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Abstract
Propagation-defective vesicular stomatitis virus (VSV) vectors that encode a truncated G protein
(VSV-Gstem) or lack the G gene entirely (VSV-ΔG) are attractive vaccine vectors because they are
immunogenic, cannot replicate and spread after vaccination, and do not express many of the epitopes
that elicit neutralizing anti-VSV immunity. To consider advancing nonpropagating VSV vectors
towards clinical assessment, scalable technology that is compliant with human vaccine
manufacturing must be developed to produce clinical trial material. Accordingly, two propagation
methods were developed for VSV-Gstem and VSV-ΔG vectors encoding HIV gag that have the
potential to support large-scale production. One method is based on transient expression of G protein
after electroporating plasmid DNA into Vero cells and the second is based on a stable Vero cell line
that contains a G gene controlled by a heat shock-inducible transcription unit. Both methods
reproducibly supported production of 1×107 to 1×108 infectious units (I.U.s) of vaccine vector per
ml. Results from these studies also showed that optimization of the G gene is necessary for abundant
G protein expression from electroporated plasmid DNA or from DNA integrated in the genome of
a stable cell line, and that the titers of VSV-Gstem vectors generally exceeded VSV-ΔG.
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1. Introduction
Vesicular stomatitis virus (VSV) is a member of the Rhabdoviridae family, and accordingly,
is an enveloped virus that contains a non-segmented, negative-strand RNA genome. The 11-
kb genome contains 5 genes arranged sequentially 3′-N-P-M-G-L-5′ (Fig. 1a) that encode 5
known structural proteins (Jayakar et al., 2004;Rose and Whitt, 2001;Whelan et al., 2004). The
nucleocapsid (N) protein encapsidates the genome whether the RNA is packaged in mature
virions or is being actively transcribed and replicated in the infected cell cytoplasm by the viral-
encoded RNA-dependent RNA polymerase. The polymerase is a multi subunit enzyme
composed of the P (phosphoprotein) and L (large) protein. The matrix protein (M) lines the
inner surface of the virus particle and promotes virion assembly and budding. Finally,
multifunctional envelope glycoprotein (G) mediates cell attachment, membrane fusion, and
likely promotes assembly of progeny virus particles (Jayakar et al., 2004;Swinteck and Lyles,
2008).

Advancement in genetic engineering of rhabdoviruses (Finke and Conzelmann, 2005; Lawson
et al., 1995; Schnell et al., 1994; Whelan et al., 1995) has made it possible to explore
recombinant VSV (rVSV) as a vaccine vector. Many characteristics of VSV make it an
attractive candidate for delivering human vaccines including: 1) VSV infection is not typically
associated with human illness; 2) there is little pre-existing immunity in most human
populations that might interfere with its use; 3) VSV infects and propagates efficiently in many
cell types including cell lines suitable for manufacturing vaccines; 4) the non-segmented
genome is stable and does not reassort; 5) VSV can accept one or more foreign gene inserts
and direct high levels of expression upon infection; and 6) VSV infection is an efficient inducer
of both cellular and humoral immunity (Bukreyev et al., 2006; Clarke et al., 2006; Finke and
Conzelmann, 2005). A number of preclinical studies conducted with rVSV vectors have
produced promising results; prototype vaccine vectors elicited potent immune responses
against the encoded foreign antigen, and importantly, were found to be safe when administered
to small laboratory animals and non-human primates (Grigera et al., 2000; Kahn et al., 2001;
Roberts et al., 1999; Roberts et al., 1998; Rose et al., 2001; Rose et al., 2000; Schlereth et al.,
2000). Notably, Rose et al. found that co-administration of two vaccine vectors, one encoding
HIV-1 env and the other encoding SIV gag, elicited immune responses in vaccinated macaques
that protected against challenge with a pathogenic SHIV (Rose et al., 2001).

