.,
1990). However, the increase in α2 subunit expression does not appear to result from mutation
within the α2 subunit gene, since alleles associated with increased risk for schizophrenia have
not been identified within the GABAAR α2 subunit gene. In addition, studies have
demonstrated that GABAAR α2 subunit mRNA is decreased rather than increased when rats
were subjected to prolonged ethanol exposure (Mhatre et al., 1993; Montpied et al., 1991),
while human postmortem studies found that GABAAR α2 subunit mRNA levels were
unchanged in the cerebral cortex of alcoholic cases compared to that of control subjects
(Thomas et al., 1998).

Reductions in GABAAR α1 and δ subunit mRNA in the DLPFC, as well as other cortical
regions, of schizophrenic subjects were recently reported (Hashimoto et al., 2008a; Hashimoto
et al., 2008b). At the same time, reductions in α1 and δ subunit mRNA have been detected in
the frontopolar region of postmortem samples obtained from suicide victims (Merali et al.,
2004), which may confound interpretation of results from schizophrenic subjects where the
cause of death was suicide. However, in the studies cited, the reduced levels of α1 and δ subunit
mRNA in schizophrenic subjects compared to controls could not be attributed solely to samples
obtained from subjects whose cause of death was suicide (Hashimoto et al., 2008a).

The extent to which SNPs and haplotypes within the 5q34 GABAAR gene cluster are specific
for schizophrenia risk is confounded by recent reports showing that this region is also
associated with mood disorders in female patients (Yamada et al., 2003). Approximately half
of the mood disorder cases in this study were formally diagnosed with bipolar disorder, with
which 5q34 SNPs were significantly associated, consistent with a previous study (Horiuchi et
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al., 2004). This might be consistent with recent studies highlighting the increasingly recognized
overlap in genetic vulnerability between schizophrenia and bipolar disorder (Badner and
Gershon, 2002; Berrettini, 2003; Cardno et al., 2002; Fallin et al., 2005; Lichtenstein et al.,
2009). However, these SNPs were also significantly associated with unipolar mood disorder
(Yamada et al., 2003), a finding less easily reconciled. It should be noted, however, that the
functional consequences of these SNPs in mood disorder patients have yet to be elucidated.
This may be important, since different risk alleles, even within the same gene, may be
associated with distinct functional consequences. For example, Petryshen and colleagues
(2005) have shown that the haplotype within the GABAAR α1 gene that was overrepresented
in schizophrenic patients was correlated with reductions in GABAAR α6 mRNA expression
(Petryshen et al., 2005). Similar explorations into the specific effects of genetic variation are
necessary in order to reconcile the apparent overlap in susceptibility loci between schizophrenia
and other neuropsychiatric disorders.

GABAA receptor associated proteins and psychiatric disease
Much of the sequence diversity among the GABAAR subunits is attributed to the intracellular
loop between TM3 and TM4, which represents the largest intracellular domain with the highest
amino acid sequence variability among the GABAAR subunit isoforms (Olsen and Tobin,
1990). The specific interaction of defined amino acids in the GABAAR intracellular loops with
intracellular interacting proteins is thought to mediate key regulatory processes such as
intracellular vesicular trafficking, plasma membrane insertion, synaptic clustering, turnover,
and functional modulation by protein phosphorylation, palmitoylation and ubiquitination.
These GABAAR-interacting proteins have been identified over the last 10 years by a
combination of biochemical, cell biological, and physiological assays (for further detail, see
reviews by (Arancibia-Carcamo and Moss, 2006; Chen and Olsen, 2006). Given the emerging
roles for these proteins in regulating the functional expression of GABAARs, we have evaluated
their possible roles in the etiology of psychiatric disorders.

GABAAR associated proteins implicated by whole genome homozygosity association
While the GWAS approach has revolutionized the search for rare disease-related genetic
variants, it has been argued that GWAS requires especially conservative statistical thresholds,
which might lead to false negative results (Lencz et al., 2007). An extension of this approach,
termed whole genome homozygosity association (WGHA), addresses this potential limitation,
by first identifying regions of SNPs that exhibit extended homozygosity, called runs of
homozygosity (ROH), followed by association analysis of these regions to identify
susceptibility loci. This approach is based on the notion that large regions of homozygous SNPs
can be found in common between groups of individuals without direct common lineage,
reflecting loci with low recombination rates (Lencz et al., 2007). In the first study to employ
this technique, Lencz et al. (2007) found that genes encoding two GABAAR-associated
proteins, gephyrin (GPHN) and N-ethylmaleimide sensitive factor (NSF) were located within
ROHs identified as susceptibility loci for schizophrenia.

