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Abstract Recent studies on plant immunity have

suggested that a pathogen should suppress induced

plant defense in order to infect a plant species, which

otherwise would have been a nonhost to the patho-

gen. For this purpose, pathogens exploit effector

molecules to interfere with different layers of plant

defense responses. In this review, we summarize the

latest findings on plant factors that are activated by

pathogen effectors to suppress plant immunity. By

looking from a different point of view into host and

nonhost resistance, we propose a novel breeding

strategy: disabling plant disease susceptibility genes

(S-genes) to achieve durable and broad-spectrum

resistance.
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Introduction

Though resistance and susceptibility are opposite sides

of the same coin, most studies have focused for a long

time on the resistance side in search for plant resistance

genes (R-genes) and other defense genes. In 2002, when

PMR6 was discovered as a gene coding for a suscep-

tibility factor for promoting growth of powdery mildews,

Eckardt (2002) questioned ‘‘Are there plant genes that

are required for susceptibility to certain pathogens?’’ In

2005, based on the unique forms of resistance conferred

by loss of function in genes like Mlo, PMR6 and eIF4E,

De Almeida Engler et al. (2005) suggested to exploit

susceptibility genes as an alternative in breeding for

nematode resistance. Nowadays, the field is rapidly

moving toward identification of plant factors targeted by

pathogen effectors and elucidation of mechanisms

controlling plant disease susceptibility. Ultimately, a

better understanding of the molecular basis of plant

disease susceptibility can be applied in breeding for

resistance against a wide spectrum of pathogens. This

review, by highlighting recent studies on effector-

triggered susceptibility, proposes a novel breeding

strategy: exploitation of plant susceptibility genes

(S-genes) for durable and broad-spectrum resistance.

Disease susceptibility genes (S-genes)

Plants are exposed to a tremendous number of

potential pathogens. Many plant pathogens can infect
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only a limited number of plant species that are called

hosts to the given pathogen. To exploit a plant as a

host, pathogens have to overcome plant defense

mechanisms ranging from preformed passive barriers

(e.g. physical barriers such as the cuticle of leaves) to

induced defense reactions (e.g. Heath 2000; Thordal-

Christensen 2003; Niks and Marcel 2009). The front

line of the induced defense is triggered by pathogen-

associated molecular patterns (PAMPs), also termed

as PAMP-triggered immunity (PTI). PAMPs are

generally conserved compounds (like chitin in fungi

and flagellins of bacteria), and PTI is induced by all

invading pathogens (Bittel and Robatzek 2007; Boller

and He 2009; Jones and Dangl 2006). Thus, suppres-

sion of PTI is required as the first step for a pathogen

to alter a plant’s status from a nonhost into a host.

For adapted pathogens, the suppression of PTI is

achieved by the secretion of pathogen effectors to

manipulate host cell functions (Jones and Dangl

2006; van der Hoorn and Kamoun 2008).

In the field of plant–microbe interactions, the study

on how effectors suppress PTI to establish effector-

triggered susceptibility (ETS) has moved to the

center stage (Hoefle and Hückelhoven 2008). Emerg-

ing evidence suggests that the primary function of

pathogen effectors is to suppress plant innate immu-

nity by interacting with specific host proteins (effec-

tor targets) (Nomura et al. 2005; Jones and Dangl

2006; Chisholm et al. 2006; Kamoun 2007; Van der

Hoorn and Kamoun 2008). Not surprisingly, most

effector targets play a positive role in plant defense

machinery, like defense-signaling components

(Chisholm et al. 2006; Bittel and Robatzek 2007;

Speth et al. 2007; Fig. 1). For example, the effector

HopAI1 of Pseudomonas syringae suppresses PTI

by inactivating Arabidopsis MPK 3 and MPK6

(mitogen-activated protein kinases), two key compo-

nents of the plant immune response-signaling cascade

(Zhang et al. 2007).

However, some pathogen effectors suppress plant

innate immunity by activating effector targets that

function as negative regulators of the plant immunity

system. In principle, knocking out such an effector

target would release the suppression of plant defense

and lead to resistance (Fig. 1). More and more exam-

ples of this group are being identified (Tables 1, 2).

One of the well-characterized examples is the trans-

membrane MLO protein, which negatively regulates

PEN gene-associated disease resistance to powdery

mildews (Bhat et al. 2005; Panstruga 2005; Hardham

et al. 2007; our unpublished data). In barley and

Arabidopsis, loss-of-function mutations in Mlo result

in efficient preinvasion resistance to adapted powdery

mildews (Büschges et al. 1997; Piffanelli et al.