The transition of a vaccine candidate from preclinical evaluation to clinical development
focuses much greater emphasis on potential vaccination risk, and consequently, interest in
vectors that are highly attenuated or propagation-defective. Propagation-defective rVSV
vectors, encoding a variety of foreign antigens, have been produced in which the VSV G gene
has been either deleted completely (rVSV-ΔG) or truncated to encode a G protein lacking most
of the extracellular domain (rVSV-Gstem) (Clarke et al., 2006; Cooper et al., 2009; Kahn et
al., 2001; Klas et al., 2006; Klas et al., 2002; Majid et al., 2006; Publicover et al., 2005). Studies
conducted with small animal models have indicated that these vectors are immunogenic and
may be particularly suited to eliciting antibody responses (Cooper et al., 2009; Kapadia et al.,
2008; Publicover et al., 2005). In addition, the VSV-Gstem vector has been subjected to
analysis in a murine neurovirulence model and found to cause little or no pathology when
inoculated directly into the brain of neonatal mice (Cooper et al., 2009).

Although propagation-defective VSV vectors have produced promising results in preclinical
studies, scalable propagation methods that can be validated and are compliant with regulatory
agency guidelines governing human vaccine manufacture are needed before clinical evaluation
of these vaccine candidates can be considered seriously. Development of a manufacturing
process is complicated by the constraint that it must be based on continuous cell lines that are
acceptable for vaccine production. Furthermore, providing genetic complementation for VSV
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G is problematic because the viral protein promotes membrane fusion and is cytotoxic (Rose
and Whitt, 2001). Producing stable cell lines that express G protein from an inducible promoter
is one potential solution, but leaky expression frequently results in toxicity and cell line
instability, and the quantity of G synthesized after induction often is inadequate to promote
efficient virus particle packaging particularly on a scale needed for vaccine manufacturing.
One inducible cell line has been described (Schnell et al., 1997), but it is derived from BHK
cells, which are not used for production of human vaccines because they produce contaminating
intracisternal R-type particles (Blanchard et al., 2003; Chan, 1994; Compans et al., 1966;
Shipman et al., 1969; Wang et al., 1999). Transient expression of G protein in transfected BHK
or 293T cells (Majid et al., 2006; Takada et al., 1997) or electroporated Vero cells (Witko et
al., 2006b) also has been used to propagate rVSV-ΔG and -Gstem vectors. These methods have
been used to produce virus particles needed to support preclinical studies, but the yields of
packaged virus or the complexity of producing a scalable process makes these procedures
impractical for vaccine manufacturing. BHK cells, which produce intracisternal particles, or
293T cells, which encode SV40 T antigen (DuBridge et al., 1987), have been used in the
transfection-based methods and are not preferred substrates for manufacture of live vaccines
intended for use in humans. Therefore, to advance a propagation-defective VSV vector
candidate into the clinic, a vaccine production process must be developed that meets a number
of criteria including: 1) it must be scalable for development of a manufacturing process; 2) it
has to be based on a continuous cell line substrate that is permissive for VSV infection and can
be qualified for vaccine production; 3) materials used in the process are compliant with
regulations governing vaccine production; 4) the abundance of G protein expression is adequate
to promote efficient virus particle packaging, and 5) yields of infectious particles are sufficient
to formulate vaccines that contain more than 1×107 infectious units per ml, which has been
demonstrated to be an immunogenic dose of VSV vector in a number of non-human primate
studies (Daddario-DiCaprio et al., 2006a; Daddario-DiCaprio et al., 2006b; Egan et al., 2005;
Egan et al., 2004; Feldmann et al., 2007; Jones et al., 2005; Rose et al., 2001).

Two procedures for G complementation are described below that support improved rVSV-
ΔG and rVSV-Gstem packaging. Both are potentially scalable for manufacturing and both
employ Vero cells, which are a well-characterized substrate for vaccine production and have
been used to produce a licensed rotavirus vaccine (GlaxoSmithKline, 2008; Merck, 2006;
Sheets, 2000). One approach is based on transient production of abundant G protein from
electroporated plasmid DNA. The second method is based on development of stable cell lines
that express G protein under control of a transcriptional control sequence regulated by the
cellular heat shock response. Both methods have been used to propagate VSV Gstem and G
vectors (Fig. 1) producing over 1×107 infectious units (I.U.) per ml.

