
METHODOLOGY ARTICLE Open Access

Testing the additional predictive value of
high-dimensional molecular data
Anne-Laure Boulesteix1,2*, Torsten Hothorn2

Abstract

Background: While high-dimensional molecular data such as microarray gene expression data have been used for
disease outcome prediction or diagnosis purposes for about ten years in biomedical research, the question of the
additional predictive value of such data given that classical predictors are already available has long been under-
considered in the bioinformatics literature.

Results: We suggest an intuitive permutation-based testing procedure for assessing the additional predictive value
of high-dimensional molecular data. Our method combines two well-known statistical tools: logistic regression and
boosting regression. We give clear advice for the choice of the only method parameter (the number of boosting
iterations). In simulations, our novel approach is found to have very good power in different settings, e.g. few
strong predictors or many weak predictors. For illustrative purpose, it is applied to the two publicly available cancer
data sets.

Conclusions: Our simple and computationally efficient approach can be used to globally assess the additional
predictive power of a large number of candidate predictors given that a few clinical covariates or a known
prognostic index are already available. It is implemented in the R package “globalboosttest” which is publicly
available from R-forge and will be sent to the CRAN as soon as possible.

Background
While high-dimensional molecular data such as micro-
array gene expression data have been used for disease
outcome prediction or diagnosis purposes for about ten
years [1] in biomedical research, the question of the
additional predictive value of such data given that classi-
cal predictors are already available has long been under-
considered in the bioinformatics literature.
This issue can be summarized as follows. For a given

prediction problem (for example tumor subtype diagno-
sis or long-term outcome prediction), we consider two
types of predictors. On the one hand, conventional clini-
cal covariates such as, e.g. age, sex, disease duration or
tumor stage are available as potential predictors. They
have often been extensively investigated and validated in
previous studies. On the other hand, we have molecular
predictors which are generally much more difficult to
measure and collect than conventional clinical predic-
tors, and not yet well-established. In the context of

translational biomedical research, investigators are inter-
ested in the additional predictive value of such predic-
tors over classical clinical covariates.
A particular challenge from the statistical point of view

is that these molecular predictors are often high-dimen-
sional, which potentially leads to overfitting problems
and overoptimistic conclusions on their additional pre-
dictive power [2,3]. The question whether high-dimen-
sional molecular data like microarray gene expression
have additional predictive power compared to clinical
variables can thus not be answered using standard statis-
tical tools such as logistic regression (for class prediction)
or the proportional hazard model (for survival analysis).
Hence, there is a demand for alternative approaches.
The formulation “additional predictive value compared

to classical clinical predictors” is ambiguous because it
actually encompasses two distinct scenarii. In the first
scenario, the prediction model based on clinical covari-
ates is given (for instance from a previous publication)
and can be directly applied to the considered data set.
Such models are usually denoted as “risk score” or
“index” in the medical literature and often use a very
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small number of predictors, such that they are widely
applicable in further studies. However, clinicians often
want to develop their own clinical score using their own
data (second scenario) because it is expected to yield
higher accuracy for their particular patient collective, or
because they want to predict a different outcome or use
different predictors. These two scenarii are different
from the statistical point of view: in the first scenario
the prediction rule based on clinical covariates is fixed,
while it has to be constructed from the data in the sec-
ond scenario.
In this article, we present a method for testing the

additional predictive value of high-dimensional data that
fulfills the following prerequisites:

• Prerequisite 1: The additional predictive value is
assessed within a hypothesis testing framework
where the null hypothesis corresponds to “no addi-
tional predictive value”.
• Prerequisite 2: The focus is on the additional pre-
dictive value, i.e. the model selection procedure for
the high-dimensional data takes the clinical covari-
ates into account.
• Prerequisite 3: The method can address the two
scenarii described above (fixed risk score or clinical
prediction model estimated from the data).

