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Abstract
Purpose—The human pregnane X receptor (PXR) is a transcriptional regulator of many genes
involved in xenobiotic metabolism and excretion. Reliable prediction of high affinity binders with
this receptor would be valuable for pharmaceutical drug discovery to predict potential toxicological
responses

Materials and Methods—Computational models were developed and validated for a dataset
consisting of human PXR (PXR) activators and non-activators. We used support vector machine
(SVM) algorithms with molecular descriptors derived from two sources, Shape Signatures and the
Molecular Operating Environment (MOE) application software. We also employed the molecular
docking program GOLD in which the GoldScore method was supplemented with other scoring
functions to improve docking results.

Results—The overall test set prediction accuracy for PXR activators with SVM was 72% to 81%.
This indicates that molecular shape descriptors are useful in classification of compounds binding to
this receptor. The best docking prediction accuracy (61%) was obtained using 1D Shape Signature
descriptors as a weighting factor to the GoldScore. By pooling the available human PXR data sets
we revealed those molecular features that are associated with human PXR activators.

Conclusions—These combined computational approaches using molecular shape information
may assist scientists to more confidently identify PXR activators.
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INTRODUCTION
The transcriptional regulation of genes involved in xenobiotic metabolism and excretion is an
important area of study, in particular the human pregnane X receptor, PXR (NR1I2; also known
as SXR or PAR) has been a particular focus since its identification (1–6). PXR activators
include a wide range of structurally diverse endogenous bile acids, hormones, dietary vitamins,
prescription and herbal drugs as well as environmental chemicals. PXR activators can mediate
potential drug—drug interactions and the toxic effects of environmental chemicals (7,8), hence
the need to develop reliable prediction methods.

Four PXR X-ray crystal structures are available in the Protein Data Bank (PDB), which have
enabled characterization of the ligand binding domain (LBD). The pocket is lined with 28
amino acid residues: 20 hydrophobic, four polar and four charged (9–14). Due to the large size
of the binding pocket, molecules can bind in multiple locations, which hinders reliable
prediction of PXR activators (A) or non-activators (N) using structure-based virtual screening
methods. Several previous studies have constructed ligand-based computational models for
human PXR employing pharmacophores (15–18), quantitative structure—activity
relationships (QSARs) (19–21), and machine learning methods (21). For example, the human
PXR agonist pharmacophore models contain multiple hydrophobic features, at least one
hydrogen bond acceptor and, in some cases, an additional hydrogen bond donor feature which
are deemed important for molecular recognition of ligands by PXR.

The absence of large biological data sets for PXR ligands has hampered efforts to build QSAR
models for quantitative predictions (22). The sparse amount of data is more suitable for
classification models than quantitative prediction models. Several studies using qualitative data
sets (≥99 molecules) have employed machine learning methods such as recursive partitioning
(RP), random forest (RF), support vector machine (SVM), K-nearest neighbors (K-NN), and
probabilistic neural networks (PNN) (21,22) to distinguish between human PXR activators (A)
and non-activators (N). In the latter case (22), binary classification models generated from 98
human PXR activators and 79 non-activators were used to predict between 80.8% and 85.0%
of human PXR activators and 67.7–73.6% of human PXR non-activators (in the training set).
The test set prediction accuracies in this same study ranged from 53.3% to 66.7% for 15 known
human PXR activators across the three machine learning methods, with SVM performing the
best (22). We have recently constructed human PXR classification models based on VolSurf
(23) 3D descriptors employing RP, RF and SVM machine learning methods, and made
predictions for a new large external test set of 145 molecules (not included in the training set)
to validate and compare these three approaches (24). Our results were a significant
improvement on those previously published (22). We also have previously utilized structure-
based docking using FlexX combined with logistic regression; however, the overall results
were disappointing and inferior to those obtained using the machine learning methods.
However, when the docking predictions were correct, the docked orientations were useful for
comparison with structurally similar molecules that were PXR non-activators (24). To the best
of our knowledge there have been no other published direct comparisons of docking and QSAR
methods for PXR with a large external test set containing diverse xenobiotics, although
pharmaceutical companies are very likely to have done such studies in house.

