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Abstract Phase coding in a neural network composed of

neural oscillators with inhibitory neurons was studied

based on the theory of stochastic phase dynamics. We

found that with increasing the coupling coefficients of

inhibitory neural oscillators, the firing density in excitatory

population transits to a critical state. In this case, when we

increase the inhibitory coupling, the firing density will

come into dynamic balance again and tend to a fixed value

gradually. According to the phenomenon, in the paper we

found parameter regions to exhibit those different popula-

tion states, called dividing zones including flat fading zone,

rapid fading zone and critical zone. Based on the dividing

zones we can choose the number ratio between inhibitory

neurons and excitatory neurons in the neural network, and

estimate the coupling action of inhibitory population and

excitatory population. Our research also shows that the

balance value, enabling the firing density to reach the

dynamic balance, does not depend on initial conditions. In

addition, the critical value in critical state is only related to

the number ratio between inhibitory neurons and excitatory

neurons, but is independent of inhibitory coupling and

excitatory coupling.
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Introduction

Since the 1960’s, the theory of phase resetting was applied

to the studies of physiological rhythms by Winfree, and had

obtained lots of improvements (Winfree 1970, 1980), sub-

sequently the theory was extended to study the synergistic

effect of brain (Haken 1980, 1996) and to research neural

information processing and the evolution of the neural

information. The theory was triumphantly used to neuro-

logic disease such as the physical therapy of Parkinson’s

disease in Medicine and Biology, and considerable effects

had been implemented (Tass 1999; Tass et al. 2003). Fur-

thermore, in recent years the theory of the phase dynamics

has been successfully used for studying neural networks and

cognitive neurodynamics. The reason why the computa-

tional neuroscientists and neurosurgery experts have shown

much interest in the theory is mostly owing to its incom-

parable advantages (Yamaguchi et al. 2004; Alexander et al.

2007; Wagatsuma and Yamaguchi 2005), such as the theory

can fully embody the frequency, firing density, mutual

coupling and amplitude changes of neural coding in com-

plex network. Besides, it can describe the collective activ-

ities in large-scale neural oscillator population and the

response to stimulations. Meanwhile it also can simplify the

modeling of neural oscillator population under different

coupling conditions. Although the simplified model is

rough, it has many advantages. First, it can describe the

neural activities of neuronal population which consists of

large number of neurons. Second, it can reflect the dynamic

properties of neural information processing, such as
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synchronous oscillation, dynamic coupling and rapid con-

vergence. In addition it can express neuronal plasticity and

so on. In a word, the simplified model can achieve analog-

ical effect that other neuron models can reach.

The applications of stochastic phase dynamics in cog-

nitive neurodynamics mainly emphasize the study of col-

lective activities in neural oscillator population (Wang and

Zhang 2006, 2009, 2003, 2007; Wang and Jiao 2006; Jiao

and Wang 2009; Wang et al. 2008, 2006). From the actual

researches obtained, we can see that the study on neural

oscillator population lean to the study of excitatory neural

oscillator population. However, in actual neural system

excitatory neurons interact with inhibitory neurons.

Although the number of inhibitory neurons is small, they

play an extremely important role in synchronous motion of

neural oscillator populations and the evolution of neural

coding. In our former studies, we proposed a stochastic

nonlinear phase dynamic model under coupling action of

inhibitory neurons, and analyzed the spontaneous behavior

and the dynamic evolution of average number density

under the condition of simulation (Liu et al. 2009). In this

paper, according to the dynamic model and the phenome-

non in spontaneous behavior, we further analyze the sta-

bility on phase neural coding in the presence of inhibitory

neurons through computer stimulation.

Dynamic model

We assume that there are N neurons in a synchronous

neuronal group, where excitatory neural oscillators are

considered as a population with eigenfrequency X1, and the

number and phase of oscillators are denoted by N1 and h1.

Inhibitory neural oscillator is another population composed

of N2 neurons with eigenfrequency X2, oscillator phase is

denoted by h2 where, N = N1 ? N2.

