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Abstract
This paper systematically evaluates a pharmacokinetic compartmental model for identifying tumor
hypoxia using dynamic positron-emission-tomography (PET) imaging with 18F-fluoromisonidazole
(FMISO). A generic irreversible one-plasma two-tissue compartmental model was used. A dynamic
PET image dataset was simulated with 3 tumor regions -- normoxic, hypoxic and necrotic, embedded
in a normal-tissue background, and with an image-based arterial input function. Each voxelized
tissue’s time-activity-curve (TAC) was simulated with typical values of kinetic parameters, as
deduced from FMISO-PET data from 9 head-and-neck cancer patients. The dynamic dataset was
first produced without any statistical noise to ensure that correct kinetic parameters were
reproducible. Next, to investigate the stability of kinetic parameter estimation in the presence of
noise, 1000 noisy samples of the dynamic dataset were generated, from which 1000 noisy estimates
of kinetic parameters were calculated and used to estimate the sample mean and covariance matrix.
It is found that a more peaked input function gave less variation in various kinetic parameters, and
the variation of kinetic parameters could also be reduced by two region-of-interest averaging
techniques. To further investigate how bias in the arterial input function affected the kinetic parameter
estimation, a shift error was introduced in the peak-amplitude and peak-location of the input TAC,
and the bias of various kinetic parameters calculated. In summary, mathematical phantom studies
have been used to determine the statistical accuracy and precision of model-based kinetic analysis,
which helps to validate this analysis and provides guidance in planning clinical dynamic FMISO-
PET studies.
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1. Introduction
In normal tissues, there exists a homeostasis between oxygen supply from the capillary
vasculature and oxygen consumption by tissue cells. In tumors, however, this homeostasis is
frequently compromised, as uncontrolled cellular proliferation pushes cells further from blood
vessels and into regions of progressively lower oxygen pressure (pO2). As a consequence, the
pO2 within a tumor steadily decreases from physiologic levels at the capillary down to nearly
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zero at the boundary region of tumor necrosis. This phenomenon is called chronic hypoxia.
The other form of hypoxia is acute hypoxia. It occurs from a temporary decrease or arrest of
normal flow in a tumor blood vessel, and thus results in temporary depletion of oxygen in the
cells surrounding the blood vessel. Tumor hypoxia, especially chronic hypoxia, i.e., the near-
zero oxygen concentrations adjacent to regions of tumor necrosis, has important clinical and
radiobiological consequences.

Tumor hypoxia has been known to impair the effectiveness of radiotherapy for over 50 years
(Thomlinson and Gray 1955). The recent surge of interest in non-invasive measurement of
tumor hypoxia has arisen due to the increasing number of reports associating poor treatment
response and poor prognosis with increased fractional volume of tumor hypoxia as assessed
by pO2 Eppendorf probe histography and other means. Höckel et al 1993 demonstrated
significantly shorter overall and recurrence-free survival for patients with hypoxic cervical
tumors (median pO2 < 10 mmHg). Similar results have been reported in head-and-neck cancer
by Nordsmark et al 1996 and Brizel et al 1997, in sarcoma by Brizel et al 1996, in cervical
cancer by Fyles et al 1998 and Knocke et al 1999, and in prostate cancer by Movsas et al
1999. In addition to direct pO2 probe measurement, there is extensive immunohistochemical
evidence showing that higher expression of endogenous markers of hypoxia, e.g., VEGF and
HIF-1 alpha, identify those prostate cancer patients at higher risk of biochemical failure (Vergis
et al 2008). These findings underscore the potential utility in developing a more practical
technique for the quantitative assessment of tumor hypoxia, for identifying predictors of tumor
aggressive and stratifying patients who may respond more poorly to treatment (Tatum et al
2006).