In the current study we have greatly extended our previous work to use additional molecular
descriptors, namely Shape Signatures and MOE, which have been recently applied to
cardiotoxicity target proteins and blood—brain barrier data with machine learning
classification methods (25,26). In these previous studies, it was found that 2D Shape Signature
descriptors slightly outperformed 1D Shape descriptors with the SVM algorithm. Additionally
SVM models based on Shape Signatures also performed slightly better than those developed
with the MOE descriptors for the same datasets (25,26). In the current study we have also used
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an additional docking method GOLD (27–29) and a novel aspect of this study (with respect to
PXR) is our coupling of the GoldScore with other scoring functions in an attempt to improve
the overall docking results. We have also combined all the available human PXR data sets
(∼300 molecules) into a single model in order to identify specific molecular descriptors that
correlate highly with human PXR activation. Through judicious combination of these
computational approaches, we have identified new computational models that can predict
human PXR activators with applicability ranging from drug discovery to toxicological
sciences.

MATERIALS AND METHODS
Data Compilation

A comprehensive human PXR dataset was assembled from two previously published datasets,
as described in detail elsewhere (22,24). Briefly, the first set (training compounds) retrieved
168 compounds from data published by Ung et al. (22) comprising 93 that were defined as
activators (EC50< 100 μM) and 75 as inactivators (EC50>100 μM). The second set (test
compounds) taken from our previous work (24) contained 130 compounds, comprising 71
human PXR activators and 59 non-activators. Using the SMILES strings taken from the original
papers as input, each compound was geometry optimized to a low energy conformation
generated by CORINA (Molecular Networks GmbH, Nägelsbachstr. 25, 91052 Erlangen,
Germany. http://www.mol-net.de) and assigned partial atomic charges according to the
Gasteiger-Marsili scheme (30).

Molecular Descriptors
Structural analysis of the four available human PXR crystal structure complexes with their
ligands from the PDB (PDB IDs: 1M13, resolution 2.00 Å (10), 1SKX, resolution 2.80 Å
(14), 2O9I, resolution 2.80 Å (13) and 1NRL, resolution 2.00 Å (9)) revealed that the docking
of the four agonists was dominated by electrostatic and van der Waals interactions. To capture
these ligand-protein interaction features into our classification scheme we chose 20 molecular
descriptors that represented shape and size (volume, weight, KierA1-A3, Kier1-3), flexibility
(number of rotatable bonds, number of rings and KierFlex) and electrostatic features (logP,
topological polar surface area (TPSA), logS, Lipinksi donor (lip_don), Lipinski acceptor
(lip_acc), number of N atoms, and number of O atoms). Values for these specific molecular
descriptors were calculated using the Molecular Operating Environment (MOE, Chemical
Computing Group, Montreal, Canada) modeling program. In addition, we used a shape based
descriptor method called Shape Signatures (31) to build SVM based classification models for
the PXR activators and non-activator sets.

Shape Signatures Molecular Descriptors
Shape Signatures (31) is a novel shape matching algorithm that has been previously described
(25,26,31,32) which allows fast comparison between any pair of typical drug-like molecules.
In this method, molecular features such as shape and distribution of partial charges, which are
critical for competent binding and hence the relative biological activity of the compound are
encoded in the form of the one-dimensional (1D) and two-dimensional (2D) histograms. Here
we will briefly outline the key steps of the algorithm. The process starts by generating a single
low energy three-dimensional conformation (a default conformation) of a molecule under
consideration using CORINA from a supplied SMILES string. In the second step, the solvent
accessible surface (SAS) is constructed around the molecule which is followed by triangulation
of the SAS by the SMART program (31). Next, a customized ray-tracing algorithm is used to
explore the volume enclosed by the SAS. During this stage, a ray of light, emitted initially
from a randomly selected point on the interior lining of the SAS, travels inside the molecular
compartment bounded by the SAS until it strikes the opposite side, at which point it gets
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reflected back and propagates further in the direction determined by law of optical reflections.
For each reflection point, the value of the truncated Coulomb potential or the molecular
electrostatic potential (MEP), and the lengths of the incident and reflected ray segments are
recorded and stored in the memory. It was determined empirically that for a typical drug-like
molecule 100,000 reflections are sufficient for the paths of the rays to thoroughly survey the
molecular volume enclosed by SAS. At the end of the run, the ray segments are binned by their
length into a one-dimensional histogram with the predefined bin width of 0.5 Å (1D signature)
and a two-dimensional histogram is constructed with the MEP values (with a step of 0.05e/Å)
and the associated total length of the two path segments joined by the reflection point (2D
signature). Both histograms are then normalized.