For spontaneous behavior, the phase of every oscillator

obeys the following phase dynamic equation:
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where Fj(t) is random force. For the sake of simplicity, Fj(t)

is modeled by Gaussian white noise. Thus,
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and M21 wj
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�wkÞ are the mutual coupling interactions between excitatory

coupling oscillators and inhibitory coupling oscillators, X1

and X2 are the eigenfrequencies of excitatory population and

inhibitory population respectively. Q is the constant noise

amplitude..
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In our research, coupling parameters Cm, C1m, Gm, G1m are

all considered to be zero, that is Cm = 0, C1m = 0, Gm = 0,

G1m = 0. Km, K1m, Lm, L1m denote mth order coupling

coefficients between neurons. And the coupling coefficients

of excitatory neural oscillators are defined as positive values.

And the coupling coefficients of inhibitory neural oscillators

are negative, that is Km [ 0, K1m [ 0, Lm \ 0, L1m \ 0.

According to phase dynamic equation,we can get the

Fokker–Planck equation of probability density f
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f expresses the probability density of the oscillators’ phases

at time t. Let f = f(w1, ���wN, t)
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The Fokker–Planck equation is a n-dimensional equation.

In order to reduce the dimensions and analyze expediently,

the number density of the neural oscillators is introduced.

The number density is defined as follows:
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~n2 h2ð Þ ¼
1

N

XN

k¼N1þ1

d h2 � wKð Þ
ð7Þ

The stochastic aspect of the dynamics is taken into

account by introducing the average number of the oscillators.
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The average number density and global average number

density meet boundary conditions below.
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Where n1(h1, t) and n2 (h2, t) represent the average number

of excitatory neural oscillator population and inhibitory

neural oscillator population respectively. According to these

equations above, we get the phase dynamic model in

spontaneous behavior
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Analysis on stability

Critical state

In our former research (Liu et al. 2009), we found that

with increasing the coupling coefficients of inhibitory

neural oscillators, the average number density shows a

uptrend firstly, and then goes through a critical state,

finally will be in downtrend (Fig. 1). The amplitude of

firing density keeps constant in Fig. 1b. In this case, when

decreasing the coupling of inhibitory oscillators, the firing

density in excitatory population will rise and arrive

dynamic balance (Fig. 1a). In contrast, when increasing

the inhibitory coupling, the firing density will decline and

reach dynamic balance (Fig. 1c) or tend to a fixed value

(Fig. 1d). Here, the state of Fig. 1b is defined as critical

state. And the balance value in the state is named as

critical value.

In the paper, the initial conditions were chose as sinu-

soidal which was given by

nkðw; 0Þ ¼ g � 1

2p
� 1þ a � sinðwÞð Þ k ¼ 1; 2

Where g is a normalization factor. a is a parameter and

according to the nonnegativity of average number density,

0 \ |a| B 1 holds. For a = 0, the average number density

and firing density are in perfectly desynchronized state, in

which neural oscillators trend to uniform distribution and

new neural coding can’t emerge. So in this paper a = 0

was replaced by a small value 0.00001.

According to the definition mentioned above, we get

balance values and densities of inhibitory coupling in

critical state under the condition of different number ratios,

such as Tables 1 and 2.

The number density and firing density are in uniform

distribution when a = 0.00001. Here, we name the critical

line corresponding to a = 0.00001 as totally inhibited

critical line. Figure 2 clearly shows that two critical lines

divide three continuous regions in the parameter space

K1 = 3. The firing densities tend to uniform distribution in

the zoneIII located outside of totally inhibitory critical line.

And in the zoneI the firing density rises firstly and goes into

balance state. There may be the case that the firing density

declines firstly and goes into balance state in the zoneII.