2004; Humphry et al. 2006). Recently, it has been

shown that the tomato recessive allele ol-2, conferring

Role of effector 
target: 

Pathogen effector: 

The resistance 
protein: 

Effector target:  Absent       
(loss-of-
funtion)

Present Absent      
(loss-of-
funtion)

Present Absent     
(loss-of-
funtion)

Resistance Resistance
(recessive) (recessive)

BA

Negative defense regulator Susceptibility factor

Present Present Present

SusceptibilityExpected outcome
in plants: 

Negative role in plant defense 

Susceptibility Susceptibility Susceptibility

tnesbAtnesbAtnesbA

Positive role in plant 
defense

Present

Fig. 1 Comparison on effector targets with positive or

negative roles in plant defense to demonstrate how to obtain

resistance by knocking out susceptibility gene. Panel a shows

that, in the absence of resistance protein, both presence and

absence of the effector target (with a positive role in plant

defense) lead to susceptible plants. Panel b demonstrates that,

in the absence of resistance protein, presence of the effector

target (with a negative role in plant defense) leads to

susceptible plants and that knocking out the effector target

leads to resistant plants
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resistance to the powdery mildew fungus Oidium

neolycopersici, is also caused by a null mutation of

the tomato SlMlo1 (Bai et al. 2008; Pavan et al. 2008).

In addition to the suppression of PTI, pathogen

effectors may promote disease by activating effector

targets that function as susceptibility factors, like plant

factors that are required by the pathogen for its growth

and development (Fig. 1). Examples are isoforms of

eIF4E and eIF4G functioning as translation factors for

potyvirus replication and infection (Diaz-Pendon et al.

2004; Robaglia and Caranta 2006). Interestingly, all

characterized recessive resistances to viruses originate

from mutations in isoforms of eIF4E and eIF4G, two

components of the translation initiation complex

(Kang et al. 2005b; Albar et al. 2006; Robaglia and

Caranta 2006). The mechanism leading to resistance is

likely due to the lack of interaction between the viral

effector protein VPg and the translation initiation

complex (Robaglia and Caranta 2006).

In this review, we refer to genes required for

susceptibility as disease susceptibility genes (S-genes),

such as genes coding for effector targets that function

as negative defense regulators or susceptibility factor

(Fig. 1). The term of plant S-gene was first introduced

in the review of Eckardt (2002). Genetically, S-genes

can be defined as dominant genes whose impairment

will lead to recessive resistance. Recessive resistances

have been known for many years (e.g. Stubbs et al.

1983). For example, the first reported resistance gene

was identified by Biffen in 1905, which is recessively

inherited and confers resistance to wheat yellow rust

(Puccinia striiformis) (Singh and Singh 2005). One of

the recently reported recessive resistance genes is the

rpsGZ gene, which is effective against all races of

the barley stripe rust P. striiformis f.sp. hordei (Yan

and Chen 2006). Only few recessive resistance genes

have been characterized for their role in plant disease

establishment (Table 1). It is intriguing to know

whether natural recessive resistances result from loss-

of-function mutations of S-genes that code for effector

targets. With increasing interest in the research topic

on suppression of PTI and establishment of ETS,

a considerable amount of potential S-genes has

been recently identified via different experimental

approaches (Table 2). Proteins encoded by S-genes

have been shown or predicted to be activated by

effectors for ETS. The challenge is how to exploit

S-genes, in complementary to R-genes, in plant

breeding for durable and broad-spectrum resistance.T
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R-genes and S-genes

To combat the pathogens that succeed in establishment

of ETS, host plants have evolved a race-specific

immunity, a well-described host resistance mechanism

that is governed by dominant R-genes (e.g. Speth et al.

2007; Hoefle and Hückelhoven 2008; Wladimir et al.