Similar to previous applications (25,26) for each compound in this study, the heights of the
bins of the associated 1D (shape only) and 2D (shape and polarity) Shape Signature histograms
constituted two sets of distinct molecular descriptors. It is important to stress that despite being
represented as 1D and 2D histograms, these Shape Signatures descriptors are inherently three-
dimensional molecular descriptors since they encode the 3D conformation and polarity of the
molecule.

Docking and Scoring
A combined data set consisting of 297 molecules from the test and the training sets described
above along with the four ligands (hyperforin, rifampicin, T0901317 and SR12813 that were
co-crystallized with the human PXR receptor) were used for docking experiments. The
molecules were docked into these four crystallized structures of human PXR (PDB IDs
described above). In all cases, the crystal structure ligand was removed, and hydrogen atoms
were added to the amino acids. All amino acids within 6 Å of the co-crystallized ligand were
identified as the binding site. The docking program GOLD (ver 4 (29)) was used for docking
all the 301 compounds to the binding sites of each PXR crystal structure. GOLD (ver 4) uses
a genetic algorithm to explore the various conformations of ligands and flexible receptor side
chains in the binding pocket. Further, 30 independent docking runs were performed for each
ligand. The docked complexes were initially scored with GoldScore (29) and then rescored
using ChemScore (33). The best ranking conformation for each ligand was chosen based on
the most favorable binding energy (ΔG values from ChemScore) and the corresponding
GoldScore of that conformation was used for further scoring procedures. Various cutoffs of
the GoldScore were used to classify compounds into PXR activators and non-activators. The
Score-1 scheme used 50% of the GoldScore of the crystal structure ligand as a cut-off, while
Score-5 used the Gold-Score of the crystal structure ligand -10 as a cut-off, and Score-6 used
the GoldScore of the crystal structure ligand -30 as a cut-off. A number of additional
customizable scoring schemes were also tested for classifying the compounds as activators and
non-activators and the scoring schemes are further described below:

1. Contact scoring scheme (Score-2): The docked receptor—ligand complexes were
scored using a contact based scoring function. Accordingly, an in-house program was
used to examine the docked complexes for contacts between the ligand and protein
atoms (34). Further, these contacts were scored based on a weighting scheme that was
derived from the nature of interaction between the ligands co-crystallized with human
PXR. For example, hyperforin forms hydrogen bonds with residues Gln285, His407
and Ser247 of the PXR protein in the crystal structure (PDB ID:1M13; Supplemental
Figure 1). Thus the contact scoring function overweighted all those docked protein
—ligand complexes that featured hydrogen bonding between the ligand and these
three residues. Similarly, other non-bonded interactions were weighted based on the
interactions of the ligands in the PXR crystal structures. All interaction scores were
then summed and normalized for the 301 compounds against all four crystal
structures. A consensus scoring scheme was developed for final classification based
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on the following rule: Only those compounds that equaled or exceeded half the value
of the highest GoldScore and exhibited a non-zero contact score were assigned as
activators while the remaining were classified as non-activators.

2. Shape based scoring scheme: In this scheme, the ligands from the combined dataset
were compared with the PXR ligands from the four crystal structures for their shape
based similarities using two different approaches. The first was based on 2D similarity
encoded in MDL fingerprint keys calculated using Discovery Studio 2.0 (Accelrys,
San Diego, CA, USA). The Tanimoto coefficient was used as the metric to compare
the molecular fingerprints. The coefficients varied between 0 and 1, where 0 meant
maximally dissimilar and 1 coded for maximally similar. The Tanimoto coefficient
between fingerprints X and Y has been defined to be: [number of features in intersect
(A, B)]/[number of features in union (A, B)], where A and B are two compounds.