Note that our aim is not to construct a combined pre-
diction rule based on clinical and high-dimensional data:
the focus is on the testing aspect.
In the last few years, a couple of methods fulfilling

one of these three prerequisites have been proposed to
handle this problem. In the context of class prediction,
the pre-validation procedure proposed by Efron and
Tibshirani [4,5] consists of constructing a prediction
rule based on the high-dimensional molecular data only
within a cross-validation framework. The cross-validated
predicted probabilities are then considered as a new
pseudo-predictor. The question of the additional predic-
tive value is answered by classical hypothesis testing
within a logistic regression model involving both the
clinical covariates and the cross-validated predicted
probabilities. However, this approach may yield a sub-
stantial bias because, roughly speaking, the cross-vali-
dated probabilities are not independent from each other.
This bias is quantitatively assessed in the subsequent
publication [5]. The authors suggest a (computationally
intensive) permutation-based testing scheme to circum-
vent this problem. Another pitfall of the pre-validation
procedure is that the cross-validated probabilities are
constructed without taking the clinical covariates into
account. Hence, pre-validation does not fulfill prerequi-
site 2. For example, if the high-dimensional molecular
predictors are highly correlated with the clinical

predictors, so will be the cross-validated predicted prob-
abilities. Constructing the cross-validated predicted
probabilities in such a way that they are complementary
to rather than redundant with the clinical covariates
potentially yields different results [6]. On one hand, pre-
validation as originally suggested [4] may overestimate
the additional predictive value because the predictive
value of clinical covariates is “shared” by the clinical
covariates themselves and the cross-validated predicted
probabilities in the logistic regression model, due to cor-
relation. On the other hand, it may be underestimated
because subtle contributions of the high-dimensional
molecular data to the prediction problem are likely to
be overcome by more obvious contributions- which
are redundant with the contributions of the clinical
covariates.
Another important method for assessing high-dimen-

sional predictors while adjusting for clinical covariates is
Goeman’s global test [7]. In the generalized linear model
framework, it is assumed that the regression coefficients
of the molecular variables are sampled from some com-
mon distribution with expectation zero and variance τ2.
The null-hypothesis that all regression coefficients are
zero can then be reformulated as τ2 = 0. In their second
paper on this subject, the same authors suggest a variant
of this test that adjusts for additional (e.g. clinical) covari-
ates in the context of survival analysis [8]. This adjustment
methodology can also be applied to the case of class pre-
diction and is implemented in the function globaltest
from the Bioconductor package globaltest [9] through the
adjust option. In the present paper, we address this
question using a completely different methodology based
on permutation testing and boosting regression. Other
authors address the issue of the additional predictive value
in the context of prediction and derive combined predic-
tion rules using both clinical predictors and high-dimen-
sional molecular data. A method proposed recently
embeds the pre-validation procedure described above into
PLS dimension reduction and then uses both clinical cov-
ariates and pre-validated PLS components as predictors in
a random forest [10]. This method has the same inconve-
nience as the original pre-validation approach, in the
sense that the PLS components are built without taking
the clinical covariates into account. They may thus be
redundant with clinical predictors and do not focus parti-
cularly on the residual variability, as outlined above for the
original pre-validation procedure. Hence, this method
does not fulfill prerequisite 2. This pitfall is shared by
many recent machine learning approaches for construct-
ing combined classifiers using both clinical and high-
dimensional molecular data [11,12].
In contrast, the CoxBoost approach [6] for survival

analysis with mandatory covariates takes clinical covari-
ates into account while selecting the model for the
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high-dimensional predictors. Clinical covariates are
forced into the model through a customized penalty
matrix. The authors suggest to set this penalty matrix
to a diagonal matrix with entries 1 and 0 for “penaliza-
tion” and “no penalization”, respectively. This approach
has the major advantages that it can i) take into account
the clinical covariates while updating the coefficients of
the molecular variables, ii) easily handle the n ≪ p, and
iii) yield a sparse molecular signature without additional
preliminary variable selection procedure. The CoxBoost
approach is presented as a survival prediction method.
However, a similar procedure can be used in the con-
text of class prediction [13]. This approach fulfills prere-
quisite 2 but not prerequisite 1 since its aim is to
provide a combined prediction model rather than a test-
ing procedure.
Motivated by the strong advantages of the CoxBoost