2008). Hundreds of R-genes have been cloned and

most of them encode proteins with an N-terminal

nucleotide-binding (NB) site and C-terminal leucine-

rich repeats (LRRs) (Takken et al. 2006). R-genes

encode proteins that recognize pathogen effectors to

establish effector-triggered immunity. This recogni-

tion triggers a cascade of defense responses, mediated

by a complex-signaling network in which plant

hormones, like salicylic acid (SA) and jasmonic acid

(JA), play a major role and the resistance is manifested

as localized hypersensitive response at the site of

infection (Robert-Seilaniantz et al. 2007; Bruce and

Pickett 2007; Bari and Jones 2009). It is generally

assumed that most R-proteins function in a tripartite

module (van der Hoorn et al. 2002), where the

R-protein guards a specific effector target (also known

as virulence target), and in doing so can detect

modifications induced by the pathogen effector.

Effector targets required for R-protein function are

recently categorized into two subgroups, decoy and

guardee (Van der Hoorn and Kamoun 2008). An

effector target is termed as a decoy if it has no function

in host defense or susceptibility in absence of its

cognate R-protein. In the decoy model, operative

effector targets play a role in enhancing pathogen

fitness in plants lacking the R-protein. A gene is

considered an S-gene if it codes for the operative target

that plays a negative role in plant defense (Fig. 1). One

example is the pepper upa20 gene that encodes a

regulator of cell enlargement (Zhou and Chai 2008).

In susceptible plants, AvrBs3, which is a type-III

effector secreted by Xanthomonas campestris pv

vesicatoria, mimics the eukaryotic transcription factor

to activate upa20 gene to promote disease (Kay et al.

2007). In resistant plants, AvrBs3 also activates the

promoter of the pepper Bs3 gene (promoter of the Bs3

gene = pBs3), which leads to the specific expression

of the R-gene Bs3 and disease resistance. Obviously,

upa20 is an S-gene, of which loss-of-function mutants

would lead to resistance in plants lacking the Bs3 gene.

pBs3 is regarded as a decoy that is required for the

R-gene Bs3 to trap AvrBs3 for resistance (Van der

Hoorn and Kamoun 2008; Zhou and Chai 2008). A

guardee is used to term an effector target that, upon

attack by a pathogen effector, enhances pathogen

fitness in plants absent for the R-protein and triggers

innate immunity in plants carrying the R-protein

(Van der Hoorn and Kamoun 2008). Genes coding

for guardees that play a negative role in plant defense

can also be categorized as S-genes (Fig. 1). In

summary, in the R-gene network, both operative

targets and guardees are considered as products of

S-genes if they play a negative role in plant defense as

presented in Fig. 1.

The above described concept on effector-triggered

immunity, which is activated by the recognition of

pathogen effectors by plant R-proteins, is mainly

based on findings obtained from plant interactions

with biotrophic pathogens. For necrotrophic patho-

gens, host-specific-toxins are defined as pathogen

effectors that induce toxicity and promote disease only

in host species (Friesen et al. 2008). It is well-known

that host-specific-toxins are host selective because

they are typically active only in plants that serve as

hosts for the pathogens (Wolpert et al. 2002). As a

mirror image of effector-triggered immunity of bio-

trophic pathogen, the necrotrophic pathogen produces

an effector that is recognized by a host receptor to

trigger susceptibility (Friesen et al. 2008). Thus, plant

genes coding for host receptors that are recognized

by host-specific-toxins of necrotrophic pathogens are

S-genes. One example is the Arabidopsis LOV1 gene-

conferring susceptibility to Victorian blight caused by

Cochliobolus victoriae. The LOV1 gene is an unusual

finding of S-genes as it encodes a NB-LRR protein

(Sweat et al. 2008), which is the largest protein family

of R-proteins (Takken et al. 2006). Thus, the identi-

fication of LOV1 provokes a potential cross-link

between plant R- and S-genes, suggesting that an

R-gene-conferring resistance to one pathogen also can

confer susceptibility to another pathogen.

Nonhost-like resistance

For a long time, resistance conferred by loss of

function of the barley Mlo gene has been considered

as a unique type of plant immunity (Schulze-Lefert

and Vogel 2000; Elliot et al. 2002; Hückelhoven

2005). Only recently, the comparison between non-

host resistance and mlo-based immunity in barley and

6 Mol Breeding (2010) 25:1–12
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Arabidopsis has lead to the conclusion that mlo-based

resistance and nonhost resistance are ‘‘two faces of the

same coin’’ (Humphry et al. 2006), as both types of

resistance share analogous features like prehaustorial

resistance mechanisms to powdery mildews (Trujillo

et al. 2004; Ellis 2006). Besides, mlo-based resistance

requires all the three described PEN genes for nonhost

resistance in Arabidopsis and the Ror2 genes (homo-

log of PEN1) in barley (Consonni et al. 2006;

Humphry et al. 2006; Hardham et al. 2007). It has

been demonstrated that mutations in these genes

that affect nonhost resistance to powdery mildews

compromise mlo-based resistance and vice versa

(Consonni et al. 2006; Humphry et al. 2006; Hardham

et al. 2007; Lipka et al. 2005; 2008). Thus, the absence

of the key host protein (MLO) appears to convert a

compatible interaction between an adapted powdery

mildew and its respective host plant into an incom-

patible interaction having similar molecular mecha-

nisms of nonhost resistance (Humphry et al. 2006).

