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Abstract The neuronal mechanisms of general anesthesia

are still poorly understood. Besides several characteristic

features of anesthesia observed in experiments, a promi-

nent effect is the bi-phasic change of power in the observed

electroencephalogram (EEG), i.e. the initial increase and

subsequent decrease of the EEG-power in several fre-

quency bands while increasing the concentration of the

anaesthetic agent. The present work aims to derive ana-

lytical conditions for this bi-phasic spectral behavior by the

study of a neural population model. This model describes

mathematically the effective membrane potential and

involves excitatory and inhibitory synapses, excitatory and

inhibitory cells, nonlocal spatial interactions and a finite

axonal conduction speed. The work derives conditions for

synaptic time constants based on experimental results and

gives conditions on the resting state stability. Further the

power spectrum of Local Field Potentials and EEG gen-

erated by the neural activity is derived analytically and

allow for the detailed study of bi-spectral power changes.

We find bi-phasic power changes both in monostable and

bistable system regime, affirming the omnipresence of

bi-spectral power changes in anesthesia. Further the work

gives conditions for the strong increase of power in the

d-frequency band for large propofol concentrations as

observed in experiments.
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Introduction

General anesthesia (GA) is an indispensible tool in today’s

medical surgery. In the optimal case, it leads to the patients

immobility, amnesia and unconsciousness, i.e. lack of

awareness towards external stimuli (Orser 2007; John and

Prichep 2005). Although GA is omnipresent in recent

medicine, its underlying mechanisms and the molecular

action of anesthetic agents (AA) have been a long-standing

mystery. One of the major obstacles towards its under-

standing is the occurrence of different effects. For instance,

immobility is assumed to be generated in the spinal cord

(Rampil and King 1996), and the dorsolateral prefrontal

cortex and the thalamus are affected during amnesia

(Veselis et al. 1997). Similarly the underlying mechanism

of the loss of consciousness and its spatial location is

unknown though some studies point out the importance of

the thalamus (Carstens and Antognini 2005; Alkire et al.

2008; Stienen et al. 2008). The present work focusses on

the loss of consciousness (LOC) and aims to model cor-

responding experimental findings.

To learn more about the effects of AAs, the pharmaco-

kinetics of AA have attracted some attention in the last

decades (Forrest et al. 1994; Dutta et al. 1997; Franks

2008), i.e. the binding of the agent molecule to the blood

and the effective concentration at the neural site. It has been

shown that the speed of the AAs experimental administra-

tion strongly affects the blood concentration and the effect-

site concentration of the AAs. In other words the blood

concentration of AA and its concentration at the effect site

in the neural tissue may be different and may obey different
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temporal dynamics. These differences may yield hysteresis

effects in the anesthetic action (Dutta et al. 1997). More

recent studies examined the direct action of AA on single

neurons (Antkowiak 1999; Franks and Lieb 1994) and

synaptic and extrasynaptic receptors (Franks 2008; Hem-

mings Jr. et al. 2005; Orser 2007; Bai et al. 1999; Alkire

et al. 2008). In this context one of the most important

findings is the AAs weakening action on excitatory synaptic

receptors and the enhancement of inhibitory synaptic activ-

ity. For instance, the AA ketamine inhibits synaptic NMDA-

receptors, while the AA propofol enhances the action of

inhibitory GABAA synapses (Franks 2008).

In addition to these studies of microscopic actions, much

research has been devoted to macroscopic effects of AA,

such as the cardiovascular response of subjects to AAs

(Mustola et al. 2003; Musizza et al. 2007) and the power

spectrum of the subjects’ resting electroencephalogram

(EEG) as a function of the blood concentration of AAs

(Forrest et al. 1994; Dutta et al. 1997; Kuizenga et al.

2001; Fell et al. 2005; Han et al. 2005). The resting EEG

power spectrum especially reflects the anesthetic action in

a characteristic way and permits the classification of the

depth of anesthesia by so-called monitors, see e.g. the

review of Antkowiak (2002). These monitors are also used

to pinpoint the LOC.

Considering the action of the AA propofol, increasing its

blood concentration first increases and then decreases the

spectral power in most frequencies up to the gamma-range

(0-40 Hz). This bi-phasic behavior is characteristic for

GA and has been observed both in rats (Dutta et al. 1997)

and in human subjects (Kuizenga et al. 1998; Yang et al.

1995). Interestingly some studies reported LOC during the

power increase in the EEG (Kuizenga et al. 1998, 2001),

while most monitors use the decay-phase of the bi-phasic

power changes as indicator for LOC. The present work

aims to describe mathematically this bi-phasic behavior by

a neuronal population model.

Our work focusses on the action of propofol, which is a

widely-applied anesthetic agent (Marik 2004). It affects the

cognitive abilities of subjects, such as the response to

auditory stimuli (Kuizenga et al. 2001) or pain (Andrews

et al. 1997). It acts mainly on GABAA receptors and hence

changes the response of inhibitory synapses, while NMDA-

and non-NMDA excitatory receptors are insignificantly

affected. Increasing the blood concentration of propofol

increases the charge transfer in synaptic GABAA-receptors

and increases the decay time constant of their synaptic

response function (Kitamura et al. 2002). We point out that

the present work is not limited to the action of propofol and

may be applied to the action of other anesthetic agents.

The question arises whether the resulting anesthetic

effect originates from the action of a population of neurons

in a single brain area or whether GA is a network effect, i.e.

results from the interaction of several brain areas. In the

following we discuss briefly this question. On one hand it is

well-known that single brain areas play an important role,

such as the thalamus (Carstens and Antognini 2005; Alkire

et al. 2008) which generates spindle waves close to the

point of LOC. Since the thalamus is the gateway for sensory

information in the brain, GA appears as a network effect

mainly triggered by the thalamic action. On the other hand

GABAA-receptors play an important role in the anesthetic

action and are present in most cortical areas and some

subcortical areas. Hence there is no unique action site of

propofol; this may relate to the fact that the spatial location

of the anesthetic action is still unknown, see e.g. studies on

cortical neurons (McKernan et al. 1997) and thalamic relay

neurons (Ying and Goldstein 2005). Consequently GA may

represent an unspecific action on neural populations. This

view is fostered by invitro experiments on cortical slices

while applying anesthetic agents. Such experiments showed

that the firing rates of neurons decreased during the

administration of an increased concentration of the AA

(Antkowiak 1999, 2002) similar to neural effects observed

in invivo experiments. These findings indicate that anes-

thetic effects may occur in a single brain area and network

interactions might not be necessary for their occurrence.

Moreover the presence of a global heterogeneous network

involving brain areas with specific actions may result in an

EEG with spatially localized activity regions. However

John and Prichep (2005) measured the EEG during the

administration of propofol and found no spatial structure.