In the second approach, the 3D shapes of the molecules from the combined dataset
were compared with the shapes of each of the four crystal structure ligands. This was
achieved by comparing their corresponding 1D Shape Signatures and a dissimilarity
score was computed for each ligand pair (see description for Shape Signatures below).
The dissimilarity score was then converted to a similarity score, which was in turn
used as weighting factor for the GoldScore to compute Score-4. In all these scoring
schemes the consensus score was calculated as shown below in Eq. 1.

3. Molecular descriptor based scoring: In this scheme, the molecular descriptors
computed using MOE were used to calculate Euclidean distances from the four crystal
structure ligands. These Euclidean distances were used as weighting factors to
compute Score-7. Similarly, the values of the molecular descriptors were also used
to calculate Tanimoto similarity indices (35) with reference to the four crystal
structure ligands. For a pair of descriptor vectors with continuous variables, the
Tanimoto index ranged from -0.33 (when one vector is the inverse of another) to 1
(for two identical vectors). The values for the Tanimoto indices for each ligand in the
combined set were calculated against each of the crystal structure ligands and then
used as weighting factors to the GoldScores to compute Score-3.

The weighted docking score of an active compound j with i conformations was described as

(1)

where Sij was the original GoldScore for the compound i in its jth conformation and Wi is the
weighting factor for compound i from either of the schemes described above.

Classification by Support Vector Machines
The SVM method (36,37) is a powerful machine learning classification technique that has been
used widely to tackle complex binary classification problems (22,38–40). Following our
previous studies (25,26) we have used the freely available program LIBSVM (C-SVM)(41)
with the radial basis function (Gaussian) kernel, whose parameter γ along with the SVM penalty
term C were determined in each case through a simple grid search procedure by tenfold cross
validation.

In addition to the libraries of 1D and 2D Shape Signatures generated for the datasets described
in the previous section, in this study we also explored a number of mixed descriptor schemes.
In particular, we combined Shape Signatures and MOE molecular descriptors to investigate
the performance of these classification models with those built entirely with either Shape
Signatures or MOE descriptors. Also, we have combined docking scores, GoldScores and
contact scores, with the set of MOE descriptors and evaluated the performance of the SVM
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models utilizing this hybrid descriptor scheme. In total, we have considered six different
descriptor approaches (Table I): 1D Shape Signatures, 1D Shape Signatures + MOE, 2D Shape
Signatures, 2D Shape Signatures + MOE, MOE alone and MOE + GOLD docking.

SVM Model Testing
The predictive nature of each SVM model described herein was assessed by computing a
standard set of statistical indicators: sensitivity (SE), specificity (SP), overall prediction
accuracy (Q) and Matthews correlation coefficient (C) (22,42). These quantities are defined in
terms of the numbers of true positives (TP), true PXR activators, false positives (FP), falsely
classified PXR non-activators, true negatives (TN), true PXR non-activators and false
negatives (FN), falsely classified PXR activators. In these notations, the total number of real
experimentally documented activators is given by TP + FN whereas a corresponding number
of real non-activators is TN + FP. Sensitivity, SE=TP/(TP+FN), then expresses the prediction
accuracy of a classification model with respect to PXR activators while specificity reflects the
prediction accuracy for non-activators: SP=TN/(TN+FP). The overall prediction accuracy is
calculated as Q=(TP+TN)/B(TP+FP+ TN+FN). Finally, we also report the values of Matthews
correlation coefficient described as in Eq. 2.

(2)

This represents another measure of the overall prediction performance. For a perfect classifier
with FP=FN=0 one would have C=1.0. For a random prediction, C≈0, and for a complete
inversion (TP=TN=0) C=-1.0.