Positron-emission-tomography (PET) measurement of tumor hypoxia offers the advantages of
being non-invasive, repeatable and potentially providing a quantitative three-dimensional
image of the hypoxic region. In addition, it eliminates erroneous results (i.e., false negatives)
resulting from the limited tissue sampling associated with probe-based measurements and
tissue section-based methods such as immunohistochemistry. A number of PET radiotracers
with which to specifically image viable hypoxic cells in solid tumors have been developed.
These include most notably the 2-nitroimidazole family of compounds: 18F-labeled fluoro-
misonidazole (18F-FMISO) (Rasey el al. 1996, Rajendran et al 2003, Lee et al 2008), 18F-
fluoro-erythronitroimidazole (FETNIM) (Yang et al 1995, Lehtiö et al 2003 and 2004), 2-(2-
nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide (EF5) (Evans et al 2000,
Ziemer et al 2003), 18F-fluoroazomycin-arabinosise (18F-FAZA) (Sorger et al 2003),
and 124I-labeled iodinated-azomycin-galactopyranoside (124I-IAZGP) (Zanzonico et al 2004,
Riedl et al 2008), as well as other tracers such as copper-diacetyl-bis(N4)-
methylthiosemicarbazone (Cu-ATSM) (Lewis et al 2001, Dehdashti et al 2003).

The most widely used hypoxia tracer in clinical studies is 18F-FMISO. Its parent compound,
misonidazole, a radiosensitizer similar to pimonidazole, is irreversibly bound in the cell under
hypoxic conditions (Chapman et al 1989, Casciari et al 1995, Brown et al 1996). The drug is
bioreductively activated by electron transport. The first-electron reaction produces the nitro
radical anion, which is reversed in the presence of oxygen in the cell. In the absence of oxygen,
however, a second electron reaction generates a bioreductive alkylation agent. This reduced
FMISO bioreduction product then binds to macromolecules within the cell and is trapped over
the time course of PET acquisition.

Clinical studies performed at the University of Washington have shown positive imaging of
tumor hypoxia, but with low PET signal contrast. Analysis of the biodistribution of FMISO in
patients imaged between 2 to 3 hours post-injection led to an operational definition of tumor
hypoxia as corresponding to voxels having a tumor-to-blood activity concentration ratio of
greater than 1.2–1.6 (Rasey et al 1996, Rajendran et al 2003, 2004 and 2006). One concern is
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the slow and potentially variable clearance of FMISO from normal (i.e., normoxic) tissues
relative to the 110-minute half-life of 18F, which can lead to significant variability in PET
images of hypoxia if segmented in the foregoing manner. Later PET imaging might lead to
improved hypoxia-to-normoxia ratios, but incur the problem associated with poorer count
statistics. An investigation of the variability in the hypoxia when applying segmentation to two
baseline FMISO exams of the same set of 20 patients performed 3 days apart revealed
considerable changes in the fraction of hypoxic voxels (Nehmeh et al 2008). The variability
in tumor uptake of FMISO can be due to photon counting noise and/or acute tumor hypoxia.

In order to overcome the dependence on a single threshold criterion for discriminating hypoxic
from non-hypoxic tumor sub-volumes, the current study investigates the feasibility of
performing a pharmacokinetic compartmental analysis to model the transport and metabolism
of the radiotracer uptake in tumors. The input required for such an analysis is dynamic PET
imaging data for which region-of-interest (ROI) corresponding to tumor as well as arterial
blood can be identified. The compartmental analysis tool used is based on a generic two-tissue
model implemented in Philips Research’s Voxulus software package, which is also included
in the research version of Pinnacle3™, Philips’ radiation treatment planning software, and in
IMALYTICS, Philips’ preclinical research workspace. Voxulus is able to perform
pharmacokinetic modeling for each image voxel as well as ROIs (i.e., contiguous groups of
voxels). Prior investigations using this general approach have been published by Thorwarth
et al 2005a and 2005b, who has already demonstrated the feasibility of compartmental analysis
of dynamic FMISO data. The main purpose of this paper is to evaluate the feasibility of voxel-
based compartmental analysis, tested using the one-plasma two-tissue irreversible
compartmental model implemented within Voxulus.

2. Materials and Methods
2.1. Two-tissue compartmental model

The irreversible one-plasma two-tissue compartmental model (Huang and Phelps 1986) is
shown in figure 1, where Cp (t), C1 (t) and C2 (t) are activity concentration (unit in Bq/ml) as
a function of time t (unit in min) post-administration in the plasma compartment, reversible
tissue compartment and trapped tissue compartment, respectively; and k1, k2 and k3 are kinetic
reaction rate constants (unit in 1/min) between compartments.

