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SUMMARY
In this paper we compare several methods for estimating population disease prevalence from data
collected by two-phase sampling when there is non-response at the second phase. The traditional
weighting type estimator requires the missing completely at random assumption and may yield biased
estimates if the assumption does not hold. We review two approaches and propose one new approach
to adjust for non-response assuming that the non-response depends on a set of covariates collected
at the first phase: an adjusted weighting type estimator using estimated response probability from a
response model; a modelling type estimator using predicted disease probability from a disease model;
and a regression type estimator combining the adjusted weighting type estimator and the modelling
type estimator. These estimators are illustrated using data from an Alzheimer’s disease study in two
populations. Simulation results are presented to investigate the performances of the proposed
estimators under various situations.

1. INTRODUCTION
Two-phase sampling designs are often used in epidemiological studies where a disease is rare
and diagnosis of the disease is expensive or difficult [1]. In the first phase of the study a large
random sample from the targeted population is screened with less intensive and expensive
screening test for the disease. Based on the results of the screening tests, subjects are stratified
and randomly selected within each stratum for extensive clinical evaluations at the second
phase to determine disease status. The sampling plans are usually designed to identify as many
diseased subjects as possible for risk factor studies and at the same time allow efficient
estimation of disease prevalence for the population. The two-phase sampling design has been
used to estimate the prevalence rates of dementia and Alzheimer’s disease [2], heart disease
[3] and sexually transmitted disease [4].

Two types of estimator have been used in estimating population percentages from complex
survey data. The first is the so-called weighting type estimator, or the standardization estimator.
This estimator is widely applicable to a variety of sampling designs [5] and has been used in
various medical studies for prevalence estimation [4]. The second estimator is the modelling
type estimator applicable when there is auxiliary information in addition to the main outcome
variable. For binary outcome variables, smoothed means from logistic regression models are
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often used to estimate population percentages. The modelling type estimator utilizes additional
information and is especially advantageous over the weighting type estimator when the event
of interest is rare and estimation for small strata is desired.

Most large scale epidemiological studies with the two-phase sampling design encounter non-
response at both phases. Since we do not have sufficient information on the non-response
occurring at the first phase, correction for biases from this type of non-response is not possible
without additional information on the non-respondents. The non-response that occurs at the
second phase of the study is sometimes perceived as more problematic because these subjects
are screened at the first phase and they constitute part of the sampling frame. Correcting for
biases due to the second phase non-response may also be possible because there is information
on the non-respondents from the screening phase. The reasons for non-response are varied,
with refusal being the most common. Death and severe sickness are also major causes for non-
response in studies involving elderly subjects if there is considerable time lapse between the
two phases. The non-response from the second phase complicates statistical analysis of
complex survey data because most of the conventional analysis procedures assume random
sampling within strata. When there is non-response, randomization assumptions for stratified
random sampling may be violated. A ‘naive’ approach ignoring the non-response may lead to
biased and inconsistent estimates [6].

In this paper we first review the two types of estimator of population percentages without non-
response. We then review and propose methods to obtain adequate disease prevalence estimates
in the presence of non-response assuming that non-response depends on a set of covariates
collected at the first phase of the study (the covariate-dependent missing data mechanism as
defined by Little and Rubin [6]). The estimators are illustrated using data from the
Indianapolis–Ibadan Dementia Study. A simulation study is presented in Section 5 to
investigate the effects of adjustment and model misspecifications. We conclude the paper in
Section 6.

2. ESTIMATING DISEASE PREVALENCE FROM TWO-PHASE SAMPLING
WITHOUT NON-RESPONSE

Suppose that in the first phase N subjects are sampled by simple random sampling from the
target population and information is collected from all N subjects on a set of characteristics X.
X can be a vector containing several predictors, such as age, gender etc. that relate to the disease
of interest. The N subjects are then stratified into S strata, labelled as I1,…, IS, based on values
of X. The total numbers of subjects in the respective strata are denoted by N1,…, NS. In the
second phase ns subjects are sampled from the Ns subjects in stratum s using stratified random
sampling. Disease status ysi is ascertained on the ith subject from the sth stratum, with ysi = 1
denoting disease and ysi = 0 for non-disease. We are interested in estimating the prevalence of
disease in the population from which the N subjects are sampled.