Consequently these findings indicate that the anesthetic

action is rather unspecific to brain areas and it is reasonable

to treat a single brain area as a first approximation.

Besides the experimental studies, previous theoretical

studies on GA assumed single neuron populations, i.e.

single brain areas, and have reproduced successfully the

characteristic EEG-power spectrum changes observed in

experiments. These studies have explained the bi-phasic

behavior in the EEG power spectrum by different mecha-

nisms. Steyn-Ross et al. support the idea that the bi-phasic

spectrum and the LOC result from a first-order phase tran-

sition in the population (Steyn-Ross and Steyn-Ross 1999;

Steyn-Ross et al. 2001b, 2004). In this context the phase

transition of first order reflects a sudden disappearance of

the system’s resting state accompanied by a jump to another

resting state. The associated pre-jump increase in state

activity has been interpreted as the sudden loss of con-

sciousness as observed in experiments. In contrast, Liley

et al. (Bojak and Liley 2005; Liley and Bojak 2005) showed

in an extensive numerical study of a slightly different model

that such a phase transition is not necessary to reproduce

bi-phasic power changes, but did not suggest a mechanism

for the occurrence of LOC. Moreover Molaee-Ardekani

et al. introduced the idea of slow adaptive firing rates which
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explains the bi-phasic spectrum and LOC without a phase

transition (Molaee-Ardekani et al. 2007). The present work

studies a neural population not embedded in a larger net-

work and which is subjected to uncorrelated fluctuations.

Consequently we aim to answer the question whether an

isolated neural population is sufficient to model the biphasic

behavior in the EEG-power spectrum. In contrast to the

previous studies, we introduce a less complex neural pop-

ulation model which allows for a thorough analytical study.

The latter theoretical studies (Steyn-Ross and Steyn-

Ross 1999; Bojak and Liley 2005; Molaee-Ardekani et al.

2007) are based on the model of Liley et al. (1999), whose

basic elements we discuss briefly in the following. The

model considers a continuous spatial mean-field of neurons

in one or two spatial dimensions, synapses and axonal

connections; the synapses and neurons (Bojak and Liley

2005) may be excitatory and inhibitory. This mean-field

represents the spatial mean in a neural population descrip-

tion and thus averages the spiking activity of single neurons

using a sigmoidal population firing rate. The firing activity

is assumed to spread diffusively via a damped activity wave

along the axonal trees and terminates at pre-synaptic ter-

minals. The wave speed of this axonal wave is set to the

mean axonal conduction speed. At the synaptic terminals

the incoming pre-synaptic activity evokes the temporal

synaptic response on the dendritic trees according to the

dynamics of a single synapse, i.e. treating the membrane as

an RC-circuit with a time-dependent conductance, see e.g.

(Koch 1999). This model neglects the spatial extension of

dendritic trees and assumes a volume conduction mecha-

nisms for the spread along axonal fibers.

The model considered in the present work is similar to

previous models (Foster et al. 2008) in several aspects such

as the model of Liley et al. (1999) but differs in some

important aspects. In contrast to the Liley-model our model

considers a one-dimensional spatial domain and the popu-

lation of synapses on dendritic trees [on average *7,800

synapses on each dendritic tree in rat cortex (Koch 1999)]

and the passive activity spread on dendrites (Agmon-Sir and

Segev 1993). Considering the propagation delay of evoked

synaptic activity along dendritic branches, previous studies

showed that the temporal synaptic response on the dendritic

trees smears out temporally (Koch 1999; Smetters 1995;

Agmon-Sir and Segev 1993). Consequently the synaptic

response arriving at the soma differs from that at a single

synapse. To cope with the various delay distributions caused

by the spatial distribution of synapses on the dendritic

branches, the present model considers an average synaptic

population response which obeys an average synaptic

response function, see (Freeman 1992; Gerstner and Kistler

2002) and section ‘‘Methods’’ in the present work. This

model assumption contrasts to the Liley-model, that con-

siders the dynamics of a single synapse to describe the

population dynamics. In addition the present work models

the activity transmission along axonal trees by taking into

account the spatial probability density of axonal connec-

tions. This contrasts to the Liley-model, that considers a

volume conduction mechanism for the activity spread along

the axonal branch. It has been shown in previous theoretical

studies that the choice of the axonal connection probability

functions can significantly alter spatio-temporal dynamics

of the neural population (Hutt 2008; Hutt and Atay 2005;

Laing and Troy 2003; Bressloff 2001; Bressloff et al. 2002;

Coombes 2005). This model of axonal activity spread has

been shown to extend the damped activity wave considered

in the model of Liley et al. (Coombes et al. 2007; Hutt

2007) to nonlocal interactions. Moreover, the model pre-

sented here is mathematically less complex than the Liley-

model since it has less parameters. This aspect allows for an

analytical treatment of the model and, consequently, the

analytical derivation of conditions for physiological

parameters.

To obtain dynamical criteria for the occurrence of

anesthetic effects, and hence learn more about their

importance and the underlying dynamics, the present work

aims to extract some analytical relations between physio-

logical parameters. To achieve this goal, the subsequent

section introduces the model and discusses the chosen

physiological parameters. Section ‘‘Results’’ extracts a

condition on synaptic time scales from experimental data,

and gives conditions on the number of resting states and

their linear stability. In addition, that section derives the

power spectrum of Local Field Potentials and EEG ana-

lytically and investigates the conditions for bi-phasic

behavior in EEG. Finally the discussion section ‘‘Discus-

sion’’ summarizes the results obtained and gives an outlook

onto future work.

Methods

The model considers an ensemble of neurons on a meso-

scopic spatial scale in the range of cortical hypercolumns,

i.e. on a spatial scale of some millimeters. It considers two

types of neurons, namely pyramidal cells and interneurons.

The former cell type typically excites other cells by excit-

atory synapses, and thus the pyramidal cell is called an

excitatory cell. In contrast, interneurons are known to

inhibit other cells by inhibitory synapses and are called

inhibitory cells. Consequently, taking into account excit-

atory and inhibitory cells involves the treatment of excit-

atory and inhibitory synapses. Moreover, both types of

synapses may occur on dendritic branches of both cell

types. In the following, we consider excitatory synapses

(abbreviated by e) at excitatory (E) and inhibitory cells (I)

in addition to inhibitory synapses (i) at both cell types.
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By virtue of the large number of neurons in the

ensemble, the activity of synapses and neurons are aver-

ages over the population in small spatial patches and short

time windows (Hutt and Atay 2005; van Hemmen 2004;

Eggert and van Hemmen 2001; Gerstner and Kistler 2002).