In order to carefully examine the quality of the proposed SVM models we used the following
procedure for model validation as used previously (25,26). Prior to submitting data for SVM
analysis, the dimensionality of the input datasets in each case was reduced by means of the
unsupervised forward selection (UFS) method of Livingstone and co-workers (43). This
program eliminates redundancy and reduces multi-collinearity of the original datasets. Two
families of SVM models were then built for each dataset/descriptor set pair. The models in the
first group were generated by tenfold cross validations conducted on the entire dataset. The
overall prediction accuracies for these models are denoted by QCV. The models comprising
the second group were averaged over a series of 100 independent leave-20%-out runs (overall
accuracies QLO). The leave-20%-out tests were designed as follows: For each dataset, about
20% of the molecules were randomly picked to represent the hold-out test set and the rest of
the data constituted the training set for this particular data division. The selection was carried
out to approximately preserve the correct proportion of PXR activators and non-activators in
both sets. Each SVM classification algorithm was then trained on the training set and applied
to predict class attributes of the compounds in the test set. To obtain more reliable statistical
estimates, the procedure was repeated 100 times, each time with a different composition of the
test and training sets.

RESULTS
The combined dataset consisting of 301 compounds including the four PXR co-crystallized
ligands were docked using GOLD to the four crystal structures of human PXR (1M13, 1NRL,
1SKX and 2O9I) available in the PDB (Supplemental Figure 1). The four co-crystallized
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ligands were docked to their respective crystal structures within 0.2—0.6  root mean square
deviation (rmsd). Cross docking of all the four ligands to all the crystal structures was achieved
with no significant deviations to the binding site or binding mode, except for the case of
rifampicin which docked in a flipped mode to structure 1M13 (Supplemental Figure 2). The

cross docking of the co-crystallized ligands yielded an rmsd in the range 0.34–1.05  relative
to their corresponding crystal structure conformations, confirming the validity of these human
PXR crystal structures for docking studies under the conditions described in this study. In all
the cross-docking studies, hyperforin docked with the best score, followed by SR12813,
rifampicin and T0901317 (Table II). Structural similarity analysis using MDL keys with a cut
off value of 0.5 showed that only 26% of the ligands from the combined dataset shared 2D
structural similarity to hyperforin and 15% of the ligands to rifampicin and little or no similarity
to SR12813 and T0901317. Hence, we used all four crystal structures in order to dock all the
ligands.

It is reasonable to assume that molecules which are more structurally similar to the four crystal
structure ligands (hyperforin, rifampicin, T0901317 and SR12813) would have a better chance
to be successfully docked to the receptor than structures sharing less similarity with these
ligands. Based on this premise, we devised and tested novel scoring schemes for molecular
docking which accounts for such molecular similarity via incorporation of the specially
designed weighting factors. According to this scheme, the compounds which were structurally
closer to the known ligands were weighted more favorably than those that were dissimilar in
the space of the chosen molecular descriptors. A set of molecular descriptors were identified
that clustered PXR activators closer to the four crystal structure ligands and non-activators
further away in terms of similarity. This was achieved by computing similarity scores for every
molecule in the combined dataset (297 structures) with respect to each of the four co-
crystallized ligands. The resulting list was ranked according to the similarity scores and the
positions of PXR activators and non-activators were analyzed. Three sets of molecular
descriptors were considered: 1D Shape Signatures (shape); 2D Shape Signatures (shape and
electrostatics); and MOE (shape, flexibility, electrostatics and hydrogen bonding). For binned
data (1D and 2D Shape Signatures), a χ2-based distance metric commonly used for comparing
discrete distributions was used. For MOE descriptors, Tanimoto similarity scores were
calculated for descriptor vectors with continuous variables (35). To better understand this
ranking system based on molecular similarity across all combinations of crystal-structure
ligand and molecular descriptors sets, a hit rate (HR) analysis (43) was conducted as depicted
in equation 3. The HR monitors the fraction of observed activators (Nact%/Nact)at the fixed
portion of the list (sorted database) screened (N%/Ntot).