2.1. The weighting type estimator
The weighting type estimator, also referred to as the direct standardization approach, assumes
that subjects within each stratum are homogeneous and random sampling is used within
stratum. The weighting type estimator for a stratified random sampling is

(1)
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This estimator is design unbiased under repeated samplings. The estimator can be inefficient
when the event (disease) is rare and it does not utilize any additional information available
from the first phase in a two-phase survey.

2.2. The modelling type estimator
An alternative method of estimating disease prevalence from two-phase surveys is the
modelling type estimator where a model is assumed for the superpopulation from which the
finite population is sampled and smoothed estimates from the model are used to estimate
disease prevalence. The modelling type estimator for binary data was first proposed by Roberts
et al. [8] and used by Beckett et al. [2] to estimate the prevalence of Alzheimer’s disease from
two-phase surveys. The modelling type estimator is preferred in situations where the disease
is rare and estimates from strata containing few or zero events are desired.

Let Xsi be a set of covariates collected at the first phase. Therefore, Xsi is available for all N
subjects. Let Prob(ysi = 1) = psi. A logistic regression model is often assumed for the disease
model:

(2)

where β is a p× 1 vector of parameter. If β is known, then the average of the predicted probability
of disease from the model is an unbiased estimator of disease prevalence. However, in practice
one has to estimate β from the sample. A maximum likelihood estimate β ̂ is obtained and
estimate of disease prevalence is then obtained using the average predicted probabilities of
disease:

(3)

Let p be the true disease prevalence rate. Using a second-order Taylor series expansion:

where the expectation and variance are under the superpopulation. It can be seen that the
modelling type estimator using the estimated β ̂ is generally biased.

3. ESTIMATING PREVALENCE WITH NON-RESPONSE
Owing to non-response, the numbers clinically evaluated from the S strata are r1,…, rS. The
layout is summarized in Table I. Here we assume that rs<ns, for some stratum s, that is, there
is non-response in the study.

Following Särdal and Swensson [9], we propose that two-phase samplings with non-response
be conceptualized as three-phase samplings where the third phase consists of Bernoulli
samplings from an unknown response mechanism. Therefore, the sampling scheme can be
conceptualized as:
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Phase I: Simple random sampling of N subjects from the target population and stratifications.

Phase II: Stratified random sampling of n1,…, nS subjects from strata 1,…, S, respectively.

Phase III: Bernoulli sampling, the ith sampled subject in the sth stratum has probability θsi of
responding.

With the establishment of the above sampling framework, estimators of disease prevalence can
be derived similarly as in the two-phase sampling case taking into account one more level of
randomization. Two different modelling approaches can be taken, one to model the response
probability and the other to model the disease.

Let Rsi be a binary random variable of response defined for the n sampled subjects, with Rsi =
1 for responses and Rsi = 0 for non-response, s = 1,…, S, and i = 1,…, ns.

3.1. The adjusted weighting type estimator
An unadjusted weighting approach, often used in practice, is to ignore the column of sampled
numbers in Table I. Prevalence estimates are then obtained using

This approach may result in biased prevalence estimates if the non-response within stratum is
not missing completely at random (MCAR) as defined by Little and Rubin [6]. Furthermore,
the variance of prevalence estimates may also be inaccurate using this approach.