Such spatial patches are assumed to represent fully-con-

nected networks (cf. chap. 6.1 in Gerstner and Kistler

2002). In the following, mean values are the average values

in the population of a patch in a short time window of

about few milliseconds. Consequently the mean postsyn-

aptic potentials (PSP) VE,s(x,t) at excitatory cells in a

spatial patch at spatial location x and at time t originate

from excitatory (s = e) or inhibitory (s = i) synapses

receiving activity from other pre-synaptic neurons. Simi-

larly, the PSPs VI,s(x,t) are evoked at inhibitory cells by

pre-synaptic activity at excitatory (s = e) or inhibitory

(s = i) synapses.

In a spatial patch, the PSPs may be modeled as the linear

response V(t) - Vr to incoming firing activity where V(t) is

the mean membrane potential evoked by incoming action

potentials and Vr is the mean resting potential. The mean

values result from the consideration of an ensemble of

neurons, i.e. the spatial patch. Then the four PSPs may be

modelled by [Sect. 6 in Gerstner and Kistler (2002)]

VN;eðx; tÞ � Vr
N ¼

Z t

�1
heðt � t0ÞPEðx; t0Þdt0

VN;iðx; tÞ � Vr
N ¼

Z t

�1
hiðt � t0ÞPIðx; t0Þdt0

ð1Þ

with N = E for excitatory cells and N = I for inhibitory

cells, VN
r is the resting potential of neurons of type N and

PE and PI denote the pre-synaptic mean pulse activity

originating from excitatory and inhibitory cells, respec-

tively. Here we assume that axonal connections from

excitatory cells terminate at excitatory synapses, which

holds true for over 80 percent of excitatory cells (Nunez

1995). Further he(t) and hi(t) represent the mean synaptic

impulse response functions of excitatory and inhibitory

synapses. Here we choose the response functions known

from experiments in single synapses (Koch 1999)

heðtÞ ¼ ae
a1a2

a2 � a1

e�a1t � e�a2tð Þ ð2Þ

hiðtÞ ¼ aif ðpÞ
b1b2

b2 � b1

e�b1t � e�b2t
� �

: ð3Þ

with the temporal rates of the excitatory and inhibitory

synapses a1,2 and b1,2, respectively. Specifically, 1/a2 and

1/b2 are the rise time of the response function for excitatory

and inhibitory synapses, respectively, and 1/a1 and 1/b1 are

the corresponding decay times. Moreover, the pre-factors

in Eqs. 2 and 3 are chosen for convenience to normalize the

response functions he and hi (see the discussion below).

The parameter p C 1 denotes a weighting factor which

reflects the propofol concentration and whose effect is

studied in detail in subsequent sections. The function f(p)

quantifies the action of the propofol concentration on the

inhibitory synapses and will be specified in section ‘‘The

weighting factor p’’. A similar model approach has been

taken in previous studies to study the transitions in general

anesthesia (Steyn-Ross et al. 2001a; Bojak and Liley

2005). Further ae and ai denote the synaptic gain or level

excitation and inhibition, respectively. Equation 1 give the

mean synaptic responses in the ensemble and thus repre-

sent averages over all microscopic details of the synapto-

dendritic system in the ensemble. Hence, the model

neglects microscopic properties of synapses, such as the

reversal potentials of synapses considered in previous

models (Liley et al. 1999; Steyn-Ross and Steyn-Ross

1999). This approach is reasonable on the mesoscopic

spatial scale of a few millimeters, while the dendritic

system of single neurons typically extends over some

hundreds of micrometers and may behave differently.

Considering the synapses as Ohmic elements, the synaptic

response functions he,i(t) represent electric currents. Hence the

time integral $0
? he,i(t) dt is proportional to the charge transfer

qe,i through the synaptic cleft. Thus we find the following

relations for excitatory and inhibitory charge transfer: qe = ae

and qi = aif(p). In other words, increasing f(p), e.g. via

propofol, increases the charge transfer of inhibitory synapses.

The synaptic response in (1) is formulated as an integral

equation of the form Vs(t) = $-?
t hs(t - s)Ps(s)ds. To for-

mulate this equation as a differential equation, we find the

differential operators (Hutt et al. 2003)

L̂s ¼ o2=ot2 þ cso=ot þ x2
s ; ð4Þ

for which L̂sVsðtÞ ¼ PsðtÞ: After re-scaling of the time by

t! ffiffiffiffiffiffiffiffiffi
a1a2
p

t we find the following differential formulation

of (1):

L̂e VN;eðx; tÞ � Vr
N

� �
¼ aePEðx; tÞ ð5Þ

L̂i VN;iðx; tÞ � Vr
N

� �
¼ aif ðpÞx2

0PIðx; tÞ: ð6Þ

with

x2
e ¼ 1; xi ¼ x2

0 ¼ b1b2=a1a2

ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=a2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
; ci ¼ ðb1 þ b2Þ=

ffiffiffiffiffiffiffiffiffi
a1a2

p

To model the pre-synaptic mean pulse activity PE(x,t),

PI(x,t) at spatial location x subject to the firing activity of

other neurons at spatial location y, we assume spatial

synaptic interactions via axonal branches with

PEðx; tÞ ¼ KE � SE VE;e � VE;i �HE

� �
PIðx; tÞ ¼ KI � SI VI;e � VI;i �HI

� � ð7Þ

with the notation
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KN �SN ½V�HN �¼
Z

X
KNðx�yÞSN Vðy;t�jx�yj

v
Þ�HN

� �
dy:

ð8Þ

We consider a one-dimensional spatial domain X that

represents the spatial region of the neural population and

assume periodic boundary conditions. Moreover v denotes

the finite conduction speed of axonal connections. In other

words, the delay term
jx�yj

v in Eq. 8 takes into account the

propagation delay of pulse activity to travel from x to y with

speed v (Hutt et al. 2003; Hutt and Atay 2006). Further SE[�],
SI[�] represent the somatic firing function of excitatory and

inhibitory cells which have a sigmoidal shape (Hutt and

Atay 2005; Gerstner and Kistler 2002; Freeman 1979). The

firing rate functions SE and SI of the excitatory and inhibitory

cells depend on the difference of the PSPs VE,e - VE,i and

VI,e - VI,i, respectively, since the corresponding synapti-

cally evoked post-synaptic currents sum up at the neuron

somata [see (Freeman 1992), section 1.7 in Nunez and

Srinivasan (2006) and the discussion below in section ‘‘The

general power spectrum’’]. Moreover HE, HI denote the

corresponding firing threshold voltages. Since the present

model considers populations of neurons, all variables under

discussion are averages over small spatial patches and small

time windows (Hutt and Atay 2005) and section 6 in

Gerstner and Kistler (2002) for more details. The proposed

model does not distinguish synapses at different cell types

for simplicity, i.e. all excitatory synapses are identical in

both cell types and the same holds for inhibitory synapses. In

addition, the synapses respond to cells which are located at

different spatial locations and the functions KE, KI account

for the corresponding nonlocal connectivity. They represent

the probability density of connections from excitatory and

inhibitory cells to excitatory and inhibitory synapses,

respectively. This definition requires the normalisation to

unity, i.e. $XKE,I(x)dx = 1. This nonlocal approach general-

izes previous diffusive models (Steyn-Ross et al. 2001a;

Rennie et al. 2002; Bojak and Liley 2005) by considering

higher spatial derivatives (Hutt and Atay 2005; Coombes

et al. 2007).