The functional characterization of S-genes

(Tables 1, 2) has revealed that they encode proteins

that are required by pathogens either for their growth

process on the parasitized plant or for negative

regulation of plant defense responses. These two

events are indispensable for would-be pathogens to

establish and maintain the infection process in plants.

Consequently, the loss of function of such S-genes is

expected to result in resistance against the pathogen.

It has been shown (Tables 1, 2) that such resistance

can be effective even towards different, unrelated,

pathogens. Moreover, when tested against different

genetic variants of a pathogen, it has been often

proven to be race nonspecific (Stein and Somerville

2002; Bai et al. 2005; Kang et al. 2005a). Little

information is available relative to the durability of

resistances conferred by loss of function of S-genes.

However, resistances conferred by mutations of Mlo

in barley and eIF4E in pepper are still effective in the

field after more than 30 and 50 years from their

introduction in agriculture, respectively (Lyngkjaer

et al. 2000; Kang et al. 2005a). Thus, loss of suscep-

tibility has the potential to result in resistance that

shares the ‘‘hallmarks of nonhost resistance’’ (Humphry

et al. 2006): durability and broad-spectrum. In this

review, we refer to mlo-based resistance as non-

host-like resistance defined as durable and broad-

spectrum resistance with similar defense mechanisms

underlying nonhost resistance.

S-genes in breeding for nonhost-like resistance

In spite of promoting pathogen proliferation and

disease establishment, S-genes have not been

excluded by evolution. Evidence suggests that certain

S-genes, besides being involved in plant-pathogen

interactions, are required for the correct functioning

of other important aspects of plant physiology. For

example, the rice Xa13 gene is required for both the

growth of bacteria X. oryzae and plant pollen

development (Chu et al. 2006). The dual function

of such S-genes provides a unique opportunity for

exploring the functional overlap between signal

pathways for plant developments and pathogen-

induced susceptibility.

Loss of function of S-genes, which encode for

susceptibility factors, does not alter normal plant

development. Few S-genes belonging to this category

(Table 1) have been successfully employed in culti-

vation, which include resistance conferred by loss-

of-function mutations of Xa5, Xa13 and eIF4G in

rice; and eIF4E in many crops including barley,

pepper, lettuce, melon and pea (Candresse et al. 2002;

Nicaise et al. 2003; Gao et al. 2004a, b; Kang et al.

2005a; Morales et al. 2005; Nieto et al. 2006; Iyer-

Pascuzzi and McCouch 2007; Rakotomalala et al.

2008; Tyrka et al. 2008). While, loss-of-function

mutations of genes encoding negative regulators are

in many cases accompanied by adverse pleiotropic

effects due to constitutive defense activation, such as

reduced growth and lesion-mimic phenotypes

(Table 1). It has been reported that the extent of

pleiotropic effects depends considerably on the

environmental conditions as well as on plant species.

For example, early senescence-like leaf chlorosis has

been reported to occur in barley mlo mutants under

certain conditions, while, no obvious pleiotropic

phenotypes have been discovered yet in tomato mlo

mutants (Bai et al. 2008). Although pleiotropic

effects have been reported together with barley mlo

mutants (Büschges et al. 1997), mlo resistance is by

far the most used powdery mildew resistance source

in spring barley grown in Europe (Lyngkjaer et al.

2000). The maize lox3-4 mutant, carrying a true null

allele of the ZmLOX gene, showed slightly shorter

plants with earlier senescence comparing with the

near-isogenic wild types. Throughout all stages of

plant development, no other visible abnormalities

were observed in lox3-4 mutants, suggesting the

Mol Breeding (2010) 25:1–12 7
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potential use of the S-gene, ZmLOX, in breeding for

nematode resistance (Gao et al. 2008).