Let Pr(Rsi = 1) = θsi. A Horvitz–Thompson type estimator adjusting for non-response is

(4)

Under the assumption that Rsi and ysi are independent, we have

(5)

where EI, EII and EIII are expectations taken over the three corresponding sampling phases and
p is the population disease prevalence. Therefore, the adjusted estimator of disease prevalence
is unbiased under a known missing data mechanism. In practice, the response mechanism is
unknown. We can substitute an estimated probability of non-response θ ̂si for θsi in p̂wtadj and
the properties of the adjusted estimator will then depend on the modelling of the non-response
mechanism.
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To obtain the estimated probability of response, we adopt the notion of a response model.
Following the ‘model-based’ approach by Rosenbaum [7], we model the probability of
responding to the clinical evaluation from the data and then incorporate the estimated
probabilities into the prevalence estimator in (5). This approach has been advocated by Robins
et al. [10] to obtain efficient parameter estimates from a wide range of models with missing
data.

To build a response model, we can use a set of covariates obtained at the first phase of the
study, say X, to model the probability of responding to the second phase. The most commonly
used model for the response mechanism is the logistic regression model where responses are
dichotomized into two categories of respondents and non-respondents. The logistic model
obtains parameter estimate α from the following model:

(6)

The estimated response probability

can then be used in the place of θsi in p̂wtadj of (5).

Most survey literature on weight adjustment have mainly focused on classifying the samples
into ‘homogeneous response groups’ according to demographic factors collected in the
surveys. The above weighting adjustment is the most general and is applicable in many
community based surveys where sample sizes are not large enough to afford further
stratification.

3.2. The modelling type estimator
Estimation approach using maximum likelihood principle in the case of non-response has to
take into account the joint likelihood of three random variables for disease, sampling and
response, instead of just the disease and sampling variables in the case of complete data. We
demonstrate that under certain assumptions maximum likelihood estimates from the disease
model using data from respondents only are appropriate. Let ysi and Rsi be defined as in the
previous section. In addition let Isi be the sampling indicator variable for the ith subject in the

sth stratum. Let  and  be the covariates for the conditional distributions of

 and , respectively, where β, φ and θ are

parameters in the corresponding distributions. Let Xsi be the union of  and . The
joint conditional likelihood function based on all data can be written as

(7)
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Let yobs and ymiss denote the observed and the missing ysi. Note here ymiss includes those non-
sampled subjects in addition to the non-respondents. If the following assumptions hold:

i. the second-phase sampling scheme is completely determined by Xsi;

ii. the response probability is independent of sampling and disease status conditional on
Xsi;

iii. the parameters β, φ and θ are distinct,

following Little and Rubin [6], the joint conditional likelihood based on the respondent data
can be rewritten as

(8)

The above equation implies that under the above assumptions maximum likelihood estimates
of β obtained using just the respondents’ data are the same as those obtained from the full joint
likelihood. Hence prevalence estimates using the modelling type estimator are not affected by
this type of non-response.

Note that the first assumption is typically true in two-phase studies where stratifications and
sampling are based on the information collected at the first screening phase. The second
assumption on missing data is a special type of the missing at random assumption of Little and
Rubin [6] where missingness depends on covariates but not on outcome variables. Note also
that the above conclusion is reached assuming that the correct conditional distributional
assumption is made on f(y|X; β). When the assumptions are violated, biased and/or inconsistent
estimates may be expected.

Note also that the validity of (8) under the assumptions holds for the general situations where
a distribution is assumed for the variables and where estimation of β is desired. Hence the
conclusion can be extended from logistic models to other models such as linear regression
models for continuous outcome variables.

3.3. A regression type estimator
The adjusted weighting type estimator and modelling type estimator differ in motivation and
approach. The adjusted weighting type estimator attempts to model R|X without any restriction
on the outcome variable. The sampled units contribute to the estimation of prevalence by the
modelling of response. The respondents contribute directly to prevalence estimates and the rest
of the subjects only contribute to the weighting. The modelling type estimator, on the other
hand, uses the respondents to derive the disease model, but every subject contributes to the
prevalence estimates through the set of covariates in the prediction model. Therefore, there
may be efficiency differences in the two types of estimator. Furthermore, both types of
estimator depend on the correct specification of either a disease model or a response model.
Although we have demonstrated in Section 3.2 that the derivation of maximum likelihood
estimate of β can be done ignoring the sampling scheme under the conditions outlined there,
tests of model fitting will nevertheless have to take into account of the sampling scheme [8],
a task not handled by many standard statistical software.