(3)

where Nact=163 molecules, Ntot=297 molecules, Nact% was the number of activators listed
among the top N% of the ranked list screened. For a uniform distribution of PXR activators
and non-activators across the sorted list, meaning that there was no preference between
activators and non-activators in terms of their structural similarity to the given ligand, HR≈1
for any percent of the database screened. For a perfect separation, when all activators ranked
above all non-activators, the (Nact%/Nact) vs.(N%/Ntot) curve would be expected to lie above
the random line and plateau at 1 for N%/Ntot=0.55. As can be concluded from Fig. 1, the only
set of molecular descriptors for which the HR curves was consistently placed above the random
selection line was the 1D Shape Signatures descriptors, which characterize molecular shape
and size. In this case, at 55% of the database, 60% to 65% of all activators were recovered
depending on the crystal structure ligand.
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Based on the HR performance summarized in Fig. 1,1D Shape Signatures descriptors were
used to design a structural similarity weighted scheme (scheme-4) scoring function for docking.
The raw docking scores for the four ligands to the four crystal structures are shown in Table
II. The docked structures were classified as activators (A) and non-activators (N) based on the
various scoring schemes (Table III and Supplemental Table VIII). Scoring scheme-1 was
devised to use 50% of the raw GoldScore (listed in Table II) as a cutoff for the A and N
classification. The average Q value in this scheme for all the four structures was ∼55. Similarly,
scheme-5 used the raw GoldScore of the PXR crystal ligand -10 as a cutoff, while scheme-6
used raw GoldScore -30 as a cutoff. The results show a Q value in the range of 45–57% and
47–56% for schemes 5 and 6 respectively. Changing the cutoff for the raw docking scores did
not enhance the classification rate as shown in scoring schemes-5 and 6.

Scoring scheme-2 which was derived based on the contact scores had Q values were in the
range of 44% to 56% but the C values were mostly negative indicating a performance that was
worse than random. Scoring scheme-3 that takes into account the Tanimoto indices built from
molecular descriptors derived from MOE yielded an average success rate of ∼48% and C values
were negative for the four crystal structures (except 2O9I). These results suggest that
combining the similarity indices with docking scores may have limited utility as a scoring
scheme which was is also reflected in the SVM based model (see Supplementary Table VI).
Similar results were obtained from scheme-7 (Supplementary Table VIII) that was based on
intermolecular Euclidean distances instead of the Tanimoto indices.

Further analysis of the docking results showed that among all the docking scoring schemes,
scheme-4 performed the best in identifying PXR activators and non-activators with a Q value
of 61% (C=0.209) for 1M13 followed by Q value of 60% (C=0.211) for 1NRL crystal
structures. The performance of scheme-4 for 1SKX and 2O9I was very similar with an average
Q value of ∼55.5% (C=0.149 and 0.119 respectively). Scoring scheme-4 was constructed using
1D Shape Signatures as a weighting factor to the GoldScore. In fact, HR analysis showed that
1D Shape Signatures could correctly identify nearly 64% of the compounds as PXR activators.
Thus utilizing the 1D scores of compounds to the 4 crystal structure ligands improved the
classification rate of the raw docking scores (score-1) from 56% to 61% for 1M13 and 54% to
60% for 1NRL structures.

Finally, a consensus scoring approach based on a majority vote for all the crystal structures
using scheme-4 was built (Supplemental Table IX). Based on the consensus analysis we found
that many of the activators such as 3-ketolithocholic acid and ritonavir were correctly predicted
to be activators and their interactions in the binding site mimicked those of the crystal structure
ligands (Fig. 2A, B). Similarly, the non-activators such as clofazimine and 3-MC, although
docked to the same binding pocket and sharing 2D structural similarities, did not have the same
set of molecular interactions (and hence poor binding energetics) with the receptor as that of
the crystal structure ligands (Fig. 2C, D). We also found some cases where PXR non-activators
such as amiodarone (Fig. 3A) and levonorgestrel (Fig. 3B) were predicted to be activators and
conversely PXR activators such as amentoflavone (Fig. 3C) and monobenzylphthalate (Fig.
3D) were classified as non-activators based on the consensus scoring scheme.

The results of SVM classifications for 18 combinations of PXR dataset—descriptor sets have
been summarized in Table I and a detailed analysis for each model can be found in the
Supplementary Tables I—VII. For each dataset, SVM models were ranked according to their
performance in the leave-20%-out internal testing. In order to provide a comparison to the
results from the previously published studies on the same dataset (22,24) we have chosen to
use QCV (Q values from cross validation) for the SVM models. Overall, SVM models based
on MOE descriptors and two mixed descriptor schemes 1D Shape Signatures + MOE and 2D
Shape Signatures + MOE performed best. In each case, the difference in the overall accuracy
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QLN between the best and worst models was between 9% and 14%. Further, mixing MOE
descriptors with the original docking scores failed to improve the quality of SVM models
(Supplemental Table VI).