Consequently, the PSPs at excitatory synapses for both

cell types obey

L̂e VE;eðx; tÞ � Vr
E

� �
¼ aeKE � SE VE;e � VE;i �HE

� �
L̂e VI;eðx; tÞ � Vr

I

� �
¼ aeKE � SE VE;e � VE;i �HE

� � ð9Þ

and at inhibitory synapses

L̂i VE;iðx; tÞ � Vr
E

� �
¼ aif ðpÞx2

0KI � SI VI;e � VI;i �HI

� �
L̂i VI;iðx; tÞ � Vr

I

� �
¼ aif ðpÞx2

0KI � SI VI;e � VI;i �HI

� �
:

ð10Þ

From Eqs. 9 and 10, we find the relations VE,e - VE
r =

VI,e - VI
r and VE,i - VE

r = VI,i - VI
r leading to VE,e - VE,i =

VI,e - VI,i. Hence the effective membrane potentials in

excitatory cells, i.e. VE,e - VE,i, and inhibitory cells, i.e.

VI,e - VI,i, are identical. This is an important result derived

from the model that originates from the independence of

the synaptic actions on the post-synaptic neuron type as

assumed in Eq. 1. Note however that the two cell types may

differ in their firing rates due to their different sigmoidal

firing functions SE and SI.

Moreover the extracted condition yields SI[VI,e - VI,i

- HI] = SI[VE,e - VE,i - HI] and we obtain for excit-

atory cells

L̂e Veðx; tÞ � Vr
E

� �
¼ aeKE � SE Ve � Vi �HE½ �

L̂i Viðx; tÞ � Vr
E

� �
¼ aif ðpÞx2

0KI � SI Ve � Vi �HI½ �
ð11Þ

and for inhibitory cells

L̂e VI;eðx; tÞ � Vr
I

� �
¼ aeKE � SE Ve � Vi �HE½ �

L̂i VI;iðx; tÞ � Vr
I

� �
¼ aif ðpÞx2

0KI � SE Ve � Vi �HI½ �:
ð12Þ

with the excitatory and inhibitory PSPs now defined as

Ve = VE,e and Vi = VE,i. The model (11) extends previous

standard neural field models for a single neural population

(Atay and Hutt 2005; Hutt et al. 2003; Amari 1977;

Coombes et al. 2003) by an additional population. We

observe that the right hand sides of Eqs. 11 and 12 depend

only on Ve(x,t) and Vi(x,t), and that VI,e(x,t), VI,i(x,t) are

driven by these variables. Consequently, the PSPs Ve(x,t)

and Vi(x,t), and correspondingly Eq. 11, solely govern the

systems dynamics.

Choice of physiological parameters

The proposed model considers several physiological para-

meters, such as mean efficacy of the synapses, their

response time constants and the spatial range of axonal

spread. These parameter values vary among brain areas and

are not well known in neuronal ensembles. For example, the

dendritic branches around pyramidal cells are very diverse

in geometry and spatial spread and are not known in detail

for each neuron (Braitenberg and Schütz 1998; Mell and

Schiller 2004). This spatial diversion leads to a dispersion

of propagation delays of activity in the dendritic branches

(Koch 1999). Further the number and locations of excitatory

and inhibitory synapses on the dendritic branches are not

known and may only be estimated (Mell and Schiller 2004).

Specifically, the excitatory synapses occur mostly distant

from the cell soma, while most inhibitory synapses are

found close to the cell body. Since the amplitude of excit-

atory post-synaptic potentials decays during propagation

along the dendritic tree, the somatic vicinity of the inhibi-

tory synapses indicates stronger inhibition than excitation.

However the relation of the number of excitatory and
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inhibitory synapses has been determined to 4:1 (Liu 2004)

or 18:1 (Megias et al. 2001) in pyramidal hippocampal

cells. In other words much more excitatory than inhibitory

synapses populate the dendritic system, which may balance

the stronger inhibition.

Further, the reported time scales and synaptic gains of

single excitatory and inhibitory synapses might give the

right order of magnitude, but deviations from the single

synapse properties are reasonable in ensembles. For

example, excitatory PSPs need a few milliseconds to

propagate from their synaptic origin along the dendritic path

to the trigger zone at the soma. Theoretical studies of the

one-dimensional cable equation, which represents a simple

model of the dendritic tree, have shown that synaptically

evoked pulses propagate along the membrane while flat-

tening their shape at both the front and back (Agmon-Sir

and Segev 1993; Koch 1999). Since this activity spread may

be viewed as increases of the rise and decay time of the

activity, essentially the activity propagation increases the

rise and decay time of the synaptic impulse response

function he and thus decreases the rate constants a1, a2. To

handle this parameter problem, previous neuron ensemble

studies have either taken into account explicitly estimates of

the physiological structure (Wright and Kydd 1992; Wright

and Liley 2001, 1995) or have chosen suitable model

parameters to fit optimally experimental encephalographic

activity (Robinson et al. 2001, 2003, 2004; Bojak and Liley

2005). The present work takes a slightly different approach

and aims to classify the ensemble dynamics as general as

possible while ruling out totally unphysiological parameter

regimes. This approach is shown explicitly for excitatory

and inhibitory synapses in section Stability conditions in the

absence of propofol in the context of a stability study.

However in some cases we will specify the time scales of

excitatory and inhibitory synapses. Then the inhibitory

synapses obey the dynamics of GABAA-receptors with

b1 = 117 Hz, b2 = 1,000 Hz, i.e. time scales 1/b1 =

8.5 ms and 1/b2 = 1 ms, which are reasonable parameters

(cf. Koch 1999, p. 106). Since GABAA synapses are located

close to the cell body, no dendritic propagation delays occur

and thus the chosen decay and rise rate hold in a good

approximation. In addition, if not stated otherwise, excit-

atory synapses exhibit the decay time sdecay = 4.5 ms and

the rise time srise = 0.5 ms, i.e. the rates a1 = 1/sdecay =

222 Hz and a2 = 1/srise = 5,000 Hz. This parameter choice

reflects AMPA-receptors, but various own numerical sim-

ulations (not shown) indicate that the subsequent results

may be found for NMDA-receptors as well, i.e. for longer rise

and decay times (cf. Koch 1999, sect. 4.6) and thus smaller

values of a1 and a2. In real neuronal populations, these

parameters may vary due to the dendritic propagation delays.