To guard against model misspecification, we propose a third estimator analogous to the
regression estimator in survey sampling [5]. Suppose that the disease model (2) holds in the
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study population and response probability is θsi for the ith subject in the sth stratum, then a
regression type estimator of disease prevalence is

(9)

When both disease model and response model are known, the above estimator is unbiased.
When the disease model is true, but the response model may not be, the above estimator can
be rewritten as

The last two terms on the right hand of the above equation is a correction measure of bias due
to the use of response model when the average of psi is estimated from the respondents.

On the other hand, when the response model is thought to be true, but not the disease model,
the regression type estimator can be rewritten as

The last two terms in the right hand of the above equation is a correction measure of bias due
to the use of the disease model in the respondents.

The regression type estimator may be robust against model misspecification for the response
model or the disease model, although when both are misspecified, it is less clear whether the
regression type estimator will still be robust.

The estimators discussed above all assumed non-response depends on a set of covariates, which
is a weaker assumption than the missing completely at random (MCAR) assumption required
for the unadjusted weighting estimator. Although estimation approach under the non-ignorable
missing data mechanism can be taken by using the joint likelihood of the disease, sampling
and response variables, it will be complicated and requires additional assumptions on the joint
distribution. We will not pursue the topic of estimation under the non-ignorable missing
assumption in this paper.
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3.4. Variance estimation
Under the assumptions in Section 3.2, variance estimator for the modelling type prevalence
estimator can be derived for logistic models as in Roberts et al [8]. Let

be the predicted probability of disease from the disease model (2), then the estimated variance
of the estimated prevalence from (3) is

where W is an N × 1 vector with elements equal to , Q is an N × N diagonal matrix with
elements p̂si(1 − p̂si), X is the covariate matrix and V is the estimated variance covariance matrix
of the logistic regression parameter β. Note that the above variance estimator assumes that X
is fixed. Variance estimators accounting for the variability in X for survey data is given by
Graubard and Korn [11].

Variance estimators for the adjusted weighting type estimators can be derived using variance
formulae for multi-stage sampling [5]. However, since estimated response probabilities are
used for the estimator, the variance estimates of p̂ which involves variance estimation from the
three phases would be very complicated to derive. A non-parametric approach for variance
estimation, the jack-knife estimator of variances, can be used. The jack-knife estimator is useful
in situations where estimators are derived through several modelling procedures in complex
surveys [12,13]. Suppose that p̂(si) is the estimate obtained by omitting the ith clinically
diagnosed subject in the sth stratum from the sample, and p̂(s.) is the mean of p̂(si) in the sth
stratum, the jack-knife estimate of the variance of p̂ is

(10)

An advantage of using the jack-knife variance estimator is that no specialized software is
required for the variance derivation for complex survey data. An SAS macro is written by the
authors to implement the approaches which gives prevalence estimates and standard errors of
the prevalence estimates using the jack-knife approach.

4. A TWO-PHASE STUDY FOR ALZHEIMER’S DISEASE IN TWO
POPULATIONS

The Indianapolis and Ibadan Study of Health and Aging is an on-going longitudinal study of
dementia and Alzheimer’s disease in the elderly. The study populations include African
Americans and Africans age 65 and older living in Indianapolis, U.S.A. and in Ibadan, Nigeria,
respectively. One of the study goals is to estimate prevalence rates of dementia and Alzheimer’s
disease in the two populations to test if the rates differ. Details of the study have been published
elsewhere [14,15]. Population-based two-phase surveys were conducted to estimate the
prevalence of dementia and Alzheimer’s disease in both populations. At the first phase, 2212
subjects from Indianapolis and 2494 subjects from Ibadan were randomly selected from the
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two communities and administered screening tests aimed at measuring the subject’s cognitive
functions. Each subject received a cognitive score which ranged from 0 to 33. Based on the
screening scores, the subjects were grouped into four strata: good performance and age ≤74;
good performance and age ≥75; intermediate performance, and poor performance. The initial
sampling plan was to sample 100 per cent from the poor performance group, 50 per cent from
the intermediate group, 5 per cent from the good performance group of which 75 per cent
should come from those older than 75. However, due to refusal, death, severe sickness and
other reasons, the study had to sample more than the prespecified percentages in all strata
except the poor performance stratum to achieve the targeted number of total clinical diagnosis.
Non-response rates in each of the strata for the two study sites are summarized in Table II.