The rate of activity concentration in these two tissue compartments is then modeled as

(1)

By solving the above two differential equations, C1 (t) and C2 (t) can be expressed as

(2)

where ⊗ denotes convolution. The activity concentration CROI (t) in a given ROI is a weighted
sum of Cp (t), C1 (t) and C2 (t) :

(3)
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where β is the fraction of vascular space (a scalar between 0 and 1) in the ROI compared with
the plasma input function. The ROI can be a single image voxel or a group of image voxels.

In Voxulus, the plasma input function is modeled as an analytical function

(4)

where the unit of A0 is Bq/(ml·min), of Ai Bq/ml, and of C0, C1i, C2i 1/min. The input function
parameters {A0, C0, Ai, C1i, C2i, i=1, …, N} can be estimated either from the arterial regions
in the dynamic image dataset or from serial blood sampling.

Given the analytical ROI time-activity-curve (TAC) (3) with inserts (2) and (4), and a measured
ROI TAC, a Levenberg-Marquardt least-square (LS) or weighted-least-square (WLS)
optimization scheme is used in Voxulus to estimate the kinetic parameters {k1, k2. k3,β}. The
same optimization scheme is used for the input function parameters estimation. Note that for
multiple-voxel ROI, Voxulus estimates each kinetic parameter on a voxel-by-voxel basis
within the ROI, resulting in parametric images of each of the model parameters.

2.2. Physical interpretation of various tissue types
Inserting (2) into (3), the target tissue’s TAC is modeled as the summation of three components,
as shown in (5): (a) the direct contribution from the input function due to the vascular space
within the tissue,  ; (b) the reversible (i.e., diffusion) contribution of the input
function,  , which is the convolution of an exponential function (with decay constant
k2+k3) with the input function; (c) the irreversible or trapped contribution from the input
function,  , which is the convolution of a constant step function with the input
function.

(5)

Note that the irreversible two-tissue compartmental model is equivalent to a system of two
decoupled single-tissue compartmental models, as shown in figure 2 (Blomquist 1990). The

influx rate constant  from the plasma compartment to the trapped compartment is denoted
as Ki. These {k1, k2, k3, β, Ki} are called kinetic parameters or kinetic rate constants.

For a bolus-injection plasma input function, both the vascular and diffused components
decrease with time while the trapped component increases with time. For hypoxic tumor, the
trapped component dominates the other two components; while for normoxic tumor, the
trapped component is small compared with the remaining two; and for necrotic tumor, the
trapped component is a compromise of the previous two cases (Thorwarth et al 2005a). Figure
3 displays a TAC of hypoxic tumor as a decomposition of three components.
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2.3. Validation methods
To help select values of the kinetic parameters that reflect actual clinical situation, nine head-
and-neck cancer patients’ dynamic FMISO-PET data are analyzed with Voxulus and a
representative set of kinetic parameters are estimated for the normoxic, hypoxic and necrotic
tumor regions, and for the normal-tissue background region, respectively. A representative
plasma input function is also derived from the dynamic image datasets from a region
circumscribing the carotid artery. Figure 4(a) shows a patient’s measured and fitted image-
based input function. Figure 4(b) shows a patient’s measured TACs of the tumor and
background soft tissue regions, respectively. The actual time sampling points are shown as
cross signs in these figures. The purpose of this paper is not to evaluate Voxulus using clinical
data but to provide an analysis of the statistical reliability of voxel-based compartmental
modeling using dynamic PET data.

Using equations (2)–(4), a dynamic image dataset is generated with 4 distinct regions
corresponding to: plasma, normoxic tumor, hypoxic tumor and necrotic tumor embedded in a
normal-tissue background. An illustration of the mathematical dynamic image phantom
simulated in this work is shown in figure 5. Note that the plasma region corresponds to a fixed
set of input parameters, and each tumor region and background region corresponds to a
particular set of kinetic parameters.

2.3.1. Noise-free and noisy samples—The dynamic image dataset is first simulated
without any statistical noise to serve as a consistency check of the Voxulus software, that is,
to verify that the correct kinetic parameter values are indeed estimated. Next, to investigate the
stability of this voxel-wise analysis in the presence of noise, 1000 noisy samples of the dynamic
image data are generated. The noise at each voxel n and at each dynamic frame i is simulated
as a Gaussian, with standard deviation σn,i modeled as

(6)

where fn,i is the activity concentration in the nth image voxel and at the ith dynamic frame after
decay and frame-duration correction; di = exp(λti) is the isotope decay correction factor, with
λ the decay constant and ti acquisition time at the ith frame;  is the duration time (in sec) at
the ith frame; thus  represents the mean activity concentration before decay and
duration correction; c is a constant which scales the Gaussian noise with standard deviation
close to the clinical situation. In a reconstructed image with iterative reconstruction, the
statistical noise obeys a multivariate log-normal distribution (Barrett et al 1994, Wilson et al
1994), which behaves more like a Gaussian than a Poisson distribution. In addition, there is
slight correlation between nearby voxels. In this study, however, no such correlation is
assumed.