approach, we suggest an alternative simple two-stage
approach which also uses a boosting algorithm, but in
a different scheme which is more appropriate for the
testing purposes considered here. Our approach
combines a standard generalized linear model for mod-
eling the clinical covariates (step 1) with a boosting
algorithm for modeling the additional predictive value
of high-dimensional molecular data (step 2). The
differences between our approach and the CoxBoost
approach [6] are as follows. In contrast to the
CoxBoost method, we first fit a classical generalized
linear model to the clinical covariates (first step) and
then focus on the molecular variables (second step)
without changing the coefficients fitted in the first
step. This makes our procedure potentially easier to
interpret, since most clinicians are familiar with stan-
dard logistic regression or Cox regression which are
used in the first step but might be confused by the
iterative update of the coefficients. Moreover, by fixing
the coefficients of the clinical covariates in the first
step, we set the focus on additional predictive value
more clearly than if these coefficients are allowed to
change depending on the effect of the molecular vari-
ables. Moreover, we follow the well-established boost-
ing algorithm described in [14] in which the update
g[m] (see ‘Methods’ Section for an explanation of the
notation) is multiplied by a small shrinkage factor
ν. Instead, CoxBoost does not multiply by ν but pena-
lizes the update through a penalty matrix in the loss
function. Like the CoxBoost approach, our method
fulfills prerequisite 2. To address prerequisite 1, we
suggest a simple permutation-based testing procedure.
The resulting novel approach thus fulfills the two first
prerequisites. Moreover, we suggest a variant for
addressing the application of a risk score fitted pre-
viously using other data (prerequisite 3).

In the next section, we briefly review the methods
involved in the first step (logistic regression) and second
step (boosting with componentwise linear least squares),
and we describe the combined two-step procedure as
well as the permutation test.

Methods
In the following, we consider a random vector of clinical
covariates (Z1,..., Zq)

⊤ with n independent realizations zi
= (zi1,..., ziq)

⊤, for i = 1,..., n. Similarly, the random vector
of molecular covariates is denoted as (X1,..., Xp)

⊤ (with
p > n) with n realizations xi = (xi1,..., xip)

⊤, for i = 1,..., n.
The response variable is denoted as Y and coded as Y Î
{-1, 1}, with realizations y1,..., yn.

Logistic regression
Logistic regression is the standard statistical tool for
constructing linear class prediction rules and assessing
the significance of each predictor. It is implemented in
all statistical software tools, for instance in R within the
generic function glm. The logistic regression model is
given as

log
( | ,..., )

( | ,..., )
,

P Y Z Zq
P Y Z Zq

Z Zq q

=
− =

= + + +
1 1

1 1 1
0 1 1   (1)

where Y is the binary response variable of interest and
Z1,..., Zq denote the q predictors. In the two-stage approach
suggested in this article, Z1,..., Zq correspond to the clinical
predictors. The maximum-likelihood estimates ˆ ,..., ˆ 0 q
of the model coefficients b0,..., bq can be obtained via itera-
tive algorithms such as the Newton-Raphson procedure.
For each new observation znew = (znew,1,..., znew, q)

⊤, one
obtains the so-called linear predictor as

ˆ ˆ ˆ ˆ ,, ,   new new new= + + +0 1 1z zq q (2)

from which the predicted probability ˆ( | ,..., ), ,P Y z z q= 1 1new new

is derived as ˆ( | ,..., ), ,
exp( ˆ )

exp( ˆ )
P Y z z q= = +1 1 1new new

new
new


 . In

our two-stage approach, the estimated logistic regression

coefficients ˆ ,..., ˆ 0 q of the clinical covariates which are

fitted in the first step are passed to the second step that
uses the corresponding linear predictor as an offset.

Boosting with componentwise linear least squares
General algorithm
In this section, we give a short general overview of
boosting as reviewed by Bühlmann and Hothorn [14],
and explain which variant of boosting we use in the sec-
ond step of our two-stage procedure. The considered
predictors are the molecular covariates X1,..., Xp. The
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AdaBoost algorithm was originally developed by Freund
and Schapire as a machine learning tool, see [15] for an
early reference. Friedman, Hastie and Tibshirani [16]
then developed a more general statistical framework
which yields a direct interpretation of boosting as a
method for function estimation. The goal is to estimate
a real-valued function

f Y f X X
f

p( ) arg min [ ( , ( ,..., ))],
( )

⋅ =
⋅
  1 (3)

where r(·) is a loss function which will be discussed in
this section. Friedman, Hastie and Tibshirani [16] for-
mulate boosting as a functional gradient descent algo-
rithm for estimating f(·) as sketched below [14].