In Table III we present some of the characteristics of the two samples by their response groups.
Prevalence estimates ignoring the non-response indicates that prevalence of Alzheimer’s
disease is higher in the African American population than in the African population. However,
since the non-respondents in Indianapolis have higher cognitive scores than the respondents
and higher cognitive scores is correlated with lower prevalence of Alzheimer’s disease,
prevalence estimates for the two sites without accounting for non-response may be subject to
the question that differences in prevalence estimates are perhaps due to differential response
rates. Although in this data set the prevalence difference is so large that we do not anticipate
that adjusting for the non-response will change the original conclusion, we hope to illustrate
the approaches outlined in the previous section and to contrast the difference in estimates.

We derive prevalence estimates of dementia using the approaches of Section 3. Two types of
weighting estimators are used: the unadjusted estimator, which ignores the non-response; the
adjusted estimator, which models the probability of response by a logistic regression model
using age, sex and cognitive scores as covariates. The modelling estimator is obtained using a
logistic model for dementia with age, sex and cognitive scores as covariates. The regression
type estimator is used with the same response model as in the adjusted weighting estimator
and the same disease model as in the modelling estimator. Standard error estimates from the
jack-knife variance estimators are also included. Although the standard error estimates for the
modelling type estimator can be obtained from the model-based variance estimator, we choose
to use the jack-knife variance estimators for all estimators so that differences in standard error
estimates could not be attributed to differences in estimation approaches. The prevalence
estimates are presented in Table IV.

The prevalence estimates from the adjusted weighting type estimator, the modelling estimator
and the regression estimator still indicate significant difference between the two populations.
However, it can be noted that the differences in prevalence rates for the two populations
estimated by the three methods are smaller than those given by the unadjusted weighting
estimates. There seems to be differences between the estimates, especially in the age-specific
rates, given by the three types of estimators. The small difference in the overall rates is perhaps
due to the fact that in this data set stratification leading to sampling weight captured essentially
the same information as in the covariates used in the modelling estimator. Greater discrepancies
may be anticipated when this is not the case. A simulation study was conducted to investigate
the properties of the two estimators under various missing data assumptions and disease model
specifications.

5. A SIMULATION STUDY
Data from the Indianapolis population of the dementia example are used to provide covariate
information in the simulation. Specifically, age, sex and cognitive scores from the Indianapolis
population are used as covariates. Disease and response are generated as random Bernoulli
variables from the prespecified models. With each simulated data set the unadjusted weighting
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estimator, the adjusted weighting estimator, the modelling type estimator and the regression
type estimators are used to derive prevalence estimates. The parameter configuration for the
simulation are classified into four basic design groups: the first group includes simulations
where both disease and response models are correctly specified; the second group uses correct
disease model but misspecified response models; the third group uses correct response model
but misspecified disease models; the fourth group uses misspecified disease and response
models. Details of the model and design specifications for the simulations are summarized in
Table V.

In Table V disease models A, B and C represent increasing true prevalence rates. The disease
model A represents prevalence similar to the dementia prevalence rate in our example data.
Disease model D includes a second-order age effect in the model. Two true response models
are used to generate the response data; response model a assumes a binary logistic model, and
response model b assumes a multinomial logit model with three response categories
(respondents, died or too sick and refused).