Additional important parameters are ae, ai, which rep-

resent the synaptic gain or, equivalently, the mean charge

transfer in synapses. As discussed above, synaptic weights

may vary randomly due to the location on the dendritic tree

and even to the pre-synaptic activity level. Consequently

this parameter is not accurately known and ae is fixed to

ae = 1 mV/s similar to the parameter ranges extracted and

applied in the work of Robinson et al. (2003, 2004). The

following sections vary the values of the inhibitory syn-

aptic gain ai if not given otherwise. In addition to the gains,

the synaptic connections are defined by the kernel func-

tions in (7), where their range represent the spatial spread

of the axons. We choose

KEðxÞ ¼
1

2re
e�jxj=re ; KIðxÞ ¼

1

2ri
e�jxj=ri ð13Þ

with excitatory and inhibitory spatial ranges re and ri and

$KE(x)dx = $KI(x)dx = 1.

The present work focuses on a single brain area with

intra-cortical connection. Since the spatial origin of anes-

thetic action is not known, the present work does not

specify the brain area under study and thus the axonal

connection structure is not known. We point out that the

spatial interaction range of axonal connections are specific

to the species, the brain area, the layer in the neural tissue

and the number of connections. For instance, in layer 2 and

3 in rat visual cortex (Hellwig 2000), the average size of

axonal branches is *18 mm and the probabiflity of axonal

connections between a pyramidal neuron and a dendritic

tree falls off to its half at a distance of about 200 lm.

Moreover, in the monkey visual cortex area V4 (Yoshioka

et al. 1992), layer 3 shows axonal extensions up to 1 mm.

These examples show the diversity of axonal spatial ranges

and it is clear that a spatial range in a model may take

values of the same order. Since many excitatory neurons

exhibit longer axonal connections than inhibitory neurons,

e.g. interneurons (Nunez 1995), the spatial ranges are

chosen to re = 2 mm and ri = 0.5 mm (Nunez 1981).

The axonal connections exhibit a finite conduction speed

which results in a delayed spatial interaction. The conduction

speed depends on the spatial extension of the corresponding

connection: the axonal fibers of long-range interactions are

myelinated and exhibit larger propagation speeds than intra-

cortical connections built of un-myelinated axons. Since the

present work studies a single neuronal population, the

assumption of un-myelinated axons is reasonable and we

choose the low conduction speed to v = 1 m/s. This finite

conduction speed causes a characteristic propagation delay of

se = re/v = 2 ms and si = ri/v = 0.5 m/s along excitatory

and inhibitory connections, respectively.

Finally, the somatic firing functions SE, SI need to be

specified. They reflect the integral of the statistical distri-

bution of firing thresholds and exhibit a sigmoidal shape

for unimodal threshold distributions (Hutt and Atay 2005;

Amit 1989). A standard firing rate function is
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SEðV �HEÞ ¼
Smax

1þ expð�ceðV �HEÞÞ
;

SIðV �HIÞ ¼
Smax

1þ expð�ciðV �HIÞÞ

for excitatory (E) and inhibitory (I) neurons with maximum

firing rate Sm = 40 Hz and the mean firing thresholds HE

and HI. The factor ce,i is proportional to the inverse width

of the underlying threshold distributions. In other words,

the more similar the firing threshold in the neuron popu-

lation is, the larger ce,i (Hutt and Atay 2005). The following

sections study the system’s properties with respect to HE,I

and ce,i unless stated otherwise. Further, the firing threshold

of inhibitory cells is chosen as HI = -60 mV (see e.g.

Otsuka and Kawaguchi 2009), while excitatory cells may

exhibit the thresholds HE = -50 mV or HE = -60 mV if

not stated otherwise.

Results

The weighting factor p

Our work aims to model the effect of varying the properties

of inhibitory synapses on the spatio-temporal dynamics of

the neural ensembles. Our approach is motivated by the

experimental findings on anesthetic agents (Rundshagen

et al. 2004; Kuizenga et al. 2001) with respect to their

effect on excitatory and inhibitory synapses. For example,

increasing the concentration of the agent propofol prolongs

the temporal decay phase of inhibitory GABAA synapses

and increases the charge transfer in these synapse (Baker

et al. 2002) while excitatory synapses remain more or less

unaffected (Kitamura et al. 2002). In addition, to a good

approximation the height of the synaptic response function

is maintained for different propofol concentrations (Ki-

tamura et al. 2002).

To implement a similar behavior in our model study, the

factor p introduced in Eq. 3 reflects the target concentration

of propofol in the neural population. We choose p = 1 for

zero concentration. Since the function f(p) introduced in Eq.

3 affects the charge transfer in the inhibitory synapses by

qi = aif(p), we choose the inhibitory charge transfer at

vanishing propofol concentration as qi = ai, i.e. f(p = 1) =

1, and thus identify the mean charge transfers with the level

of the synaptic excitation or inhibition. Moreover, our

model assumes that increasing p reflects an increasing

propofol concentration which decreases the inhibitory

decay rate b1 by b1 = b0
1/p. Here b0

1 denotes the inhibitory

decay rate in the absence of propofol. Consequently, by this

definition p = (1/b1)/(1/b1
0) represents the percentile

increase of the inhibitory decay time constant. To mimic

these experimental findings, we implement

f ðpÞ ¼ r�r=ðr�1Þ rpð Þrp=ðrp�1Þ; r ¼ b2=b1 ð14Þ

which guarantees a constant height of the impulse response

function hi(t) and yields an increasing charge transfer of the

synapse with increasing p, i.e. df/dp [ 0, according to the

experimental findings. We point out that Eq. 14 results

directly from the condition of a constant maximum value of

hi(t) for all p assuming the specific response function (3).

Further, typically the decay phase of the synaptic response

curve is much longer than its rise phase, i.e. b1 � b2,

r � 1 and thus f(p) & p. In other words the charge

transfer increases linearly with the factor p.

To investigate whether the latter model assumptions on

the inhibitory synaptic response are valid, we consider

experimental results on the synaptic response of GABAA-

synapses measured in vitro in cultured cortical neurons of

rats (Kitamura et al. 2002). Figure 1a shows the mean

values p obtained experimentally at GABAA-synapses

subject to the propofol concentration c, together with the

extreme values of p at the borders of the error bars. We

propose to model the relation of p to the concentration c by

pðcÞ ¼ k1 � lnðk2 þ k3 � cÞ; ð15Þ

which has been least mean square fitted to the experimental

data with constants k1, k2, k3. In addition Fig. 1b gives the

corresponding mean and extreme values of the normalized

charge transfer q(c)/q(0) obtained experimentally. To fit

the function q(c)/q(0), we propose to fit the function

qðcÞ=qð0Þ ¼ k4 � lnðk5 þ k6 � cÞ; ð16Þ

where the constants k4, k5, k6 are mean-least square fitted.