Further, to probe the overlap between the regions of the chemical space occupied by molecules
from the training and test sets, we conducted principal component analysis (PCA) which can
provide valuable information regarding the relative position of the chemical structures in the
space defined by the molecular descriptors. As clearly shown in Supplementary Figure 3A,
compounds from the two sets are intermixed in the space of the MOE molecular descriptors,
which validates the results of the cross-set predictions described above. Similar observations
were found in previous studies using other molecular descriptor schemes (24,25). We also
clustered these compounds using the molecular descriptors with the Unweighted Pair Group
Method with Arithmetic Mean algorithm (UPGMA). This represents a simple agglomerative
clustering method which is based on unweighted average distances between the nodes
(Supplementary Figure 3B). These results confirm that our test and training sets represent
similar chemical space.

DISCUSSION
PXR is a member of the nuclear receptor family of ligand-activated transcription factors and
is an integral component of the body’s defense mechanism against toxic endobiotics and
xenobiotics. The binding of structurally diverse ligands is made possible by the large volume
and shape of the largely hydrophobic ligand-binding pocket. This also presents problems for
computational modeling which is compounded by the lack of specificity, generally low micro-
molar affinity and wide structural variability among the ligands that bind to this receptor. The
main emphasis of this study was therefore to develop scoring functions and machine learning
based methods that can capture the binding modes of structurally dissimilar ligands binding to
PXR. Further, the compounds were classified as PXR activators and non-activators using
various custom and hybrid scoring schemes. Other classification schemes such as SVM based
machine learning models with a variety of molecular descriptors were also used for
classification.

We have demonstrated for the first time that there is no significant difference between the four
available crystal structures for PXR when using GOLD for docking ligands to the hypothesized
ligand binding domain (agonist) site as evidenced by the small rmsd values in the docking and
cross docking experiments. This would suggest that any of the four structures could be used
for docking with GOLD without seeing appreciable differences.

We have also shown that the 2D Shape Signatures and MOE descriptor schemes (which, in
addition to shape, also account for electrostatic features and other molecular properties)
surprisingly performed poorly when used in an attempt to create a hybrid scoring function.
These observations confirmed that the dividing boundaries between activators and non-
activators were indeed likely to be complex. Hence, sophisticated machine learning methods
like SVM were needed to build reasonable classification models. Scoring scheme-2 which was
derived based on the contact scores did not perform as well as in previous studies with other
targets such as GPCRs (34). This could be due to the fact that contact scores bias the scoring
scheme by weighting those ligands that bind to the receptor in a similar mode as the crystal
structure ligands. This scheme of biasing works well when the ligands have very high
specificity towards the target such as GPCRs (34).

Scheme-4 performed the best in identifying PXR activators and non-activators with Q and C
values that show a considerable apparent improvement when compared to the earlier FlexX
docking and logistic regression scoring scheme for these same compounds (24). The previous
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docking efforts resulted in random results and highlighted the difficulty in docking in a large
binding pocket for such a flexible protein. In the current study, the primary reason for any
docking misclassifications may be due to the non-activators having very similar 1D Shape
Signatures to the crystal structure ligands that were classified as activators and vice versa.
Consequently, in the context of classification of molecules as potential PXR activators, the
direct unprocessed results of docking experiments would appear of limited use as reported by
us previously(24).

Our previous study (24) also used the compounds in the test set (third column in Table I) as
an external test set for the classification models generated using the structures from the training
set (second column in Table I). Such cross-set testing yielded Q values in the range of 63–67%
depending on the classification method used (RP, RF or SVM). A similar exercise in this study
in which SVM models trained on the training dataset were applied to classify molecules from
the test dataset was performed. The prediction rates from our analysis indicate a Q value that
is essentially in the same range of 57% to 67% (24) and perhaps this is indicative of an upper
limit of prediction for PXR SVM based models with this dataset and the descriptors used to
date in these studies.