2. Materials and Methods
2.1 Cell culture

Vero cells were propagated in Dulbecco s modified minimal essential medium (DMEM)
supplemented with 10% heat-inactivated fetal bovine serum (FBS) and 0.01 mg/ml gentamicin.
The heat shock-inducible Vero-HS4 cell line, which expresses the Indiana serotype VSV G
protein (Gin), was isolated after electroporating plasmid pHS-Gin (described below and Fig.
1B) into Vero cells. Briefly, Vero cells were propagated to near confluence in 150-cm2 flasks
before being harvested and processed for conducting electroporation (Witko et al., 2006b). The
cell suspension from a 150-cm2 flask was electroporated with approximately 25 μg of
linearized (Bgl II; Fig. 1B) pHS-Gin DNA after which the cells were processed and distributed
into three 10-cm2 culture dishes containing DMEM supplemented with 10% heat-inactivated
FBS and 0.01 mg/ml gentamicin. Approximately 24 hours later, the medium was replaced with
DMEM containing the same supplements plus 1 mg per ml neomycin (Geneticin from
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Invitrogen). The cells were maintained in medium containing neomycin until the monolayers
were nearly confluent, at which time the cells were subcultured at a ratio of 1:100 to 1:5000
and propagated for about 2 weeks under selective conditions until isolated cell colonies were
picked and expanded. The clonal cell lines were screened initially for VSV G expression by
determining whether heat shock induction made it possible to propagate rVSV-Gstem vectors
(Fig. 1A), which was determined by observing cytopathic effect (CPE) caused by viral
replication. Positive cell lines then were screened more rigorously by performing Western blot
analysis (Witko et al., 2006a) to confirm that G protein was expressed following heat shock,
and by identifying cell lines that supported the most abundant production of rVSV-Gstem or
-ΔG virus after infection.

2.2 Molecular cloning
Plasmid DNAs were prepared using standard molecular cloning procedures (Ausubel et al.,
1987) and their structures were verified by nucleotide sequencing (Witko et al., 2006b). A
modified pCI-Neo plasmid (Promega) that lacked a T7 RNA polymerase promoter (Witko et
al., 2006b) was used to construct vectors in which the VSV Gin or the New Jersey serotype G
(Gnj) were placed under the control of the hCMV promoter and enhancer. Three types of G
expression plasmid were constructed that differed in the type of modifications that were applied
to the cloned G sequences. The first type of expression plasmid was constructed simply by
adding a Kozak consensus element (Kozak, 1991) at the translation initiation site of the native
Gin and Gnj sequences. The second type of plasmid was generated with G genes that were
subjected to RNA Optimization (RNA Opt; also sometimes referred to as “codon
optimization”) using the strategy described by Jalah et al. (Jalah et al., 2007). This method is
based on the observation that protein quantity is influenced by several mRNA attributes
including stability, nuclear export efficiency, and the efficiency of translation initiation
(Nasioulas et al., 1994; Schneider et al., 1997; Schwartz et al., 1992a; Schwartz et al.,
1992b). Accordingly, synonymous codon changes were introduced that increased guanine and
cytosine (G+C) content, eliminated potential splicing signals or other RNA processing
elements, minimized repetitive sequences or other sequence motifs that had the potential to
form extensive secondary structure, and eliminated known mRNA instability sequences.
Optimal translation initiation and polyadenylation signals were incorporated as well.

The last type of modified G gene was produced by a related method that is referred to as “Gene
Optimization” (Gene Opt), which included the following steps: i) the Backtranslate program
(SeqWeb software suite, Accelrys Software, Inc) was used to produce G coding sequence
composed of codons used at high frequency in human cells; ii) homopolymeric regions in the
backtranslated sequence of more than 5 nucleotides were interrupted by exchanging sequences
with synonymous codons; iii) splice donor and acceptor signals predicted by the webtool
(http://www.fruitfly.org/seq_tools/splice.html) described by Reese et al. (Reese et al., 1997)
were removed from the coding sequence by incorporating synonymous codons; iv) potential
mRNA instability signals (Shaw and Kamen, 1986; Zubiaga et al., 1995) were eliminated by
replacing sequence with synonymous codons; and, v) optimal translation initiation and
termination signals were added (Kochetov et al., 1998; Kozak, 1991). The optimized G gene
sequences had been deposited in Genbank and their Accession numbers are as follows:
GU177824 (Indiana G, RNA optimized); GU177825 (Indiana G, gene/codon optimized);
GU177826 (New Jersey G, RNA optimized).