Then the normalized charge transfer subjected to the factor

p can be calculated from the latter fitted functions (15),

(16) to

qðpÞ
qðp ¼ 1Þ ¼ f ðpÞ

¼ b0 lnðb1 þ b2eb3pÞ:
ð17Þ

with b0 = k4, b1 = k5 - k2k6/k3, b2 = k6/k3, b3 = 1/k1.

Figure 1c presents this function, the corresponding func-

tions obtained from the error borders and the model func-

tion (14) with r = 8.5. We observe that all curves show

good agreement. Consequently the charge transfer model

(14) is reasonable for b2 & 8.5b1. Since the study on

propofol effects in (Kitamura et al. 2002) are based on

experiments on rats, it is interesting to link the results to

humans. In human general anesthesia, the value EC50 gives

the concentration of the anesthetic agent for which 50 of

100 subjects are anesthesized, i.e. do not respond to

external stimuli (Kuizenga et al. 1998) or surgical incision

(de Jong and Eger 1975). For the administration of pro-

pofol, a typical concentration is 0.2 lM/ml (*2 lg/ml)

(Franks and Lieb 1994), which corresponds to p & 1.2, cf.
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Fig. 1. For unit conversion of the propofol concentrations,

the rule 1 lg & 0.1 lM holds (Franks and Lieb 1994,

Box 1).

Summarizing, increasing the factor p prolongs the decay

phase and increases the charge transfer in inhibitory syn-

apses while maintaining the amplitude of the resulting IPSPs

constant. Figure 2 shows the simulated temporal impulse

response of an inhibitory GABAA synapse hi as a function

of time and the factor p. We observe a constant amplitude

and a prolonged decay phase for increasing p, as desired.

The resting state

To gain insight into the resting activity of the neural

population, first let us investigate the stationary solutions
�Ve; �Vi of Eq. 11, which are assumed constant in space and

time. For this purpose we introduce the new variables
�V�; �Vþ with �Ve ¼ ð �Vþ þ �V�Þ=2; �Vi ¼ ð �Vþ � �V�Þ=2 and

�V� ¼ �Ve � �Vi is the stationary mean membrane potential.

Then Eq. 11 decouple to

�V� ¼ aeSE
�V� �HE½ � � f ðpÞaiSI

�V� �HI½ � ð18Þ
�Vþ ¼ aeSE

�V� �HE½ � þ f ðpÞaiSI
�V� �HI½ � þ 2Vr

E: ð19Þ

Equations 18 and 19 reveal that it is sufficient to determine
�V� from Eq. 18 to find �V� and �Vþ: Put differently, the

number of solutions �V� gives the number of stationary

solutions. As a first result, we find that ae [ f(p)ai,

HE,HI � 0 and steep sigmoid functions SE, SI yield
�V�[ 0; and the corresponding firing rates take their

maximum values SE½ �V� �HE� � SI ½ �V� �HI � � Sm: In

physiological terms, all neurons fire constantly and thus are

highly excited.

Figure 3 illustrates the conditions for different station-

ary solution types for identical steepness parameters

ce = ci of the firing rate functions and different firing

thresholds HE, HI. We observe that a single stationary

solution �V� occurs for all values of p if the firing threshold

of excitatory neurons is equal to or lower than the threshold

of inhibitory neurons, i.e. HE B HI. In contrast, three sta-

tionary solutions may occur for some values of p if

HE [HI. Moreover, three stationary solutions occur only

for �V�\0 and for stronger inhibition than excitation, i.e.

ae \ f(p)ai.

In addition, Fig. 4 reveals that three stationary solutions

may occur for different values of ce, ci and identical firing

thresholds HE = HI, while a single stationary solution is

present if ce = ci and HE = HI. A further detailed study

also reveals three stationary solutions for ce=ci and

HE=HI for some values of p (not shown). Summarizing

these results,

• a single stationary solution occurs if HE B HI and

ce = ci. The resting state exhibits a membrane potential
�V�[ HI .
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factor p
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(a)

(b)

(c)

Fig. 1 Extraction of the charge transfer curve from experimental data

(Fig. 6 in [Kitamura et al. 2002)] subjected to the factor p. a The

experimentally measured mean (circles) percentile increase of the

inhibitory decay time p = (1/b1)/(1/b1
0), their maximum (squares) and

minimum (diamonds) values at the error interval borders and the

corresponding fitted functions (15) (dashed line for maximum values,

dashed-dotted line for the mean value and dotted line for the

minimum values). b The experimentally measured mean (circles)

percentile increase of the charge transfer q(c)/q(0), their maximum

(squares) and minimum (diamonds) values at the error interval

borders and the corresponding functions (16). The line coding is the

same as in a. c The calculated relation (17) for the mean values, the

lower and upper value border and the model (14) (red solid line). The

line coding is the same as in a

h (t)i

factor p

time t [ms]

Fig. 2 The temporal impulse response function hi(t) of inhibitory

GABAA-synapses subject to various values of p taken from (3) and

(14). Parameters are set to b1
0 = 75 Hz, b2 = 1,000 Hz (Koch 1999)

44 Cogn Neurodyn (2010) 4:37–59

123



• three stationary solutions occur otherwise for some

values of p and �V�[ HI .

In the context of propofol effects on neural populations,

the three stationary solutions have been studied previously

in some analytical details by Steyn-Ross et al. (2001a) and

the single stationary solution has been considered numer-

ically by Bojak and Liley (2005); Liley and Bojak (2005);

Molaee-Ardekani et al. (2007). In the following, we refer

to the case of the single stationary solution as the single

solution case and to the case of three stationary solutions as

the triple solution case.

An additional close look at Figs. 3 and 4 reveals that

increasing p from p = 1 yields the monotonous decrease of

the effective membrane potential �V� and finally the satu-

ration of �V� to values close to the inhibitory firing

threshold HI for ce - ci not too large. This result is useful

in later discussions of the EEG-power spectrum. Essen-

tially to obtain the stationary solutions �Ve; �Vi; one inserts

the solutions �V� into (19) to obtain �Vþ and subsequently �Ve

and �Vi: Hence solving Eq. 18 suffices to obtain the sta-

tionary solutions �Ve and �Vi: In other words, the number of

roots of Eq. 18 gives the number of stationary solutions for

the two variables �Ve; �Ve:

To gain further insights into the effect of increasing p,

Fig. 5 shows the solutions �V�; and the resulting firing rates

of excitatory and inhibitory neurons SEð �V� �HEÞ and

SIð �V� �HIÞ; resp., with respect to the weight factor p. In

the triple solution case (Fig. 5a), the system starts at a high

firing rate at p = 1 and shows an activity decrease up to

point A. Then a further increase of p causes the stationary

excitatory firing activity to discontinuously jump to smaller

values. In addition we observe a top, center and bottom

solution branch, similar to previous studies (Steyn-Ross

et al. 2001a; Hutt and Schimansky-Geier 2008). Likewise,

the single stationary solution (Fig. 5b) exhibits a decrease

of the firing rate while increasing p. However, here the

drop of activity is continuous and the firing rate changes

less than in the triple solution case. Such a continuous

decrease of the firing rate while increasing the propofol

concentration has been reported experimentally in cultures

of rat neocortical tissue (Antkowiak 1999).