Mixing MOE descriptors with the original docking scores did not improve the quality of SVM
machine learning models. These results were in agreement with the docking results using
scoring schemes 3 and 7. This is understandable since classification based on docking scores
alone produced results only slightly better than random. On the other hand, merging MOE
descriptors with the Shape Signatures descriptors improved the quality of predictions when
compared with either 1D or 2D Shape Signature based SVM models (Supplemental Tables I-
IV). Since 1D Shape Signatures account for the overall molecular shape and 2D Shape
Signatures characterize molecular shape and polarity, it was interesting to find that a
combination of MOE descriptors with Shape Signatures may improve performance with SVM
models in this case. We have performed UFS on the mixed descriptor set to choose the
combination of descriptors for each of the SVM models (see Supplemental Table VII).
Although 2D Shape Signatures account for the overall MEP of the molecule, they incorporate
specific hydrogen bonding features only implicitly. Hence, addition of more specific MOE
descriptors, such as those associated with hydrogen bonds, improved the performance of the
classification models (Table I and Supplemental Table II).

In summary, we have shown that creation of a hybrid docking and molecular descriptor-based
method can be used to improve the prediction accuracy for PXR activators, which represents
a major computational challenge for docking and scoring programs. The 1D Shape Signature
descriptors alone were found to perform particularly well in this regard giving 61% correct
predictions. In addition the overall test set prediction accuracy for PXR activators with the
SVM classification method was 72% to 81% using a combination of 1D Shape Signatures
descriptors and MOE descriptors, which was comparable to the results obtained previously
with VolSurf descriptors and SVM (24). Our results also suggest an apparent ceiling on the
prediction accuracy using the same training and test sets. Future studies will likely test the
hybrid scoring/docking and classification schemes with shape-based approaches developed in
this study with larger external test sets for PXR. As larger quantitative datasets of PXR
activators become available in the public domain, it may be feasible to generate QSAR and
quantitative scoring methods for docking that expand on the classification methods developed
here and elsewhere. In addition we will assess the broader applicability of this hybrid docking
and classification approach to other proteins. Shape Signatures have been previously used alone
as molecular descriptors with machine learning methods (25,26). This study has further
broadened the applicability of the Shape Signatures method to both PXR and in combination
with the docking derived GoldScore. The approach could be useful for filtering molecule
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libraries for their potential to cause adverse effects or drug—drug interactions mediated by
PXR or other proteins of interest in the pharmaceutical and environmental sciences fields.
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Fig. 1.
Results of the hit rate analysis conducted for a number of molecular descriptors schemes for
four endogenous PXR ligands: T0901317 (red), hyperforin (green), rifampicin (blue) and
SR12813 (purple). a 1D Shape Signatures descriptors. b 2D Shape Signatures descriptors. c
MOE molecular descriptors.
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Fig. 2.
Schematic representation of the binding mode of A 3-keto lithocholic acid B Ritonavir C
Clofazimine and D 3-MC in the binding site of crystal structure of human PXR protein (PDB
code: 1M13). The binding site residues are colored by their nature, with hydrophobic residues
in green and charged residues in purple. Blue spheres and contours indicate matching regions
between ligand and receptors. The schematic pictures were generated using LIGX option in
MOE.
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Fig. 3.
Schematic representation of the binding mode of A Amiodarone B Levonorgestrel C
Amentoflavone and D Monobenzyl phthalate in the binding site of crystal structure of human
PXR protein (PDB code: 1M13). The binding site residues are colored by their nature, with
hydrophobic residues in green and charged residues in purple. Blue spheres and contours
indicate matching regions between ligand and receptors. The schematic figures were generated
using LIGX option in MOE.
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Table II

Raw Docking Scores (GoldScores) for the Four Crystal Structure Ligands Docked to the hPXR Crystal Structures

Structure Hyperforin SR12813 Rifampicin T0901317

1M13 79.97 70.81 59.21 45.08

1NRL 78.28 64.04 49.05 45.97

1SKX 88.31 66.88 65.76 45.61

2O9I 87.19 71.22 51.69 47.98
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