A heat shock-inducible plasmid vector (pHS-Gin; Fig. 1C) was constructed by substituting
much of the hCMV promoter and enhancer sequence (Meier and Stinski, 1996), between the
Bgl II and Asi SI sites in pCI-Neo (Fig 1b), with multiple copies of the heat shock factor 1
(HSF-1) binding element (Kroeger and Morimoto, 1994). The Gene Opt Gin gene was cloned
3 of the heat shock inducible promoter.
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2.3 G protein expression and VSV propagation
Propagation-defective rVSV-ΔG and rVSV-Gstem vectors used in these studies have been
described before (Witko et al., 2006b) and their genomic structures are illustrated in Fig. 1.
Two methods were used to package propagation-defective rVSV vectors. The first was based
on transient expression of G protein after electroporation. Vero cells were electroporated with
25–50 μg of G expression plasmid (Witko et al., 2006b), and approximately 20 hours later, the
monolayer of electroporated cells cultured in a T150-cm2 flask was infected with
approximately 0.01 plaque-forming units (PFU) per cell. Virus particles were harvested 24–
48 hours post-infection and quantified by plaque assay conducted with BHK-G cells (Schnell
et al., 1997).

The second packaging and propagation method was based on using the inducible cell line
(Vero-HS4) that expresses Gin after heat shock. Vero-HS4 cells were split the day before
infection to achieve a nearly confluent monolayer the following day. The cells were then fed
with fresh medium lacking neomycin and transferred to an incubator set at 43°C for 3–6 hours
after which the cells were incubated at 37°C overnight. The cells were then infected with
approximately 0.01 PFU per cell of propagation-defective VSV and allowed to incubate 24–
48 hours before virus particles were harvested and quantified by plaque assay. Cells that were
heat shocked but not infected were harvested and tested for G protein expression by Western
blot analysis.

3. RESULTS
3.1 Packaging VSV particles in cells after electroporation of plasmids encoding G protein

VSV particle packaging procedures based on transient G expression have been used
successfully to produce relatively small-scale quantities of rVSV-ΔG and rVSV-Gstem vectors
needed for preclinical studies (Majid et al., 2006; Publicover et al., 2005; Witko et al.,
2006b). For development of a manufacturing process, transient expression approaches are
attractive because they can be applied to multiple cell types, and importantly, it is possible to
directly use a validated cell line without further qualification or testing (i.e. adventitious agent
testing, karyotyping, tumorigenicity testing, etc.), which will be needed to qualify a new stable
inducible cell line. Although the published transient expression methods have been used
successfully, their application to vaccine manufacture is restricted because they are based on
cells that are not qualified for vaccine production (i.e. BHK) or packaging yields generally
have been lower than 1×107 I.U.s per ml (data not shown). To begin developing a method that
can support vaccine manufacturing, process development was initiated with Vero cells and
plasmid DNA electroporation. Vero cells were selected because qualified lines can be obtained
for vaccine production, and because it is one of the few continuous cell lines used today to
manufacture licensed vaccines (GlaxoSmithKline, 2008; Merck, 2006; Sheets, 2000).
Electroporation was selected as the method for introducing DNA for several reasons including;
equipment has been developed that can support manufacturing-scale DNA electroporation
(Fratantoni et al., 2003), electroporation is one of the more effective methods to introduce
plasmid DNA into Vero cells (Kaur et al., 2008; Surman et al., 2007; Witko et al., 2006b), and
DNA electroporation can be performed without using transfection reagents that might be very
costly, or contain components that are not acceptable for a vaccine manufacturing process.