2.3.2 %bias, %stddev and correlation coefficient—These 1000 samples of noisy data
are first smoothed by a 3-point-boxcar-average filter in both the horizontal and vertical
dimensions, run through Voxulus, and then 1000 noisy samples of the kinetic parameter images
are estimated for each k1, k2, k3 and β. For each tumor-tissue type, a central voxel is selected
from the region and thus 1000 noisy samples for each kinetic parameter are obtained at that
voxel. The percentage bias and percentage standard deviation are calculated with respect to
the true value for each kinetic parameter and each tumor type, as shown below
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(7)

where μxn, σxn,  are the sample mean, sample standard deviation and true value of a kinetic
parameter x at the nth voxel. The linear Pearson correlation coefficient ρ(xn, yn) is computed
for any two kinetic parameters x and y at the nth voxel for each tumor type. The correlation
coefficient is obtained by dividing the sample covariance of the two variables by the product
of their sample standard deviations.

2.3.3. ROI-averaging—The kinetic parameters estimated from a single voxel inevitably
have some statistical variation due to the noise in the dynamic data. To reduce noise, two ROI-
average approaches are used. The first approach is called “estimate-and-average”. That is, the
kinetic parameters are first estimated for each voxel, then a ROI is selected for voxels having
similar kinetic parameters, and the average kinetic parameters are obtained over the ROI. The
second approach is called “average-and-estimate”, where the TAC of the tumor region is first
averaged over a pre-selected ROI, and then Voxulus is used to estimate the ROI TAC kinetic
parameters. In clinical settings, the “estimate-and-average” approach would probably be
preferred over the “average-and-estimate” approach, since averaging the ROI is easy to
implement for the first approach when the kinetic parameters are already estimated. To
investigate the stability of both ROI-average approaches, ROIs of different size are selected
over the hypoxic tumor region, and the %bias and %stddev are then computed for each
approach from these 1000 noisy samples. That is, the ROI %bias and %stddev are computed
for each k1, k2, β, k3 and Ki, as a function of ROI size for both approaches. Similarly, the %
bias and %stddev are computed from the ROI TAC from the noisy dynamic dataset with respect
to the true TAC. For the ROI TAC, the %bias and %stddev also depend on the dynamic frame.
A late-time frame is used as the reference when reporting the statistics in the dynamic dataset
and ROI TAC.

2.3.4. Impact of peak-to-tail ratio in input function—In clinical head-and-neck FMISO
studies, the image-based input function method is used and the input region is selected from
the carotid artery. The bolus injection speed affects the peak-to-tail ratio of the input function.
The intensity threshold of voxels used in image-based input function also affects the peak-to-
tail ratio of the input function. To investigate this effect, different peak-to-tail ratios of the input
function are simulated, and the %stddev of various kinetic parameters is computed and
compared with different sets of input function.

2.3.5. Impact of distortions in input function—To investigate how distortions in the
input function affect the kinetic parameter estimation, a shift error is introduced in peak
amplitude and peak location in time of the plasma input function, respectively, in the absence
of noise. The %bias of various kinetic parameters is then computed.

3. Results
3.1. Mathematical phantom simulation

The simulated dynamic dataset consists of 14 frames with start acquisition time {0, 1, 2, 3, 4,
5, 10, 15, 20, 25, 90, 95, 180 and 185} minutes, respectively, where the first five frames have
1 minute duration time, and the rest frames have 5 minutes duration time. Figure 5 displays
the dynamic images at multiple frames and their mid-frame acquisition time. The number of
frames, acquisition time and duration time for each frame are selected from our FMISO head-
and-neck cancer patient protocol. The plasma input function was simulated with {A0=3.66e
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+5 Bq/(ml·min), C0=3.42 1/min, N=2, A1=2e+4 Bq/ml, C11=0.21 1/min, C21=1.2 1/min,
A2=7e+3 Bq/ml, C12=2.4e-3 1/min, C22=0.12 1/min}, with its TAC shown in figure 6(a). The
kinetic parameters for three tumor regions and background normal tissue region are shown in
table 1, with their respective TACs shown in figure 6(b).