1. Initialize f [ ]0 (·) with an offset value, for instance

f [ ]0 (·) = 0 or ˆ ( ) arg min ( , )[ ]f n y cc ii

n0 1
1

⋅ = −
=∑  .

Set m = 0.
2. Increase m by 1. Compute the negative gradient

− ∂
∂f r(Y, f) and evaluate it at f m [ ]−1 (xi), for each

observation i = 1,..., n:

u
f

y fi i f f
m

i
= − ∂

∂ =
−( , ) | .[ ]

( ) 1
x (4)

3. Fit the u1,..., un to x1,...,xn using a so-called base
procedure (which will be discussed later in this sec-
tion):

( , ) ( )[ ]x i i i
n mu g= → ⋅1

base procedure
 (5)

4. Update ˆ ( ) ˆ ( ) ˆ ( )[ ] [ ] [ ]f f gm m m⋅ = ⋅ + ⋅ ⋅−1  , where 0 < ν ≤
1 is a step-length factor (see below), that is, proceed
along an estimate of the negative gradient vector.
5. Iterate steps 2 to 4 until m = mstop for some stop-
ping iteration mstop.

Note that the offset term is simply the best constant
model (without taking the covariates into account) and,
therefore, the algorithm starts at the center of the
unconditional distribution of the response for fitting the
conditional distributions.
The boosting version used in the present study
In the context of binary class prediction (i.e. when Y is
binary), it is usual to use the so-called log-likelihood
loss function

 log-lik( , ) log ( exp( ))y f yf= + −2 1 2 (6)

in step 2 [14]. In the present study, we stick to
this standard choice which yields nice properties.
For instance, it can be shown that the population mini-
mizer of this loss function has the intuitive form

f X X p
P Y X Xp
P Y X Xp

( ,..., ) log
( | ,..., )

( | ,..., )1
1
2

1 1
1 1 1

=
=

− = .

In order to fit a model which is linear in the molecu-
lar variables, componentwise linear least squares regres-
sion is applied as an efficient base procedure in step 3.
This base procedure is defined as

ˆ( ,..., ) ˆ ,g X X Xp j j1 = ∗ ∗ (7)

where ̂ j simply denotes the least square estimate of
the coefficient bj in the univariate regression model
including Xj as single predictor

ˆ / , j ij i
i

n

ij
i

n
x u x=

⎛

⎝
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⎞

⎠
⎟

⎛

⎝
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⎞

⎠
⎟

= =
∑ ∑

1

2

1
(8)

and j* corresponds to the predictor yielding the best
prediction in this univariate regression model:

j u x
j p

i j ij

i

n
∗

≤ ≤
=

= −∑arg min ( ) .
1

2

1

 (9)

Meanwhile, componentwise linear least squares can be
considered as one of the standard base procedures for
boosting. We choose it as a base procedure for the sec-
ond step of our two-stage analysis scheme. A major
advantage of componentwise linear least squares as a
base procedure in the context of our two-stage approach
is that the final estimated function (̆ )

f
mstop (·) can be

seen as a linear combination of the molecular predictors
X1,..., Xp of the same form as the linear combination of
the clinical covariates Z1,..., Zq output by the first step.
Hence, it is easy to combine both steps of the analysis,
as explained in the Section ‘Combining logistic regres-
sion (step 1) and boosting (step 2)’.

Combining logistic regression (step 1) and boosting
(step 2)
In this section, we show how logistic regression and
boosting as described in the two above sections can be
combined into a two-step procedure. We first present
the procedure for the case when the model with clinical
covariates has to be estimated from the data and then
address the other scenario (application of a fixed risk
score known from a previous study).
Step 1

1.1 Fit a logistic regression model as outlined in the
Section ‘Logistic regression’ to the clinical covariates
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Z1,..., Zq, yielding estimates ˆ , ˆ ,..., ˆ  0 1 q for the
logistic regression coefficients.
1.2 Compute the linear predictor
ˆ ˆ ˆ ˆ( )   i i q iqz z1

0 1 1= + + + for i = 1,..., n.
Step 2: Boosting regression
This step involves one method parameter, the number
of boosting iterations mstop, which is discussed in the
Section ‘The choice of mstop’.