In addition to the efficiency of plasmid DNA introduction into Vero cells, the next most
important variable limiting virus packaging yields was expected to be the abundance of G
protein in transfected cells. Accordingly, expression plasmid optimization was investigated as
a method to improve G expression. Gin or Gnj genes were designed using either the related
RNA Opt or Gene Opt strategies described in the Methods, and were cloned into the pCI-Neo
vector (Methods and Fig. 1B) under the control of the hCMV promoter and enhancer region
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(Boshart et al., 1985;Meier and Stinski, 1996). To investigate the effect of optimization, 50
μg of plasmid DNA was electroporated into approximately 1×107 Vero cells and total cellular
protein was harvested 24 or 72 hours post-electroporation (Fig. 2). Western blot analysis with
VSV G-specific monoclonal antibody (Indiana serotype) polyclonal antiserum revealed that
Gin protein abundance was increased significantly by either optimization method at 24 or 72
hours post-electroporation (post-EP) when compared to expression directed by the native Gin
gene, and this effect was most pronounced at the later time point. In most experiments, it
appeared that the Gin gene designed with the RNA Opt method was expressed somewhat more
efficiently particularly at the 72 h time-point, although the magnitude of this effect was not
rigorously evaluated since it was evident that either procedure would notably elevate Gin
protein production for the purpose of providing complementation. The RNA Opt procedure
was applied to the Gnj coding sequence as well and had a similar positive effect on expression
(Fig. 2B).

After finding that electroporated Vero cells produced abundant G protein, studies were
performed to determine whether the increased concentrations of G enhanced viral particle
packaging. Five independent experiments were conducted (Table 1) in which rVSV-ΔG and
rVSV-Gstem vectors encoding HIV-1 gag were packaged in cells electroporated with different
G expression plasmids. Several conclusions can be drawn from these studies. First, packaging
of the rVSV-ΔG-gag1 or rVSV-Gstem-gag1 vectors was significantly improved ( p<0.05 or
p<0.01, respectively) when an optimized plasmid was used for complementation producing
0.6 to 1.2 log10 I.U.s more per packaging run. This conclusion was supported by multiple trials
with optimized Gin plasmids and by one performed with Gnj. The second conclusion was that
the Gstem vector titers were generally higher than those produced by the ΔG vector, and
packaging runs routinely exceeded 1×107 I.U.s per ml and at times reached 1×108 I.U.s per
ml. Taken together, these results demonstrated that enhanced G expression did improve particle
titers, and that the Gstem vector tended to package more efficiently than the ΔG counterpart.

3.2 Packaging VSV particles in stable inducible cell lines expressing G protein
Stable cell lines that express adequate concentrations of G protein to support virus particle
packaging do provide practical advantages particularly for large-scale applications. Notably,
they can be used to propagate rVSV-ΔG or -Gstem vectors without the handling needed to
perform electroporation or transfection, which can be difficult to manage reproducibly when
performed on a scale needed to support vaccine manufacturing. Although stable cell lines are
a very attractive alternative, they can be difficult to produce and maintain particularly when
the complementing gene product is toxic like VSV G. Attempts to produce Vero cells
expressing G under control of tetracycline-responsive systems (Corbel and Rossi, 2002) failed,
prompting investigation of additional approaches (data not shown).

A system based on induction of transcription by heat shock was an attractive alternative.
Promoters controlling expression of cellular heat shock proteins (HSPs) have been used to
control synthesis of a foreign protein (Rome et al., 2005), and it is known that Vero cells are
tolerant of heat shock (Witko et al., 2006b). Moreover, induction by heat shock eliminates the
need to use chemical compounds to control induction or repression of transcription that might
need to be removed from the final vaccine preparation. Although it was appealing to make use
of heat shock response, it is known that promoters controlling expression of the HSPs do exhibit
significant basal activity (Rome et al., 2005) that might cause toxicity when controlling
expression of VSV G protein. Therefore, a modified strategy was investigated to minimize
basal promoter activity. A heat shock-inducible transcriptional control region was constructed
by starting with a minimal promoter (Gossen and Bujard, 1992) derived from the hCMV
immediate early region 1 transcriptional control region (Meier and Stinski, 1996) that was
expected to exhibit low levels of basal activity (Fig 1C). To make it responsive to heat shock
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and promote an increased magnitude of response, multiple copies of the sequence 5′-
NGAAN-3′ and its complement (5′-NTTCN-3′) were inserted 5′ of the minimal promoter
generating multiple bindings sites (nGAAnnTTCnnGAAn) for heat shock factor 1 (HSF-1)
(Wang and Morgan, 1994), which binds DNA as a trimer (Wu, 1995).