3.2. Noiseless and noisy cases
Without noise, the estimated input function parameters and kinetic parameters match the true
values exactly.

After adding Gaussian noise (c=150 in (6)), at a level equivalent to that observed in typical
clinical FMISO PET data acquired on GE Discovery STE scanner with axial septa, the
stddev of the activity concentration in each voxel in the hypoxic tumor region at late dynamic
frame is approximately 15%. Table 2 shows the %bias and %stddev for a single voxel centered
in each of three tumor regions and the background normal tissue region respectively with LS
estimations. All kinetic parameters have less than 5 %bias, except that β has 28.2 %bias in the
necrotic tumor region where it has very small true value of 0.03. In the hypoxic and necrotic
tumor regions with high k3 true value (0.008 and 0.003), the k3 has comparable %stddev
(13.5 and 15.9) with k1 and k2, but larger %stddev of 42.9 in normoxic tumor and 35.0 in normal
tissue regions, where their true values are small (both are 0.001). In regions of hypoxic and
normoxic tumors with high β true value of 0.3, its %stddev is 28; in the background normal
tissue region with medium β true value of 0.1, its %stddev is 43.9; while in the necrotic tumor
region with small β true value of 0.3, its %stddev is 81.8. Table 3 shows the correlation
coefficient of various kinetic parameters for a single voxel centered in each of three tumor
regions and the background normal tissue region respectively. We noticed that k1 and k2 are
highly correlated; and both are negatively correlated with β; while k3 has little correlation with
k1, k2 or β.

We observed that the influx rate constant  is potentially a more stable and direct
hypoxia index than k3. From the objective function of the pharmacokinetic model, it can be
shown that Ki estimate is a linear function of the ROI’s activity concentration, but not k3. Thus,
Ki is less sensitive to noise than k3, e.g., the %stddev of Ki in hypoxia tumor region is 6.3 and
of k3 is 13.5. Ki also has less correlation with β than k3, e.g., the correlation coefficient of Ki
in hypoxia tumor region is −0.27 and of k3 is 0.69. Note that the physical interpretation of Ki
denotes the rate constant for activity entering the trapped compartment from the plasma
compartment directly (i.e., without traversing the reversible compartment). Also, if the plasma
input function approaches zero at late-time, the total activity concentration in a ROI approaches

 .

3.3. Kinetic parameters as a function of ROI size
Seven sizes of ROI, 1, 4, 9, 16, 25, 50, and 100 voxels, were selected and centered on the
hypoxic tumor region. Both “estimate-and-average” and “average-and-estimate” ROI %
stddev were calculated for these 1000 noisy dynamic image samples and their corresponding
kinetic parameter images. The ROI %bias for the late-time image and various kinetic
parameters vary randomly within a small range (<2%) and are independent of the ROI size.
Both the “estimate-and-average” and “average-and-estimate” give very similar result in ROI
%stddev. Figure 7 displays the “estimate-and-average” ROI %stddev of various kinetic
parameters (vertical axis) versus the ROI %stddev of the late-time image (horizontal axis) as
a function of region size. The data points on each curve from right to left correspond to ROIs
from small to large sizes. The ROI %stddevs of k1, k2, k3, Ki and β decrease as the ROI size
increases, but not as much as those of the late-time image. For example, increasing the size of
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the ROI from 1 voxel to 100 voxels, the ROI %stddev of the late-time image reduces by a factor
of 10 (due to the approximate Poisson nature of the simulated image noise); while the ROI %
stddev of various kinetic parameters reduces only by a factor of 2.5~3.0. Interestingly, the fact
that both “estimate-and-average” and “average-and-estimate” give very similar ROI %
stddev, suggests that at 15% low noise level, the pharmacokinetic model behaves like a linear
operator. Thus it is acceptable to first estimate the voxelized kinetic parameter map, and then
select ROI that contains similar kinetic parameter, and average the kinetic parameter over the
ROI to reduce the statistical noise, i.e., using the “estimate-and-average” approach instead of
the “average-and-estimate” approach.