2.1 Define the offset function f [ ]0 (·) as

f z zi ip
i

 
0

11

[ ]
=( ,..., ) ( ) and run the boosting algorithm

given in the Section ‘Boosting with componentwise
linear least squares’ using the log-likelihood loss
function rlog-lik and componentwise linear least
squares as a base procedure with mstop boosting
iterations, as implemented in the R package mboost

[17,18]. Derive the estimates ˆ , ˆ ,..., ˆ  0 1
∗ ∗ ∗

p for the

intercept and the regression coefficients of the vari-
ables X1,..., Xp. Note that, in practice, many of these
coefficients are zero.
2.2 Compute the resulting linear predictor as

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .( )      i i q iq i p ipz z x x2
0 1 1 0 1 1= + + + + + + +∗ ∗ ∗  (10)

2.3 Compute the predicted probabilities from the

linear predictor as
exp( ( ))

exp( ( ))









i

i

2

1 2+
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age negative binomial log-likelihood as
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n

( . . ) log
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exp( ( ))








.. (12)

A small negative binomial log-likelihood indicates
good model fit. Note that we could have used another
goodness criterion in place of the negative binomial log-
likelihood. However, the binomial log-likelihood is espe-
cially appropriate, since it is the criterion optimized by
the boosting procedure. To assess the additional predic-
tive value of the molecular data, we suggest to compare
ℓ to the negative binomial log-likelihood obtained from
permuted data, as outlined in the Section ‘Permutation-
based testing procedure’.

In the situation where a risk score is already available
(e.g. from a previous publication), step 1 can be skipped.

The linear predictor  i
( )1 is obtained through logit

transformation of the risk score and used as an offset in
boosting regression in place of the estimated linear pre-

dictor ˆ ( ) i
1 . Our method can thus accommodate situa-

tions where the clinical risk score is not based on a
linear predictor in the context of logistic regression
(for instance a risk score corresponding to a classiffica-
tion tree).
Alternatively, our method can also be used to globally

assess the molecular variables independently of any clin-
ical covariates. This would be done by ignoring the first
step (logistic regression) of our method and simply set-
ting the offset to the value of the intercept.

Permutation-based testing procedure
We consider the null-hypothesis that the variables X1,...,
Xp have no additional predictive power given the clinical
covariates. The considered model is given as

log
( )

( )
P Y
P Y

Z Xj j

j

q

j j

j

p
=

− =
= + +

=

∗

=
∑ ∑1

1 1 0

1 1

   (13)

and the null-hypothesis is formally stated as

H p0 1 0: . ∗ ∗= = = (14)

We suggest to test this null-hypothesis using a permu-
tation procedure by permuting X1,..., Xp only. More pre-
cisely, we replace x1,...,xn by xs(1),...,xs(n), where s is a
random permutation of (1,..., n), while the clinical cov-
ariates zi are not permuted. The two-step procedure is
applied and the negative binomial log-likelihood ℓ is
computed again for this permuted data set. The whole
procedure is repeated a large number of times B, yield-
ing the negative binomial log-likelihoods ℓ1,...,ℓB. The
permutation p-value is then obtained as

p
B b

b

B

-value = ≤
=

∑1

1

1( ),  (15)

where 1 denotes the indicator function.
In the case of a fixed risk score as discussed at the end

of the Section ‘Combining logistic regression (step 1) and
boosting (step 2)’, the underlying model is slightly differ-
ent and can be formulated as

log
( )

( )
( ,..., ) ,

P Y
P Y

R Z Z Xq j j

j

p
=

− =
= + + ∗

=
∑1

1 1 0 1

1

  (16)
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where R(.) denote the fixed risk score function based
on the clinical covariates Z1,..., Zq. Note that, if R(.) is
simply a linear function of Z1,..., Zq, this version of the
test will rather lead to rejection of the null-hypothesis
than the first version with coefficients b1,..., bq estimated
from the data.