The VSV Gin Gene Opt protein-coding sequence was cloned 3′ of the modified promoter in a
plasmid that also contained the NeoR selectable marker controlled by the SV40 promoter and
enhancer (Fig. 1C). Cell lines were established by introducing linearized plasmid DNA into
Vero cells by electroporation and applying G418 selection 24 hours later. Drug resistant cell
colonies were isolated and expanded, and subsequently screened for their ability to support
propagation of rVSV-Gstem vector after heat shock, which was determined simply by
monitoring the cultures for cytopathic effect caused by replication. Positive cell lines were
screened more rigorously by quantifying Gin expression induced by heat shock (data not
shown) resulting in selection of the Vero-HS4 cell line for further evaluation. Inducible
expression of G protein in Vero-HS4 cells is illustrated by the Western blot shown in Fig. 3A.
Vero or Vero-HS4 cells were subjected to heat shock for 6 hours at 43°C then returned to 37°
C for overnight incubation. Control cells were maintained at 37°C throughout the experiment.
Proteins extracted from treated and control cells were separated by gel electrophoresis and
transferred to a nitrocellulose membrane, which was incubated subsequently with an anti-VSV
polyclonal antiserum. The results demonstrated that heat shock-induced Vero-HS4 cells
synthesized detectable quantities of G protein whereas no protein expression was evident in
Vero controls or Vero-HS4 cells that were not heat shocked. Scanning of the blot by a
Densitometer showed that a ~ 50 fold induction of G expression was seen upon heat treatment
(data not shown).

The ability of Vero-HS4 cells to support propagation of the rVSVin-Gstem- gag1 vector was
examined as well. Near confluent Vero-HS4 cell monolayers were heat shocked for 6 hours
then incubated overnight at 37°C to allow time for expression of G protein. The monolayers
were then infected with 0.01 I.U.s per cell of rVSVin-Gstem-gag1, which had been produced
originally using the transient expression methods described above, and incubated
approximately 20 – 40 hours at 37°C before virus was harvested and quantified. The yield from
2 independent experiments was 1×107 and 3×107 I.U.s per ml (Fig. 3B). Moreover, the Vero-
HS4 cell line has been stable for more than 20 passages as determined by its ability to support
Gstem propagation (data not shown). These results demonstrate that cell lines like Vero-HS4
can be used to develop a manufacturing process for vaccines based on rVSV-ΔG and rVSV-
Gstem vectors.

4.0 DISCUSSION
A transient expression method, based on DNA electroporation, and a stable inducible cell line
approach were developed for packaging propagation- defective VSV-ΔG and VSV-Gstem
vectors. Both procedures were able to produce over 1×107 I.U.s of rVSV-ΔG or rVSV-Gstem
vector encoding HIV gag per ml of material harvested from infected Vero cell substrates. The
highest titers were achieved with the rVSV-Gstem-gag1 vector, which reached 1×108 I.U.s per
ml in some transient expression trials. As mentioned earlier, achieving 1×107 I.U.s per ml was
a key benchmark since preclinical studies conducted with non- human primates indicated that
manufacture of doses in this range will be required to advance a rVSV vector into the clinic
(Daddario-DiCaprio et al., 2006a; Daddario-DiCaprio et al., 2006b; Egan et al., 2005; Egan et
al., 2004; Feldmann et al., 2007; Jones et al., 2005; Rose et al., 2001).

Optimization of the G gene was an important factor in the success of both the transient
expression and stable cell line approaches as demonstrated by a marked increase in G
abundance in electroporated Vero cells (Fig. 2) that correlated with improvements in virus
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particle packaging (Table 1). In addition to using cis-acting signals that promote efficient
translation (Kochetov et al., 1998;Kozak, 1991;Schwartz et al., 1992c), multiple elements of
the optimization procedures probably contributed to their positive effect. For example, both
the RNA Opt and Gene Opt strategies removed a number of sequences from the native G coding
sequence that closely resembled consensus nuclear mRNA splicing signals. Removal of these
sequences minimized unwanted nuclear splicing and probably increased the abundance of
mRNA exiting the nucleus that contained a full-length G coding sequence. Optimization also
significantly increased the G+C nucleotide content of the G protein mRNA. The native Gin
sequence was 44% G+C whereas the RNA Opt (62%) and the Gene Opt (64%) versions were
notably higher. Perhaps the higher G+C content of the optimized G transcripts better mimics
highly translated human mRNAs (Kochetov et al., 1998;Zhang, 1998) or increases the
abundance of steady-state message in the cytoplasm by mechanisms that might include
improved nuclear export or greater mRNA stability (Graf et al., 2000;Kudla et al.,
2006;Maldarelli et al., 1991;Nasioulas et al., 1994;Olsen et al., 1992;Schwartz et al.,
1992a;Schwartz et al., 1992b;Zubiaga et al., 1995). Regardless of the exact mechanism, the
most dramatic effect was seen 3 days after DNA electroporation (Fig. 2A) indicating that
optimization promoted sustained accumulation of G protein.