In mathematical terms, the triple solution case exhibits a

saddle-node bifurcation and the first discontinuous drop of

activity at point A. This bifurcation occurs if the left and

right hand side of Eq. 18 exhibit the same derivative with

respect to �V�; i.e.

1 ¼ aedEðpÞ � aif ðpÞdIðpÞ; ð20Þ

cf. Figs. 3 and 4. Here dE(p) = qSE[V(p) - HE]/qV, dI(p) =

qS[V(p) - HI]/qV evaluated at V ¼ �V� represent the

so-called non-linear gains of the system. Since dE(p), dI(p) are

the slopes of the transfer functions SE, SI, they reflect the

conversion of membrane potentials to the spike firing activity.

In contrast to the triple solution case, the single sta-

tionary solution does not show this activity drop and

exhibits 1 [ aedE(p) - aif(p)dI(p) for all values of p, i.e.

condition (20) never holds.

To learn more about the nonlinear gains and condition

(20), Fig. 6 shows the nonlinear gain for excitatory neurons

dE and the effective gain for inhibitory neurons �dI ¼ f dI

with respect to p for both solution cases. Here �dI represents

the effective gain of the inhibitory neurons considering the
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Fig. 3 Construction of solutions of Eq. 18 for equal constants ce = ci

and various firing thresholds He,Hi. The panels show the left hand side

of (18), i.e. �V�; encoded as the thin dashed diagonal, and the right hand

side of (18), i.e. aeSE½ �V� �HE� � f ðpÞaiSI ½ �V� �HI �; decoded as

thick solid lines. The plots are given for three parameters p1 \ p2 \ p3.

The vertical coordinates of the curve points are the values of the left

and right hand side of (18) and the horizontal coordinate is �V�: By this

graphical construction, the crossing points of the dashed line and the

solid line give the stationary solutions �V�: In a the firing threshold of

excitatory neurons HE is lower than the threshold of inhibitory neurons

HI, b shows the case HE = HI, c HE [HI and d HE � HI
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Fig. 4 Construction of solutions of Eq. 18 for equal firing thresholds

He = Hi = H and different constants ce, ci. The panels show the left

hand side (thin dashed diagonal) and the right hand side (thick solid
lines) of (18) for three parameters p1 \ p2 \ p3. The crossing points
of the dashed line and the solid line give the stationary solutions �V�:
(a) illustrates the case ce \ ci, (b) ce = ci, (c) ce [ ci and (d) ce � ci
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propofol effect. We observe negligible excitatory and

inhibitory gains for p & 1, while larger p yields increased

gains. In the triple solution case shown in Fig. 6a the upper

and lower branch of �V� exhibits low dE; �dI and the center

branch of �V� between points A and B shows high gains

since Eq. 20 holds at points A and B. Moreover, high values

of p result again in low dEðpÞ; �dIðpÞ: In addition, point A

represents the saddle-node bifurcation point between the

top and the center branch and denotes the right turning point

in dE(p) but not the right turning point in �dIðpÞ: This dif-

ference between dE(p) and �dIðpÞ results from the different

firing thresholds HE [ HI. Figure 6b gives the nonlinear

gains for the single solution case and reveals a fast increase

of the nonlinear gains at high values of p and the nonlinear

gains do not return to low values. Summarizing,

• in the single solution case the nonlinear gains increase

with increasing p, i.e. ddE(p)/dp, d(fdI)(p)/dp [ 0, and

1 [ aedE(p) - aif(p)dI(p).

• in the triple solution case, the increase of p yields the

increase (decrease) of nonlinear gains on the top (bottom)

solution branch, while the center branch exhibits increas-

ing and decreasing nonlinear gains. Moreover 1 [ aedE(p)

- aif(p)dI(p) on the top and bottom branch, while

1 \ aedE(p) - aif(p)dI(p) on the center branch.

The next section shows the occurrence conditions and the

number of homogeneous stationary states, which may be

present in the neural population. Further Fig. 6 illustrates

the properties of the nonlinear gains, which will turn out

later to be important to understand the systems dynamics.

Linear stability

So far we have described the deterministic stationary states

of the system. It is more biophysically realistic to include

the effect of fluctuations, and investigate their effect on the

existence of these states. Such fluctuations are omnipresent

in real neural populations and may originate from internal

random fluctuations of membrane and synaptic properties

(Destexhe and Contreras 2006; Koch 1999) or external

inputs from other populations. If the system’s activity

remains close to the stationary state in the presence of

small fluctuations, then the resting state is linearly stable

and the system evolves close to the vicinity of the

stationary state. If the stationary state is unstable, small
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fluctuations make the system leave the vicinity of the sta-

tionary state. The following paragraphs give the conditions

on the stability of the resting state and hence the evolution

in its vicinity.

For small deviations ueðx; tÞ ¼ Veðx; tÞ � �Ve; uiðx; tÞ ¼
Viðx; tÞ � �Vi from the stationary state, the evolution Eq. 11

reads

L̂eueðx; tÞ ¼ aedE

Z
X

dyKeðx� yÞ

ue y; t � jx� yj
v

� 	
� ui y; t � jx� yj

v

� 	� �

L̂iuiðx; tÞ ¼ aidI f x
2
0

Z
X

dyKiðx� yÞ

ue y; t � jx� yj
v

� 	
� ui y; t � jx� yj

v

� 	� �
:

ð21Þ

Then applying the spatial Fourier transform we obtain

L̂e ~ueðk; tÞ ¼ aedE

Z
X

dzKeðzÞ

~ue k; t � jzj
c

� 	
� ~ui k; t � jzj

v

� 	� �
e�ikz ð22Þ

L̂i~uiðk; tÞ ¼ aix
2
0f dI

Z
X

dzKiðzÞ

~ue k; t � jzj
c

� 	
� ~ui k; t � jzj

v

� 	� �
e�ikz ð23Þ

with the Fourier transforms of the small deviations ~ue; ~ui: The

Eqs. 22 and 23 involve distributed delays and the spatial

kernel functions Ke, Ki define the delay distribution functions

(Hutt and Frank 2005). They define the temporal evolution of

the Fourier transform of ue(x,t), ui(x,t) and give the dynamics

of the spatial mode k with wavelength 2p/k. For example, the

spatial mode k = 0 represents the spatially constant contri-

bution to the spatio-temporal dynamics of the system.