3.4. Impact of peak-to-tail ratio in input function
The peak-to-tail ratio of the input function listed in section 3.1 is 9:1, which corresponds to
the median peak-to-tail ratio of the clinical input function. To simulate a low (4.5:1) and high
(18:1) peak-to-tail ratio input function, A0=1.38e+5 Bq/(ml·min) and A0=8.04e+5 Bq/
(ml·min) were used, respectively, where other input function parameters are the same as section
3.1. Similar dynamic images as figure 5 were simulated with the same kinetic parameter sets
as shown in table 1. Figure 8 displays the noise-free TACs in the hypoxic tumor region for 3
different input functions. Despite their different height of peak at early-time, they have about
the same tail height at late-time. Similar 1000 noisy samples of dynamic images were generated
for both low and high peak input function at the same 15% noise level. Table 4 displays the %
stddev of various kinetic parameters at a single voxel centered in the hypoxic tumor region
from 1000 noisy samples with LS estimation for three input functions. The more peaked input
function generates the more stable kinetic parameter estimation, e.g., the %stddev for k3 are
20.4, 13.5 and 9.04 respectively for low, medium and high peak input function. Figure 9 shows
the (k1, k2) (left column) and (k3, β) (right column) scatter plots at a single voxel in the hypoxic
tumor region from 1000 noisy samples for low, medium and high peak input functions (listed
as the top, middle and bottom rows). Each point in the scatter plot corresponds to a noise
realization. Thus there are 1000 points in each scatter plot. Each estimated kinetic parameter
is displayed as a ratio of its true kinetic parameter. Thus point (1, 1) (indicated as the “+” sign)
in each scatter plot corresponds to the true position of each pair of kinetic parameters. Despite
the correlation between each parameter pair, the scatter plot spreads out more for the low peak
input function, and becomes more clustered around the true position for the high peak input
function. Therefore, it is preferable to use a fast bolus injection to create a high peak input
function and set a high voxel intensity threshold to capture the high peak of the image-based
input function.

3.5. Impact of distortions in input function
Various distortions in the plasma input function which were considered are shown in figure
10. Except the distorted input function, the same noise-free dynamic data set as section 3.1
were used, with the same true input function parameters and true kinetic parameters. Table 5
displays the %bias for various distortions at a single voxel centered in the hypoxic tumor region
using LS estimation. Without noise, a 30% down-shift error in its peak-amplitude causes 18.8%
bias on k3 or 24.2% bias on Ki in the hypoxic tumor region. Note that in clinical PET imaging,
a 30% contrast loss is quite common for high contrast fine structures, such as the carotid artery.
However, due to the limited spatial resolution, over 100% contrast recovery is rarely seen in
clinical PET imaging. Thus there was no up-shift error introduced in the peak-amplitude of the
input function. In peak-location, a +10sec right shift overestimates the k3 in the hypoxic region
by 25.8% or underestimates the Ki by 17.1%; while the −10sec peak left shift only overestimates
k3 by 2.8% or underestimates Ki by 2.6%. This suggests that a “late” injection (i.e., starting
the PET dynamic data acquisition earlier than bolus injection that delays the peak of the plasma
input function) would over-estimate a hypoxic tumor more than an “early” injection.
Fortunately, this situation is easy to correct in dynamic data analysis. We only need to shift the
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data to the right starting point. Therefore, capturing the correct peak-amplitude of the input
function is more crucial in hypoxia imaging analysis than the peak-location.

4. Conclusion and Discussion
Compartmental analysis of dynamic PET data is considerably more time-consuming than static
imaging for the patient (requiring the patient to be scanned for up to 3-hours post-injection)
and for the investigator performing the data processing. However, the advantage of utilizing
the kinetic information at each voxel reduces the susceptibility to statistical variations and
contrast changes for a tracer whose image contrast may be close to unity. The purpose of this
paper is to determine the statistical accuracy and precision of the model-based kinetic analysis,
which helps to validate this analysis and provides guidance in planning clinical dynamic
FMISO-PET studies.