Ternette and colleagues (Ternette et al., 2007a; Ternette et al., 2007b) also have observed
significant improvement in protein expression from transfected plasmid DNAs encoding G
proteins from VSV and respiratory syncytial virus after applying an optimization strategy, and
a similar positive effect has been produced after applying the RNA and Gene Opt strategies to
VSV M (our unpublished data). Although this is a small sampling, these examples indicate
that efficient expression of paramyxovirus or rhabdovirus genes from cellular RNA polymerase
II promoters can be improved if the protein coding sequences are subjected to some form of
coding sequence optimization. This probably is related to the fact that these viruses replicate
exclusively in the cytoplasm and have evolved coding sequences that are not designed for
synthesis and export by nuclear processes in eukaryotic cells.

The virus packaging methods were developed to package rVSV-Gstem and rVSV-ΔG vectors,
although additional applications are possible. It is likely that other propagation-defective
negative-strand RNA virus vectors lacking their native attachment proteins can be packaged
with VSV G on their surface. In fact VSV G protein has been shown to substitute as an
attachment protein for recombinant replication-competent measles virus and respiratory
syncytial virus (Oomens et al., 2003; Spielhofer et al., 1998) indicating that it will function
similarly in the context of a propagation-defective vector. VSV G protein also is used widely
to pseudo-type retrovirus particles thereby providing an attachment protein that can mediate
infection of a broad spectrum of cell types (Cronin et al., 2005; Yee et al., 1994). For large-
scale manufacturing, genetic complementation provided by a stable inducible cell line is
preferred because it requires far less manipulation than transient expression approaches.
Moreover, induction controlled by heat shock provides additional advantages because gene
expression can be turned on by a simple temperature shift and no chemical compounds are
added to the medium to control gene expression. This eliminates the need to replace medium
in a large culture vessel to remove compounds that are used to repress transcription, and might
also eliminate the need to purify the packaged virus to remove a chemical inducer from the
final vaccine product. It also is likely that gains in virus particle production can be realized if
the heat shock system is subjected to a systematic evaluation of variables that can effect
induction of G expression and VSV maturation such as: 1) heat shock temperature and duration;
2) timing of infection following heat shock; 3) incubation temperature following heat shock;
4) multiplicity of infection; and 5) timing of virus particle harvest.

The hybrid heat shock element/minimal CMV promoter seemed to be an important component
of the stable cell line approach. The basal level of expression in Vero-HS4 cells was low, which
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likely contributed to the stability of this line, but the magnitude of induction was high,
promoting efficient production of infectious rVSV-Gstem or -ΔG particles. The combination
of multimerized heat shock elements linked to a minimal CMV promoter was probably the
major factor in determining the effective balance between basal activity and efficient induction,
although it should be noted that the site of chromosomal integration also may contribute
(Barnes and Dickson, 2006). It also should be mentioned that the basal expression was low but
not undetectable, and a hardy cell line like Vero might tolerate low levels of G expression better
than some other cell types. In instances where tighter control over the basal activity is needed,
the minimal CMV promoter could be modified to further reduce basal expression or other less
active promoters could be tested to identify those that have very low levels of basal expression,
but remain responsive to heat shock when linked to heat-shock-responsive elements (Emiliusen
et al., 2001).