Gephyrin (Fig. 2) was originally identified as a 93 kD protein that co-purified with the glycine
receptor (GlyR) (Schmitt et al., 1987) and was found to interact with an 18 amino acid region
of the large intracellular loop of the GlyR β subunit (Meyer et al., 1995). In addition to its
association with the GlyR, colocalization of gephyrin and GABAAR clusters has been
demonstrated both in the rat brain and in cultured neurons (Christie and de Blas, 2002;Christie
et al., 2002;Craig et al., 1996;Danglot et al., 2003;Essrich et al., 1998;Giustetto et al.,
1998;Sassoe-Pognetto et al., 2000). Although convincing evidence for direct binding of
gephyrin to any GABAAR subunit has eluded investigators for more than 10 years, gephyrin
was recently reported to interact with a 10 amino acid hydrophobic motif within the large
intracellular loop of the GABAAR α2 subunit and, further, this domain was shown to regulate
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GABAAR synaptic accumulation in a gephyrin-dependent manner (Tretter et al., 2008). Earlier
studies using gephyrin and GABAAR γ2 subunit knockout mutant mice revealed the mutual
dependence of gephyrin and the γ2 subunit in the clustering and maintenance of α2/γ2-
containing GABAARs at GABAergic synapses (Essrich et al., 1998;Kneussel et al.,
1999;Schweizer et al., 2003). For example, the loss of GABAAR clustering in γ2 knockout
mice was paralleled by a loss of synaptic gephyrin clusters (Essrich et al., 1998). Studies using
hippocampal pyramidal cells derived from gephyrin-deficient mice suggested that gephyrin is
essential for postsynaptic localization of α2/γ2-containing GABAARs (Kneussel et al., 1999).
Furthermore, gephyrin might be important for GABAAR insertion or stabilization at the
synaptic membrane, since the loss of synaptic α2 and γ2 immunoreactive puncta was paralleled
by an increase in intracellular α2 and γ2 microclusters in gephyrin-deficient neurons, but not
accompanied by a change in overall levels of α2 or γ2 subunits (Kneussel et al., 1999).
However, studies with spinal chord sections of gephyrin-deficient mutant mice provided
evidence for the existence of gephyrin-independent clustering mechanisms for the α1 and α5
subunit-containing GABAARs, the synaptic clusters of which were not abolished in the spinal
cord sections of gephyrin-deficient mutants (Kneussel et al., 2001). Moreover, contrary to
earlier findings, another study using cultured hippocampal neurons derived from gephyrin-
deficient mice showed only a partial decrease in the number of synaptic GABAAR α2/γ2-
containing GABAAR clusters (Levi et al., 2004). Thus, gephyrin alone might not be sufficient
for synaptic clustering of α2/γ2-containing GABAARs, but may instead participate in a
complex mechanism whereby it acts to reduce the lateral mobility of GABAARs, facilitating
the accumulation of α2/γ2-containing GABAARs at sites apposed to GABAergic terminals
(Jacob et al., 2005). Although the functional implications of the occurrence of the GEPHN
gene within a schizophrenia-associated ROH have not been investigated, it is tempting to
speculate on the relationship between gephyrin-mediated synaptic accumulation of α2/γ2-
containing GABAARs, the importance of α2/γ2-containing GABAARs concentrated in the AIS
of DLPFC pyramidal neurons, and the role of chandelier-AIS synapses in the generation of γ-
oscillatory network activity, that latter of which may underlie cognitive deficits in
schizophrenia (Lewis et al., 2005).

NSF (N-ethyl maleimide-sensitive factor) is known for its role in transport vesicle fusion to
acceptor membranes and was previously demonstrated to be involved in the trafficking of
AMPA receptors (Nishimune et al., 1998; Noel et al., 1999). It was reported that another
GABAAR-associated protein, GABARAP, interacts with NSF and that these two proteins
colocalize in cultured hippocampal neurons (Kittler et al., 2001). GABARAP has been
postulated to play a role in the intracellular trafficking of GABAARs, because of its association
with NSF combined with its localization predominantly at cisternae of endoplasmic reticulum
and Golgi apparatus (Fig. 2), consistent with a role in protein transport (Moss and Smart,
2001). More recently, NSF itself was shown to interact directly with the β subunits of the
GABAARs, and that overexpression of NSF with recombinant GABAARs decreased receptor
expression at the cell surface of transfected COS7 cells (Goto et al., 2005), consistent with an
important role in the exocytosis of assembled GABAARs. While the functional significance
of the NSF gene within a schizophrenia-associated ROH has not been investigated, its
interaction with the GABAAR β subunits (see previous discussion of GABRB2) combined with
a role in GABAAR trafficking implies a critical role in the functional expression of
GABAARs, a process which mounting evidence suggests is impaired in schizophrenia.