And the value of a determines the size of zoneII. Figure 2

describes the maximal region of zoneII. The diving regions

can be considered as the base for choosing the number ratio

between inhibitory neurons and excitatory neurons in the

neural network, and estimating the coupling action of

inhibitory population and excitatory population in later

research.
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Critical state in different excitatory coupling

Tables 3 and 4 show the critical states under the condition

of different excitatory coupling. From the tables we can

know that under the same excitatory coupling, with

increasing the number of inhibitory oscillators, critical

values decrease and inhibitory coupling in the critical state

also decrease. And this is easily comprehensive. Under

Fig. 1 Firing density in the different inhibitory couplings p(t) = n1(0,t)

Table 2 Parameters in critical state when a = 0.5

a = 0.5

K1 N2/N = 0.3 N2/N = 0.25 N2/N = 0.2 N2/N = 0.15 N2/N = 0.1

K1 = 3 L1 -3.63 -4.95 -6.95 -10.25 -16.9

Critical value 0.1752 0.1881 0.2 0.2132 0.2250

K1 = 2 L1 -1.29 -1.95 -2.95 -4.58 -7.9

Critical value 0.1757 0.1881 0.2 0.2133 0.2250

N2 is the number of inhibitory neurons. N is the summation of excitatory neurons and inhibitory neurons. L1 is the coefficient of inhibitory

coupling. K1 is the coefficient of excitatory coupling

Table 1 Parameters in critical state when K1 = 3

K1 = 3

a N2/N = 0.3 N2/N = 0.25 N2/N = 0.2 N2/N = 0.15 N2/N = 0.1

a = 0.00001 L1 -3.75 -5.07 -7.1 -10.4 -17.2

Critical value 0.1114 0.1194 0.1273 0.1353 0.1432

a = 1 L1 -3.15 -4.38 -6.2 -9.31 -15.5

Critical value 0.2703 0.2896 0.3110 0.3275 0.3451
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different excitatory coupling and the same number ratio,

the critical values are the same. If we neglect the errors in

stimulation, the deviation between the two critical lines are

also basically the same in above tables.

Figure 3 shows the zone maps in different excitatory

couplings. From the figure, we can see that with increasing

coupling in excitatory population, the size of zoneI

increases, but the size of zoneII is changeless. It can be

seen that the maximal range of zoneII is independent of

excitatory coupling. And according to the figure, we can

speculate that when the excitatory coupling is less than a

certain value, the size of zoneI will always decrease and

maybe reduce to zero, namely the zoneI disappear. Because

even if there is no inhibitory neurons, there is a critical

value which determine that whether or not the firing den-

sity can reach to balance state (Tass 1999).

Comparing Tables 2, 3 and 4, we can see that the

critical values are the same under the same value of a,

and Table 1 also validate this fact. According to this fact,

it can be seen that the critical value is only related to the

number ratio between inhibitory neurons and excitatory

neurons under the same initial condition. And the lager

the number of inhibitory neurons is, the smaller the crit-

ical value is.

In Figs. 4 and 5, ‘‘*’’ denote critical values for a = 1. And

‘‘o’’ denote critical values for a = 0.00001. ‘‘?’’ denote

critical values for a = 0.5. In Fig. 4, the same critical values

correspond to the same number ratio. In Fig. 5, there is only

one set of curves on number ratio and critical values. And this

fact also conforms that critical values are the same under

different excitatory couplings. In Figs. 4 and 5, the part

beyond the ‘‘*’’ line corresponds to zoneIin Fig. 3, and the

Table 3 Parameters in critical state when K1 = 2

K1 = 2

a N2/N = 0.3 N2/N = 0.25 N2/N = 0.2 N1/N = 0.15 N2/N = 0.1

a = 0.00001 L1 -1.4 -2.1 -3.1 -4.8 -8.2

Critical value 0.1114 0.1194 0.1273 0.1353 0.1432

a = 1 L1 -0.82 -1.38 -2.2 -3.64 -6.5

Critical value 0.2699 0.2896 0.3110 0.3277 0.3451

Table 4 Parameters in critical state when K1 = 4

K1 = 4

a N2/N = 0.3 N2/N = 0.25 N2/N = 0.2 N2/N = 0.15 N2/N = 0.1

a = 0.00001 L1 -6.05 -8.1 -11.1 -16.1 -26.2

Critical value 0.1114 0.1194 0.1273 0.1353 0.1432

a = 1 L1 -5.48 -7.38 -10.2 -14.97 -24.5

Critical value 0.2706 0.2896 0.3110 0.3279 0.3451

Fig. 3 Critical states in different excitatory couplings

Fig. 2 Zone map when K1 = 3
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part below the ‘‘o’’ line corresponds to zoneIII. The part

between the two lines corresponds to zoneII.