Finally, it is worth noting that the rVSV-Gstem-gag1 vector generally packaged more
efficiently than the corresponding ΔG vector. The rVSV-Gstem vectors were constructed
because earlier studies indicated that the Gstem polypeptide could promote more efficient
virion morphogenesis (Jeetendra et al., 2003; Jeetendra et al., 2002; Robison and Whitt,
2000). The mechanism by which the Stem polypeptide improves packaging efficiency is not
known, but it might help recruit viral nucleocapsids to sites along the membrane where viruses
assemble and bud or perhaps it increases the quantity of I.U.s in the harvest because
incorporation of the Gstem polypeptide enhances the infectivity or stability of the virus particle
(Jeetendra et al., 2003; Jeetendra et al., 2002; Robison and Whitt, 2000; Swinteck and Lyles,
2008; Zhou and Blissard, 2008). Regardless of the precise mechanism through which the Gstem
polypeptide works, the improved yields of infectious particles can be significant particularly
for applications like a vaccine manufacturing process where achieving maximum yields are
critical.
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Figure 1. rVSV and plasmid DNA vectors
Part A illustrates the structure of the rVSV vector genetic background and two propagation-
defective vectors encoding gag from the first position in the rVSV genome. The rVSV-Gstem-
gag1 encodes a truncated G protein composed of 41 amino acid residues of the extracellular
domain (the Stem), the transmembrane region and the cytoplasmic tail. The rVSV-ΔG-gag1
vector lacks the G gene. Part B contains a map illustrating the structure of the expression
plasmids that were used to transiently express various G genes following electroporation. The
G genes were placed under control of the hCMV promoter and transcriptional enhancer region
and the SV40 late poly-A signal (pA). The plasmid also contains the neomycin resistance gene
(NeoR) driven by the SV40 promoter and transcriptional enhancer (SV40). The schematic in
Part C illustrates the structure of the heat shock-inducible plasmid vector, which controls
expression of the Gene Opt VSV Gin gene and was used to establish the Vero-HS4 cell line.
The heat shock-inducible transcriptional control region is composed of a minimal hCMV
promoter that extends to 86 nucleotides upstream (−86) of the transcription initiation signal
(+1), and a repetitive array of nGAAn located between the BglII and AsiSI restriction enzyme
sites, which forms multiple copies of the heat shock factor 1 (HSF-1) binding site
(nGAAnnTTCnnGAAn). Black arrows in the lower portion of Part C represent perfect copies
of nGAAn or its complement, whereas gray arrows identify imperfect nGAAn sequences.
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Figure 2. Transient expression of VSV G following electroporation
(A) Vero cells were harvested at 24 (lanes 1–3) or 72 (lanes 4–7) h post-electroporation (EP)
with expression plasmids (Fig. 1B) containing various forms of the VSV G gene (native Gin
gene, lanes 1 and 4; Gene Optimized Gin, lanes 2 and 5; RNA Optimized VSV Gin, lanes 3
and 6), after which protein extracts were prepared for analysis by Western blotting. G protein
was detected with a G-specific monoclonal antibody (Roche). Extract prepared from Vero cells
infected with a recombinant propagation-competent VSVin was used as a positive control
(Lanes 8). (B) The description of this experiment is similar to Part A, except that the effect of
RNA optimization on expression of both the Gin and Gnj genes was evaluated. Gnj was
detected with rabbit anti-VSVnj polyclonal antiserum.
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Figure 3. Expression of G protein and Packaging of rVSV-Gstem-gag1 using the heat shock
inducible Vero-HS4 cell line
(A) Vero (lanes 1and 2) or Vero-HS4 cells (lanes 3 and 4) were subjected to heat shock at 43°
C for 6 hours before incubation overnight at 37°C. Approximately 24 hours after initiating heat
shock, cell lysates were prepared and analyzed by Western blotting as described in Figure 2.
Lysate prepared from Vero cells infected with rVSVin wt was included as a positive control
(lane 5) and the viral polypeptides recognized by the antiserum are identified. The blot was
probed with rabbit anti-VSVin antiserum. (B) The protocol for propagating rVSV-Gstem-gag1
with Vero-HS4 cells is illustrated at the top of Part B. Cells induced by heat shock and
subsequently incubated at 37ºC to allow G protein synthesis were infected with rVSV-Gstem-
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gag1 at a multiplicity of infection of 0.01. The infected cells were incubated 40–48 hours at
which time viral particles were harvested from the medium supernatant and infectious particle
titers were determined using BHK-G cells. The I.U.s recovered in two independent experiments
are shown.
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