PKC and RACK1
GABAARs are regulated by direct phosphorylation by protein kinase C (PKC) on conserved
serine residues within the large intracellular loop of all β subunits (Moss and Smart, 2001) via
direct interaction with the βII isoform of PKC (Brandon et al., 1999). Moreover, the receptor
for activated C kinase (RACK1), a PKC interacting protein involved in the subcellular targeting
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of PKC, also interacts independently with the intracellular loops of the GABAAR β subunits
(Brandon et al., 1999). Functional analysis of these interactions suggest that enhancing PKC
activity results in a reduction in GABAAR channel activity (Brandon et al., 2000) and that the
direct, independent binding of RACK1 to GABAAR β subunits serves to potentiate the catalytic
activity of GABAAR-bound PKC (Brandon et al., 2002). Thus, regulation of the stoichiometry
of GABAAR β subunit phosphorylation plays a key regulatory role in GABAAR function.

It has been shown that PKC activity is increased in frontal cortex from postmortem brains of
subjects with bipolar affective disorder (Wang and Friedman, 1996), raising the possibility that
GABAAR channel activity may be reduced under these conditions by virtue of the role played
by PKC phosphorylation on GABAAR channel activity (Brandon et al., 2000). Consistent with
this hypothesis, it has also been shown that the association of RACK1 and PKC is increased
in the frontal cortex of postmortem brains of subjects with bipolar affective disorder (Wang
and Friedman, 2001), which may explain the increase in PKC activity in these subjects and
lends further support to the notion that PKC phosphorylation of GABAAR β subunits may be
enhanced in bipolar disorder, leading to reductions in GABAAR channel activity in this region,
an emerging feature of psychiatric disease.

Septin 11
Septins are a family of GTPases that form polymeric filaments and ring-like structures, are
expressed in various tissues, including brain, and are thought to act as diffusion barriers and
scaffolds in a range of cellular processes (Barral and Kinoshita, 2008). It was recently reported
that one septin family member, Septin 11, was identified by mass-spectrometry analysis in a
brain fraction enriched in the GABAergic postsynaptic complex (Li et al., 2009). Furthermore,
it was demonstrated in cultured hippocampal neurons that RNAi-mediated knockdown of
septin 11 resulted in a decrease in the density of γ2 subunit-containing GABAARs as well as
a reduction in the number of GABAergic synaptic contacts to those neurons where septin 11
expression was attenuated (Li et al., 2009). Interestingly, a recent postmortem study concluded
that protein and mRNA expression of septin 11, in addition to other septin family members, is
significantly elevated in the DLPFC of both schizophrenic and bipolar cases compared to
controls (Pennington et al., 2008). Given the findings that septin 11 appears to positively
regulate GABAAR localization and GABAergic synapse formation, the upregulation of septin
11 might reflect a compensatory response to the loss of GABAergic signaling in schizophrenia
and bipolar disorder.

GABAAR-associated proteins indirectly associated with schizophrenia
Segments of a large run of homozygosity (ROH) associated with schizophrenia was found to
occur directly in the coding region of SNTG1 (Lencz et al., 2007), a gene encoding γ-syntrophin,
a brain-enriched PDZ domain-containing scaffolding protein that binds to dystrophin and is
part of the dystrophin protein complex (Alessi et al., 2006). In addition to γ-syntrophin, a
number of reports have linked dysbindin (DTNBP1), another member of the dystrophin
complex thought to play a role in trafficking and tethering postsynaptic receptors including
GABAARs, to schizophrenia (Straub et al., 2002). Dystrophin is found colocalized with α2
and γ2 GABAAR subunit clusters in pyramidal cells as well as in α1 and γ2 clusters in Purkinje
cells of the cerebellum (Knuesel et al., 1999). The dystrophin gene plays an important role in
Duchenne muscular dystrophy (DMD), the second most commonly occurring genetically
inherited disease in humans. Studies of mdx mice (dystrophin mutant), a model of Duchenne
muscular dystrophy, have shown neural shrinkage as well as a 50% decrease in neuron number
in regions of the cerebral cortex and brainstem. Histological evidence shows a reduction in the
density of GABAA channel clusters in mdx Purkinje cells and hippocampal CA1 neurons, and
in particular a marked reduction in the number of clusters immunoreactive for the GABAARs
α1 and α2, indicating that dystrophin may play an important role in the clustering or
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stabilization of GABAARs. Interestingly, dystrophin has also been identified as a component
of the so-called DISC1-interactome, a network of protein-protein interactions around the key
schizophrenia risk gene DISC1 (Camargo et al., 2007). To date, DISC1 has not been associated
with inhibitory synapses but it may be worth examining such a link in the future. DISC1 has
been associated genetically not only to schizophrenia but also to bipolar disorder, Asperger
syndrome, and Autism (Hennah et al., 2008; Kilpinen et al., 2008).