In this paper, we have conducted the validation and sensitivity analyses of the Philips Voxulus
software’s implementation of an irreversible one-plasma two-tissue compartmental model for
generating voxelized kinetic parametric maps of tumor hypoxia from dynamic FMISO PET
studies. The analyses were performed by simulating a deterministic (i.e., with zero statistical
noise) mathematical phantom with known plasma input function and various kinetic parametric
tissue regions derived from actual clinical data. The noiseless kinetic parameter estimates
matched their actual values exactly. We then tested its robustness for using a Gaussian-noise
simulation comparable in dispersion to the actual clinical data. With 15% noise, the FMISO-
trapping rate constant k3 (whose value is presumably related to the presence of hypoxia) varied
13.5% in hypoxic region, at a level comparable to other kinetic parameters. Its magnitude of
variation depends on the peak-to-tail ratio of the input function. A more peaked input function
gave less variation in k3. The plasma-to-diffusible tissue compartment and diffusible tissue
compartment-to-plasma rate constants (k1 and k2, respectively) were highly correlated with
each other, and both were negatively correlated with β (the ratio of tissue vasculature-to-input
function); while k3 exhibited little correlation with k1, k2 or β. We also observed that the influx

rate constant  is potentially a more stable and direct hypoxia index than k3.

In clinical PET imaging, photon counting noise is unavoidable. Values of kinetic parameters
averaged over a multi-voxel ROI are thus preferable to single-voxel parameter values, however,
important spatial information may be sacrificed. Two ROI averaging techniques were
compared: “estimate-and-average” and “average-and-estimate”. We found that, at 15% low
noise level, the Voxulus kinetic estimation can be approximated as a linear operator, since the
statistics of the results of both approaches are equivalent to each other. Thus it is acceptable
to use the more convenient “estimate-and-average” approach for easy selection of the averaging
ROI. We also found that the variations of kinetic parameters reduce by increasing ROI size,
but not as much as those of the late-time image, which implies that Voxulus kinetic estimation
amplifies noise by a certain amount (about a factor of 3~4 at 15% noise level).

To further investigate how bias in the arterial input function affects the kinetic parameter
estimation, a shift error was introduced in the peak-amplitude and peak-location of the input
TAC. We found that capturing the correct peak-amplitude and the right injecting time of the
input function are crucial in hypoxia imaging analysis.

All the kinetic parameter estimation algorithms used in this paper are LS. We found that LS is
more stable than WLS in Voxulus. There are two LS/WLS fittings in Voxulus: one for the
plasma input function and another for tissue/tumor TAC. The fitted plasma input function is
then used as input for tissue/tumor TAC fitting. In WLS, the residual error at each time point
is weighted by the reciprocal of the standard deviation of each measurement. For the plasma
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input function, the standard deviation of the peak measurement is higher than the tail. Thus,
compared with LS, the WLS puts less weight in peak fitting than the tail fitting, which results
in worse fitting at the peak of the plasma input function. For WLS estimation with data at 15%
noise level, about 50 out of 1000 samples become outliners, i.e., the estimated input function
does not match the measured one at all (under-fit at the peak and over-fit at the tail), and thus
the estimated kinetic parameters for tumor TAC are way off from the true ones. Further, for
those noisy samples with fitted input function matching the measured one, the WLS estimated
C21 parameter in the input function can be way off from the true one (under-fit at the peak,
good-fit at the tail). Any error in fitting the plasma input function will propagate into the fitting
of the kinetic parameters of the tumor TAC. Thus WLS was not used in this paper.

The phantom simulated in this work assumes a perfectly stationary tumor position, which may
not be the case clinically. In corresponding clinical study, data were used from radiotherapy
patients with head-and-neck cancers, in which the patients were rigidly immobilized for the
PET scans in a custom face mask, so tumor motion was virtually eliminated. The plasma input
function in this simulation work does not consider any partial volume effect, which in a clinical
study, would be derived from an artery identified in the PET/CT image, since direct arterial
sampling is generally avoided. It is preferable to collect data in the thorax or abdomen region,
where a large volume of arterial blood pool (such as the left ventricle or abdominal aorta) can
be found and partial volume effect can be reduced. The temporal sampling in this simulation
work is coarse over the first 5-minute post-injection, which thereby under-samples the sharp
peak of the input function in clinics. The availability of list-mode acquisition on PET scanners
will allow optimum image frame times to be selected to satisfy adequate time sampling and
adequate count statistics for future studies. Future work applying the Voxulus kinetic modeling
tool to patient data is needed to demonstrate the feasibility of this approach. A test-re-test study
of the same patient and bootstrap re-sampling of the list-mode dynamic data to derive multiple
samples of the dynamic images is needed to confirm that the standard deviations of various
kinetic parameters predicted from our analysis borne out in practice.
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Figure 1.
Generic irreversible one-plasma two-tissue compartmental model.
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Figure 2.
Two decoupled single-tissue compartmental models.
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Figure 3.
The total time-activity-curve as a decomposition of vascular, diffused and trapped components.
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Figure 4.
Head-and-neck cancer patient’s TAC of input function from carotid artery (a), and TACs of
tumor and background soft tissue regions (b).
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Figure 5.
Simulated noise-free images of multiple dynamic frames.
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Figure 6.
Simulated noise-free plasma input function (a) and noise-free time-activity-curves for various
tissue regions (b).
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Figure 7.
ROI %stddev of late-time image and various kinetic parameter images in hypoxic region as a
function of ROI size for 1000 noisy samples with LS estimation. The curves from top to bottom
are β (x), k1 (Δ), k2 (◻), k3 (+) and Ki (*), respectively.
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Figure 8.
Hypoxic tumor noise-free time-activity-curves for low (dashed line), medium (solid line), and
high (dotted line) peak-to-tail ratio input functions.