The equations of three lines in Fig. 5 are separately

given by:

‘‘o’’ line: y ¼ �0:1590 � xþ 0:1591

‘‘ � ’’ line: y ¼ �0:3750 � xþ 0:3837

‘‘þ ’’ line: y ¼ �0:2496 � xþ 0:2502

If we neglect the errors in stimulation, the three lines

above are approximately parallel. Thus it can be seen that

the critical value and the number ratio between inhibitory

neurons and excitatory neurons meet certain linear

relationship.

Balance value changes in subarea

According to above results, we can see that the critical state

is related to initial conditions, so the critical values are also

influenced. We address here a question of whether balance

values in subarea are related to critical condition or not.

Figures 6 and 7 validate the doubt. Figures 6 and 7 show a

compassion between the two balance values under different

initial conditions.Fig. 4 Relationship between critical value and inhibitory coupling

Fig. 5 Relationship between critical value and number ratio

Fig. 6 Firing density. a a = 1 b a = 0.05

Fig. 7 Change of balance values in subarea
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Comparison with Figs. 6 and 7, we can find that

although initial conditions are different, the balance

values are the same. And the parameter a is only

related to the time when it reaches to dynamic balance.

This fact shows that initial conditions don’t influence

balance value of firing density. Hence, it can be seen

that balance values of firing density are only related to

the excitatory coupling, inhibitory coupling and the

number ratio between inhibitory neurons and excitatory

neurons.

Table 5 shows a set of balance values on firing density

in different inhibitory couplings. It shows that the balance

values of firing density keep a fixed value (about 0.1273)

and change no longer when the absolute value of L1 is

more than 7.1. With a comparison between Tables 5 and

1 and Fig. 2, the inhibitory couplings between -6.2 and

-7.1 belong to the range of zoneII. The firing density

gets to uniform distribution and tend to a fixed value

when the absolute value of inhibitory coupling is more

than 7.1.

The plane in Fig. 7 is divided into two parts by the

dashed line. The above part corresponds to zoneI in Fig. 2.

The below part correspond to zoneII and zoneIII. Balance

value in zoneIII is a fixed value and changes no further.

According to Fig. 7, it can be seen that the change of

balance values located in above part is flatter. But in the

below part balance values change rapidly. So correspond-

ing to balance values, zoneI is named as flat fading zone on

balance values of firing density. And zoneII is named as

rapid fading zone.

Conclusion

In the paper, according to the conclusion in our former

researches, we further analyze the stability on phase neural

coding in the presence of inhibitory neurons through

computer stimulation. And we study different states which

are divided into three zones according to the former

researches. ZoneI is a upward balance zone in which the

firing density rises firstly and goes into balance state. In

zoneII, a downward balance state may exist. And the firing

densities tend to uniform distribution in zoneIII. The study

on the dividing zones is considered as the reference basis of

choosing the number ratio between inhibitory neurons and

excitatory neurons in the neural network, and estimating

the coupling action of inhibitory population and excitatory

population. According to balance values when the firing

density reach to dynamic balance, zoneI is named as flat

fading zone in which balance values change slowly. zoneII

is considered as rapid fading zone in which balance values

change rapidly.

The analytical simulation also shows that initial condi-

tions don’t influence balance values of firing density.

Furthermore, the values of firing density in critical state are

approximately the same under the same initial conditions

and number ratio of neurons. That is critical values are only

related to the number ratio between inhibitory neurons and

excitatory neurons, and is unrelated to inhibitory coupling

and excitatory coupling. And the value of firing density in

critical state meets a certain linear relationship.
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