mRNA expression of the PDZ domain-containing Ezrin/Radixin/Moesin (ERM)-binding
phosphoprotein 50 (EBP50), a protein required for the maintenance of active, phosphorylated
ERM proteins at the cell surface (Morales et al., 2004), is significantly reduced in peripheral
blood lymphocytes derived from schizophrenic patients (Bowden et al., 2006). The actin-
binding protein radixin, a member of the ERM family, directly binds to the large intracellular
loop of the GABAAR α5 subunit (Loebrich et al., 2006). This interaction requires the activation
of radixin by phosphorylation at a C-terminal threonine residue, resulting in a shift from an
inactive, closed conformation to an active open conformation. The binding of activated radixin
with the GABAAR α5 subunit was demonstrated to be essential for clustering and localization
of extrasynaptic α5-containing GABAARs (Loebrich et al., 2006). Conceivably, a reduction
in EBP50 protein could result in a loss of active radixin at the cell surface and, consequently,
compromised extrasynaptic clustering and localization of α5-containing GABAARs. Recently,
an α5-specific benzodiazepine site radioligand ([11C]Ro15-4513), was used in a positron
emission tomography (PET) study, which found that [11C]Ro15-4513 binding in the prefrontal
cortex and hippocampus was negatively correlated with PANSS negative symptoms scores in
patients with schizophrenia (Asai et al., 2008). These data are consistent with a loss of
extrasynaptic α5-containing GABAAR localization, without a concurrent loss in α5 subunit
mRNA or protein levels, which might be expected if α5-specific clustering mechanisms, such
as that mediated by radixin binding, were compromised.

General Conclusions
Modern genetics has allowed us to make great progress in cataloging the genetic links between
GABAAR function in inhibitory neurotransmission and psychiatric disorders. However, until
now most of the genetic polymorphisms have been found in non-coding regions, such as introns
and other untranslated regions. One can only speculate that these non-coding regions may affect
gene transcription which, in turn, may affect subunit protein levels, observations which, in
some cases, have been substantiated in post-mortem tissue. By combining the ever-increasing
power of genetic association with invaluable insights gained from sound biological validation,
a deeper understanding of the underlying mechanisms that give rise to these disorders are
beginning to take shape. A growing body of evidence suggests that a malfunction in cortical
GABAergic transmission resulting in a disturbance in cortical network activity is a critical
factor underlying such psychiatric disorders as schizophrenia and bipolar disorder. Therefore
the development of novel and innovative pharmacological agents that target individual
GABAAR subtypes hold enormous potential for a novel, highly specific therapeutic approach
to schizophrenia and other psychiatric conditions.
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ERM ezrin-radixin-moesin family

GABA γ-aminobutyric acid

GABAAR γ-aminobutyric acid type A receptor

GAD glutamic acid decarboxylase

GAT1 GABA transporter-1
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GWAS genome-wide association scan

IR immunoreactivity

NMDAR N-methyl-D-aspartic acid-sensitive receptor

NSF N-ethylmaleimide-sensitive factor

PET positron emission tomography

PKC protein kinase C

PPI prepulse inhibition

PV parvalbumin

RACK1 receptor for activated C kinase-1

ROH run of homozygosity

SNP single-nucleotide polymorphism

TM transmembrane domain

VTA ventral tegmental area
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Figure 1. The Structure of GABAA Receptor Subunit
A. The membrane topology of an individual GABAA receptor subunit, TM1-3 are indicated
in blue and TM2 in yellow. B. The tertiary structure of assembled GABAA receptors. Receptor
α subunits are illustrated in blue, β subunits in pink and δ/γ in green. The benzodiazepine
binding pocket is formed between α and γ subunits (orange square) and the GABA binding
pocket is formed between α and β subunits (pink pentagon).
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Figure 2. Summary of modified GABAergic signaling components in psychiatric disease
A. Schematic of relevant GABAergic interneuron synapses onto layer III pyramidal neurons
(P) in the dorsolateral prefrontal cortex (DLPFC). Distal dendrites receive GABAergic input
from Somatostatin (SST) and neuropeptide Y-expressing Interneurons (NPY) (upper left). The
axon initial segment (AIS) is contacted by axons originating from chandelier neurons (Ch)
located in layer IV of the DLPFC (lower right). Axons of SST/NPY, P, and Ch neurons are
shown in green. B. Hypothetical AIS synapse highlighting some GABAergic synaptic
components implicated in schizophrenia and/or bipolar affective disorder. Black arrows
indicate reported reductions or elevations in mRNA or protein expression. Red diamonds
indicate genetic association with schizophrenia or bipolar disorder.
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