The choice of mstop

When boosting is used for building a prediction model,
the choice of the number of boosting iterations is cru-
cial. A too large mstop would yield an overcomplex
model overfitting the training data, while a too small
mstop would yield a too sparse model that do not fully
exploit the available predicting information. In practice,
the number of boosting iterations can be selected using
an AIC-like criterion or by minimization of the out-of-
sample negative binomial likelihood within a bootstrap
procedure [14]. In contrast to what happens in the con-
text of prediction, the results of our approach for the
assessment of additional predictive value are not
strongly affected by the number of boosting iterations.
For large values of mstop, the obtained regression model
overfits the training data set, but the differences between
permuted and non-permuted data, on which the test is
based, do not seem to strongly depend on the number
of boosting steps.
To illustrate this, we follow the simulation scheme

described in the ‘Results’ section and consider two
extreme cases: a) one strongly informative molecular
variable (μX = 5, p* = 1) and b) 200 very weakly infor-
mative molecular variables (μX = 0.2, p* = 200), all the
other molecular variables and clinical covariates being
irrelevant for the prediction problem. The second set-
ting can be considered as an extreme case, since there
are often less than 200 informative variables in practice,
and relevant between-group shifts are often larger than
μX = 0.2. In these settings, we compute the negative
binomial log-likelihood ℓ as well as its permuted ver-
sions ℓ1,...,ℓB for a grid of mstop values ranging from 10
to 2000. The resulting curves are displayed in Figure 1.
Similar curves are obtained for different values of the
simulation parameters. To sum up, the curve of the ori-
ginal data set (with informative X variables) decreases
with increasing mstop more rapidly than the curves of
the permuted data sets until a certain value of mstop.
After this value, all curves are approximately parallel.
Hence, further increasing mstop would not change the
test result much. This is because, roughly speaking, the
newly added components do not improve the model
anymore - even with the original non-permuted
variables.
As an objective criterion, we suggest to choose the

mstop value based on the AIC procedure described by
Bühlmann and Hothorn [14]. The only remaining

parameter is then the maximal number of boosting
iterations mstop

max . Except from the computational
expense, there is no inconvenience to choose a very
large value, for example mstop

max = 1000.

Computational cost
The computation time grows linearly with the number
of boosting regressions, i.e. the number of permutations.
For usual data sets such as those considered in this
paper, boosting regression runs in less than one second
with a standard PC (Intel(R) Core(TM)2 CPU T7200
2.00 GHz). Note that the permutation-based procedure
can be parallelized very easily, since the permutations
are independent of each other.

Results
Simulation design
In all settings, the number n of observations is set
to n = 100, the number p of molecular predictors to
p = 1000 and the number q of clinical predictors to
q = 5. The binary variable Y is drawn from a Bernoulli
distribution with probability of success 0.5. The p* rele-
vant molecular variables follow the conditional distribu-
tion Xj|(Y = 1) ~  (μX, 1) and Xj|(Y = -1) ~  (0, 1),
for j = 1,..., p*. The other molecular variables Xp*+1,..., Xp

simply follow a standard normal distribution. Similarly,
the clinical covariates are drawn from the conditional
normal distribution Zj|(Y = 1) ~  (μZ, 1) and Zj|
(Y = - 1) ~  (0, 1), for j = 1,..., q.
We first consider the case of non-informative clinical

covariates (μZ = 0) and uncorrelated variables X1,..., Xp,
Z1,..., Zq, and consider the six following cases:
(null) p* = 0 (no informative molecular variables), for

comparison

(a) p* = 5 and μX = 0.5: few relevant variables, weak
between-group shift
(b) p* = 5 and μX = 0.8: few relevant variables,
strong between-group shift
(c) p* = 50 and μX = 0.3: many relevant variables,
very weak between-group shift
(d) p* = 50 and μX = 0.5: many relevant variables,
weak between-group shift
(e) p* = 200 and μX = 0.3: very many relevant vari-
ables, very weak between-group shift

To show that our method focuses on the additional
predictive value of high-dimensional data, we also con-
sider the following special setting (f): both the q = 5
clinical covariates and the p* = 5 relevant molecular
predictors are highly predictive (μZ = μX = 1), but
in the first case they are mutually uncorrelated (f.1),
while we have X1 = Z1,..., X5 = Z5 in the second
case (f.2).
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For each setting, 100 simulated data sets are gener-
ated. The two following methods are applied to each
data set for each setting:

A. Our method for mstop = 100, 500, 1000 and AIC-
optimized mstop with B = 200 permutation iterations
B. Goeman’s global test [7] with adjustment for the
clinical covariates using the globaltest package [9]