Future perspectives

The mlo mutant was originally discovered in barley

more than 60 years ago and it was considered as a

unique form of resistance in barley. The identification

of mlo mutants in other plant species including

Arabidopsis, tomato and most probably also pea and

grape showed that it is more common in nature

than previously anticipated (Consonni et al. 2006;

Fondevilla et al. 2006; Bai et al. 2008; Feechan et al.

2008). Till now, potential S-genes have been charac-

terized mainly in Arabidopsis (Table 2). To exploit

S-genes for resistance breeding, two questions need

to be addressed: (1) are there S-gene orthologues

across cultivated plant species? and (2) how to obtain

and apply loss-of-function mutants of S-genes in

resistance breeding? A targeted approach based

on comparative genetics/genomics would provide

answers to these questions. Firstly, sequence homol-

ogy to characterized S-genes should be identified by,

for example, mining available sequence databases in

a certain plant species. Secondly, the potential S-gene

candidates should be functionally characterized by

gene-silencing techniques such as virus-induced gene

silencing (VIGS) and/or RNA interference (RNAi) to

observe altered phenotypes for susceptibility to a

certain pathogen as well as other agricultural traits.

VIGS is a transient gene knocking out, which can be

performed nowadays in many plant species for a

large-scale functional analysis (Ratcliff et al. 2001;

Liu et al. 2002; Hileman et al. 2005; Burch-Smith

et al. 2006). To obtain stable-silencing effect, RNAi

can be performed (reviewed by Waterhouse and

Helliwell 2003). Once the function of a S-gene is

confirmed, loss-of-function mutations of the S-gene

can be achieved by insertional mutagenesis (Krysan

et al. 1999; Parinov et al. 1999; Speulman et al. 1999)

and TILLING (targeting induced local lesions in

genomes) (Colbert et al. 2001). The application of

TILLING is particularly promising, as it combines

high efficiency in the identification of mutations of

interest with the advantage of being a nontransgenic

technology. Alternatively, natural S-gene alleles,

which can be obtained by screening genetic resource

of a certain plant species and are insensitive to

effector manipulation but yet retain their intrinsic

function, would be ideal alleles for recessive

resistances.

Conclusions

In summary, resistance can be achieved in different

ways: one of them is by the presence of corresponding

R-genes to recognize pathogen effectors and another

one is by the absence of S-genes. We refer to genes

required for susceptibility as S-genes. In this review,

we focused on S-genes encoding effector targets that

function as either susceptibility factors or negative

defense-regulators (Fig. 1). Loss of function of

S-genes will lead to resistance that inherits recessively

in normal plants and dominantly in plants of which the

S-gene is silenced by using RNAi technique.

In practice, the majority of the resistance breeding

programs have aimed to introgress R-genes from wild

species into crop plants. Dominant resistance is

highly effective and often race specific. In most

cases, resistance conferred by R-genes can be over-

come by pathogens resulting in outbreaks of large

epidemics, which ‘burst’ the once ‘booming’ culti-

vars (Van der Hoorn et al. 2002; Panstruga and

Dodds 2009). Repeated boom-and-burst cycles in

agriculture continuously force breeders to introduce

cultivars with new resistance traits. In contrast to

R-genes, it has been shown that loss of function in

S-genes often leads to durable and broad-spectrum

resistance, such as mlo-based resistance. Thus,

exploitation of S-gene alleles, which are insensitive

to manipulation by pathogen effectors, provides an

alterative breeding strategy that is complementary to

the R-gene conferred resistance.

Nonhost resistance has often been proposed to be a

unique alternative for host resistance and exploitation

of genes for nonhost resistance in breeding requires

genetic compatibilities between the host and the

nonhost species (Niks and Marcel 2009). As this is

the exception rather than the rule, genes for nonhost

resistance are rarely used in breeding. Despite its

durable and broad-spectrum characters, our knowl-

edge on nonhost resistance is limited. Current studies

in understanding the genetic factors and molecular

mechanisms underlying plant nonhost resistance bear

great potentials for target employment of this valu-

able trait to control host pathogens (Nürnberger and

8 Mol Breeding (2010) 25:1–12
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Lipka 2005; Schweizer 2007). To this aspect, this

review proposed an alternative breeding strategy for

nonhost-like resistance by eliminating plant S-genes.

This breeding strategy is expected to result in durable

and broad-spectrum resistance that resembles nonhost

resistance.
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