Wang et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2010 March 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Scatter plots of various estimated kinetic parameters centered at a single voxel in the hypoxic
tumor region from 1000 noisy samples for different peak-height input function. Left column:
k1 versus k2, right column: k3 versus β. Top row: low-peak input function, middle row: medium-
peak input function, bottom row: high-peak input function.
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Figure 10.
Illustration of various distortions in input function: (a) −30% peak amplitude shift; (b) ±10 sec
peak location shift. The original input function is shown in solid line with “x’ sign, the shifted
ones are shown with dashed line with “+” sign.
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Table 1

True kinetic parameters for simulated image dataset.

Hypoxic
Tumor

Necrotic
Tumor

Normoxic
Tumor

Normal
Tissue

k1 (1/min) 0.30 0.09 0.30 0.15

k2 (1/min) 0.45 0.15 0.45 0.20

k3 (1/min) 8e-3 3e-3 1e-3 1e-3

β 0.3 0.03 0.3 0.1

Ki (1/min) 5.24e-3 1.76e-3 6.65e-4 7.46e-4
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Table 2

% bias and % stddev at a single voxel in various tissue regions for 1000 noisy samples with LS estimation.

LS % Bias % Stddev

k1 (1/min) 1.97 21.4

Hypoxic
Tumor

k2 (1/min) 1.01 15.7

k3 (1/min) 0.97 13.5

β −1.13 27.9

Ki (1/min) 0.19 6.30

k1 (1/min) −2.92 11.5

Necrotic
Tumor

k2 (1/min) −2.05 10.7

k3 (1/min) 0.66 15.9

β 28.2 81.8

Ki (1/min) −0.80 13.3

k1 (1/min) 1.74 20.1

Normoxic
Tumor

k2 (1/min) 1.10 14.9

k3 (1/min) 0.56 42.9

β −1.04 28.2

Ki (1/min) −0.45 40.6

k1 (1/min) −1.32 13.0

Normal
Tissue

k2 (1/min) −0.91 10.3

k3 (1/min) 0.79 35.0

β 4.97 43.9

Ki (1/min) −0.65 32.6
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Table 4

%stddev at a single voxel centered in the hypoxic tumor region for low, medium, and high peak input function
from 1000 noisy samples with LS estimation.

%stddev Low Peak-to-Tail
(4.5:1)

Med Peak-to-Tail
(9:1)

High Peak-to-Tail
(18:1)

k1 (1/min) 36.6 21.4 12.6

k2 (1/min) 32.5 15.7 10.9

k3 (1/min) 20.4 13.5 9.04

β 40.9 27.9 18.5

Ki (1/min) 9.91 6.30 6.00
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Table 5

%bias at a single voxel centered in the hypoxic tumor region for −30% peak-amplitude shift and ±10sec peak-
location shift in input function for LS estimation without any noise.

%Bias −30% Peak
Amplitude Shift

+10sec Peak
Location Shift

−10sec Peak
Location Shift

k1 (1/min) 15.7 −91.3 16.1

k2 (1/min) 42.4 −88.8 22.9

k3 (1/min) 18.8 25.8 2.8

β 53.0 105.3 21.4

Ki (1/min) 24.2 −17.1 −2.6
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