Simulation results
Figure 2 represents boxplots of the p-values for the
eight different settings. Three important results can be
observed from the boxplots. Firstly, the influence of the
parameter mstop seems to be minimal in all settings
except in setting (f.1), where mstop = 1000 has a notice-
ably better power. Hence, this simulation study confirms
that, as outlined in the Section ‘The choice of mstop’, the
choice of mstop is not of crucial importance in most
cases, and that mstop should rather be large. Secondly,
our method shows high power in very different difficult
situations such as a small number of strong predictors
or a large number of very weak predictors. In all the
examined settings, its power was in average better than
the power of the standard globaltest - at the price of an
increased computational expense. The power difference
between our approach and the global test is especially
striking in the case of a small number of strong predic-
tors (b). Another interesting result is that the p-values
of the global test are not uniformly distributed in the
null case. Note, however, that we do not consider the

permutation-based global test in this comparison study.
Its results may be different with respect to the null-dis-
tribution of the p-values. Thirdly, our method finds
additional predictive value in setting (f.1) but does not
in setting (f.2) (i.e. when X1 = Z1,..., Xq = Zq), thus ful-
filling prerequisite 1.

Real data analysis
We first analyze the ALL data set included in the Bio-
conductor package ALL [19]. The ALL data set is
an expression set from a study on T- and B-cell acute
lymphoblastic leukemia including 128 patients using the
Affymetrix hgu95av2 chip with 12,625 probesets [20].
The data have been preprocessed using RMA. We con-
sider the response remission/no remission, and the clin-
ical covariates age, sex, T- vs. B-cell. After removing
patients with missing values in the response or in
the clinical covariates, we obtain a data set with 97
patients with remission and 15 patients without
remission.
The second example data set considered in this paper

is the van’t Veer breast cancer data set [21]. The data
set prepared as described in the original manuscript
(only genes that show 2-fold differential expression and
p-value for a gene being expressed < 0.01 in more than
5 samples are retained, yielding 4348 genes) is included
in the R package DENMARKLAB [22], which we use in
the article. The available clinical variables are age
(metric), tumor grade (ordinal), estrogen receptor status
(binary), progesterone receptor status (binary), tumor
size (metric) and angioinvasion (binary).
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Figure 1 Choice of mstop. Negative log-likelihood for the original data (red) and the permuted data (black) against the number of iterations
mstop. (a) μX = 5, p* = 1. (b) μX = 0.2, p* = 200.
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We apply the global test with adjustment for the clini-
cal covariates and our new approach (with mstop = 100,
500, 1000 and AIC-optimized mstop) to both data sets.
Additionally, we also apply the global test without
adjustment and our method without first step (i.e. with-
out adjustment for clinical covariates) for comparison.
The results are given in Table 1. Whereas the ALL gene
expression data seem to have additional predictive value,
the van’t Veer data do not, which corroborates previous
findings [2,10]. A noticeable result of both Goeman’s
global test and our new approach is that the ALL data
have more predictive value with adjustment than with-
out adjustment, which may indicate that clinical and
gene expression data are correlated and have contradic-
tory effects on the response variable. In contrast, the
van’t Veer gene expression data seem to be marginally
informative, but their predictive value vanishes when
adjustment is performed. Figure 3 shows the negative
binomial log-likelihood as a function of mstop for the
original data sets (black) and for the permuted data sets
(grey). It can be seen from Table 1 that different values
of mstop may yield noticeably different results, in con-
trast to what was observed in simulations. In this con-
text, the AIC-based choice of mstop is helpful.

Discussion
Good practice declaration
Our simulation and real data studies were performed
with the values mstop = 100, 500, 1000 and with AIC-
optimized mstop only. These values were chosen based on
preliminary analyses in the vein of the Section ‘The
choice of mstop’, but not based on the final results. The
simulation settings were chosen based on short prelimin-
ary studies. The aim of these preliminary studies was to
ensure informativeness in the sense that we avoided set-
tings where all hypotheses are rejected (too strong pre-
dictors) or all hypotheses are accepted (too weak
predictors). Following [23], the aim of the preliminary
study was not to select the settings that would advantage
our method compared to the concurrent globaltest
approach. For reproducibility, the codes of the simulation
and real data studies are available in the Additional files
1, 2 and 3. Our procedure is implemented in the package
“globalboosttest” which is available from R-forge and will
be sent to the CRAN as soon as possible.