A total of 2000 simulations were generated for each configuration. True disease prevalence
was derived from the underlying model used to generate the disease variable. The mean
prevalence estimates and standard deviations from the simulation were used as the estimates
derived from the corresponding approaches. Since the computational time on simulation
studies evaluating the performances of the jack-knife variance estimator was beyond our
resources at this time, simulations were only conducted to evaluate the performances of the
prevalence estimators using the approaches discussed in this paper. Results of the simulation
are presented in Table VI.

We first comment on the performances of the adjusted weighting type estimator. From the
simulation results we can see that the unadjusted weighting estimators overestimate disease
prevalence, owing to the fact that in our data the non-respondents have higher cognitive scores.
From Table VI we can also see that when the response models are correctly specified (designs
1 and 3), the adjusted weighting type estimators yield prevalence estimates very close to the
true prevalence, effectively correcting the biases of the weighted estimator. However, from
designs 2 and 4 we can also see that the adjusted weighting type estimator is very sensitive to
misspecifications of the response models. The biases due to misspecifications of the response
models are small in the case of fitting a binary logistic response model for a true multinomial
logit response model. However, the biases are substantial in the cases of fitting models without
all the covariates in the true models. Therefore, careful examination on model fittings for the
response models is needed before one proceeds with the adjusted weighting type estimator.

The modelling type estimator performs very well in situations where the assumptions in Section
3.2 hold (designs 1 and 2). The modelling type estimator seems fairly robust in omitting a
second-order age effect in the disease model, which is in agreement with the observation made
in Scott and Wild [16]. However, the modelling type estimator yields large bias when a
covariate is omitted from the fitted model (simulation numbers 7 and 8). For both response
and disease models the impact of omitting cognitive scores from the models seems to be larger
than omitting age, probably due to the fact that cognitive scores are better predictor of dementia
than age.

The regression type estimator performs well when either the response model or the disease
model is correctly specified, making it the most robust estimator among the three estimators.
However, in the cases where both disease and response models are misspecified, the regression
type estimator does not seem to perform any better than the two other estimators.

These simulation results are expected properties of the various estimators. The simulations
suggest that the modelling type estimator is robust when a reasonable model can be fitted to
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the disease data and the non-response are ignorable in the likelihood based inference, because
no additional adjustment is needed. The unadjusted weighting type estimator yields large bias
even under the MAR mechanism. The biases can be corrected by the method proposed in
Section 3.1, provided that the fitted response model is correctly specified. The regression type
estimator is robust when either the disease model or the response model is correctly specified.

6. CONCLUSIONS
In this paper we considered methods for estimating disease prevalence from two-phase survey
studies with non-response. The unadjusted weighting type estimator may result in large bias
if the non-response are not that of missing completely at random. When the non-response
depends on covariates collected at the first phase of the study, an adjusted weighting approach
may be used. The adjusted weighting type estimator can be especially useful in a multi-purpose
survey where many outcomes are of interest so that the adjusted weights can be used in a
straightforward way. The modelling type estimator, on the other hand, is dependent on specific
outcomes. We demonstrate that under the missing at random assumptions and certain other
conditions the modelling type estimator obtained using maximum likelihood estimates from
correctly specified disease models on respondents only is unaffected by this type of non-
response. The regression type estimator can be more robust under a misspecified response
model or a misspecified disease model. The approaches are illustrated using data from the
Indianapolis–Ibadan dementia study. Our simulation results indicate that the adjusted
weighting type estimator can effectively correct for biases of the unadjusted weighting
estimator, but it may be sensitive to misspecification of the response model. The modelling
type estimator is fairly robust under the stated assumptions. However, it may also be sensitive
to misspecification of the disease model. The regression type estimator may be robust against
misspecifications in the disease model or the response model. Nevertheless, it may not be robust
for misspecifications in both disease and response models.
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Table I

Sampling scheme and achieved samples for two-phase survey studies with non-response.

Strata Total number in strata Number sampled Number evaluated

I1 N1 n1 r1

I2 N2 n2 r2

⋮ ⋮ ⋮ ⋮

Is Ns ns rs

Total N n r
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