Variants of the two-step procedure
As suggested by a reviewer, other regularized regression
techniques could be used in place of boosting regression
in the second step of our procedure, for example,
L1-penalized regression. Indeed, the Lasso and boosting
regression can be seen as two sparse regularized regres-
sion methods addressing the same problem in a differ-
ent way. If L1-penalized regression is applied in the
second step, the penalty applied to the L1 norm plays
the role of the number mstop of boosting steps as a com-
plexity parameter. In principle, many other regularized
regression techniques based on the logistic model may
be used in the second step of our procedure, such as,
e.g., L2-penalized regression. An extensive comparison
study would go beyond the scope of this paper. How-
ever, a preliminary study using an arbitrary value for the
penalty parameter indicates that similar performance
can be obtained using L1-penalized regression as imple-
mented in glmpath (data not shown).
Beside the high computational expense, an important

problem of this approach is the choice of the penalty
parameter. Whereas standard values of the number of
boosting steps like mstop = 100 or mstop = 500 are
expected to perform reasonably well in any case, there
are no universal standard values for the penalty para-
meter in L1-penalized regression. Most importantly, the
range of the penalty values considered by glmpath
depends on the data. Thus, it may be difficult in practice
to find a penalty value common to all permutations and
the p-value cannot be simply calculated. On the whole,
the choice of the complexity parameter seems to be
more delicate in methods with direct penalization than
in the context of boosting regression.

Conclusions
We propose a simple boosting-based permutation pro-
cedure for testing the additional predictive value of
high-dimensional data. Our approach shows good power
in very different situations, even when a very small pro-
portion of predictors are informative or when the signal
in each informative predictors is very weak. Unlike
approaches like pre-validation [24], it assesses the addi-
tional predictive value of high-dimensional data in the
sense that the clinical covariates are involved in the
model as a fixed offset. We provide clear advice for

Table 1 P-value obtained for real data sets

global test boosting-based permutation test

adjustment mstop = 100 mstop = 500 mstop = 1000 mstop AIC

ALL yes 0.039 0.015 0.050 0.061 0.040

no 0.078 0.013 0.068 0.136 0.025

van’t Veer yes 0.114 0.493 0.373 0.289 0.412

no 0.015 0.006 0.009 0.010 0.009
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choosing the parameters involved in the procedure. The
shrinkage factor ν should be set to the standard default
value ν = 0.1 as recommended in previous publications
[14]. The number B of permutations should be set as
high as computationally feasible (the higher B, the more
precise the p-value). The most delicate parameter is the
number of boosting iterations mstop. Note, however, that
the choice of mstop is not as crucial as in the context of
prediction. The AIC-based procedure provides a reliable
objective criterion. Except for the computational
expense, there is almost no inconvenience to set the

maximal number of boosting steps to a very large value,
for instance mstop

max = 1000.
Note that our methodology can be easily generalized

to a wide range of more complex regression problems
such as survival analysis or non-linear regression. These
problems can all be handled within the boosting regres-
sion framework using the mboost package [17,18].
Hence, our approach is essentially not limited to linear
effects, although we focus on this special case in the
present paper. The procedure can also be adapted to
classification problems with asymmetric costs through

Figure 3 Negative binomial log-likelihood in the real data study. Negative binomial log-likelihood as a function of mstop for the original
data sets (black) and for the permuted data sets (grey).
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the choice of an appropriate loss function. Another
interesting and probably much more complex extension
of this boosting-based procedure would be to perform
individual tests to test the additional predictive value of
each of the molecular variables. Since, especially for lin-
ear models, an efficient implementation of boosting is
available [17], the computational effort of our procedure
is manageable with standard hardware. Furthermore, the
permutation procedure can be run in parallel which
further reduces the required computing time [25].

Additional file 1: R script for the analysis of the ALL data. This R file
includes the R script for reproducing our analyses of the ALL data.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
78-S1.R ]

Additional file 2: R script for the simulations. This R file includes the R
script for reproducing the simulation study.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
78-S2.R ]

Additional file 3: R function to generate the simulated data sets.
This R file includes the function used in our simulations to 1) generate
the simulated data sets, 2) compute the p-value with our new method.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2105-11-
78-S3.R ]
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