The Laplace transform of Eqs. 22 and 23 in time yields

conditions on the linear stability of the stationary state. The

same conditions can be obtained by inserting the ansatz

~ueðk; tÞ ¼ ~u0
eðkÞ expð�ktÞ; ~uiðk; tÞ ¼ ~u0

i ðkÞ expð�ktÞ into

Eqs. 22 and 23. Then k 2 C is the Lyapunov exponent and

yields

LeðkÞ~u0
eðkÞ ¼ ~u0

eðkÞ � ~u0
i ðkÞ

� �
aedEðpÞ

Z
X

dzKeðzÞe�kjzj=v�ikz

ð24Þ

LiðkÞ~u0
i ðkÞ¼ ~u0

eðkÞ�~u0
i ðkÞ

� �
aix

2
0f dIðpÞ

Z
X

dzKiðzÞe�kjzj=v�ikz:

ð25Þ

Additionally let us assume the spatial kernels of the

form K(x) = M(x/r)/r. This assumption does not limit the

validity of the subsequent analysis steps, which also hold

for general kernels (Atay and Hutt 2005), but simplifies the

discussion of the propagation delay. Then the integrals in

(24), (25) can be written asZ
X

dzKðzÞe�kjzj=v�ikz¼
X1
m¼0

ð�1Þm km

m!cmr

Z
X

dzMðz=rÞjzjme�ikz

¼
X1
m¼0

ð�1ÞmðksÞm

m!
MmðrkÞ:

with the characteristic propagation delay s : r/v and the

kernel Fourier moments (Atay and Hutt 2005)

MmðrkÞ ¼
Z

X
dzMðuÞjujme�ikru:

If sk � 1, i.e. the propagation delay is much smaller than

the smallest time scale in the system 1/k, thenZ
X

dzKðzÞe�kjzj=v�ikz � M0ðrkÞ �M1ðrkÞsk: ð26Þ

Finally inserting the approximation (26) into Eqs. 24 and

25, the characteristic equation reads

gðkÞ ¼ k4 þ Cðp; kÞk3 þ Dðp; kÞk2 þ Eðp; kÞkþ Fðp; kÞ
¼ 0;

ð27Þ

with the prefactors C;D;E;F 2 R defined in the Appendix

section ‘‘Variables from section ‘‘Linear stability’’’’. This

result is valid for all spatial interaction kernels KE(x), KI(x)

and second-order synaptic response functions he, hi. The

real part of the Lyapunov exponent k defines the linear

stability of the spatial mode k, i.e. Re(k) \ 0 reflects sta-

bility. The prefactors C, D, E, F depend on the nonlinear

gains dE(p), dI(p) and hence the nonlinear gains affect the

stability of spatial mode k, cf. Eq. 51 in the Appendix

section ‘‘Variables from section ‘‘Linear stability’’’’.

Now let us discuss the conditions of stability loss of the

resting state while increasing p. In the following we dis-

tinguish the non-oscillatory instability with the specific

cases k = 0 and k = 0 as well as the oscillatory instability

in time. In the case of Im(k) = 0 the resting state becomes

unstable by changing the sign of the Lyapunov exponent,

i.e. k crosses the imaginary axes at Re(k) = 0 when p

approaches the critical value pc. In other words the unstable

state does not oscillate at the stability threshold, i.e. it is

non-oscillatory in time. From (27) we find the condition

F(p,k) = 0 or more explicitly

1þ aif ðpÞdIðpÞ ~KiðkcÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aðp;kcÞ

¼ aedEðpÞ ~KeðkcÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
bðp;kcÞ

: ð28Þ

This condition defines the critical wave number kc and does

not depend on the synaptic time scales and the conduction

speed in accordance with previous studies on populations
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of a single neuron type (Hutt et al. 2003; Atay and Hutt

2005; Venkov et al. 2007).

Considering the loss of stability to the spatially homo-

geneous state (k = 0) the threshold condition reads

1 = dE(p)ae - f(p)dI(p)ai which coincides with the con-

dition (20) for the points A and B, cf. Fig. 6. Since A and B

exist in the triple solution case only and 1 [ dE(p)ae -

f(p)dI(p)ai for p = 1, we conclude that the center branch of

the triple solution case (Fig. 5a) is unstable. Moreover, the

stationary state in the single solution case does not show a

non-oscillatory transition with k = 0 while increasing p

from p = 1, since 1 = dE(p)ae - f(p)dI(p)ai never holds.

In addition to the case k = 0, the resting state may lose its

stability towards spatially periodic states with k = 0; this

is not further discussed here.

The oscillatory instability stipulates Im(k) = 0, and the

separation of real and imaginary part of k in (27) and k ¼
iX;X 2 R yields the conditions

0 ¼ E2ðp; kcÞ � CðpÞDðp; kcÞEðp; kcÞ þ Fðp; kcÞC2ðpÞ
X2 ¼ Eðp; kcÞ=CðpÞ ð29Þ

with the critical frequency X and the corresponding wave

number kc. In contrast to the previous non-oscillatory

transitions, X and kc depend on the propagation speed and

the synaptic time scales.

Stability conditions in the absence of propofol

For p = 1, the stationary state reflects the resting state at

the absence of propofol. Assuming that this resting state is

stable, the detailed analysis of Eqs. 28 and 29 for p = 1

yields the parameter regime for stable states and thus

constrains the range of reasonable parameters. To begin

with Fig. 6 shows that dE(1) & 0, dI(1) & 0. Conse-

quently Eq. 28 does not hold and the resting state does not

lose stability by a non-oscillatory instability. Further all

polynomial pre-factors in Eq. 29 become positive and

depend on the synaptic scales only, see Appendix section

‘‘Variables from section ‘‘Linear stability’’’’. Then solving

the polynomial (29) for E [ 0, we find the condition

x4
0 þ 2ðc� 2Þx2

0 þ 2cþ 1þ c2 [ 0

with c = ceci and the stability is defined by the two

dimensionless variables c = (a1 ? a2)(b1 ? b2)/a1a2 and

x0
2 = b1b2/a1a2. Moreover we find that the resting state

can not lose stability by an oscillatory instability either if

c C 1/2 or

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ c

2� c

� 	2
s

\
x2

0

2� c
� 1\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1þ c

2� c

� 	2
s

; c\1=2:

ð30Þ

Then considering the definition of x0 and c, the result

b2 & 8.5b1 from section ‘‘The weighting factor p’’

stipulates

x2
0 ¼ ac2 ð31Þ

with a = (8.5/9.52)a1a2/(a1 ? a2)2 and the instability

condition c\ 1/2 leads to

g1 [ 19ðs1 þ s2Þ; g2 [ 38ðs1 þ s2Þ=17: ð32Þ

Here s2 = 1/a2,s1 = 1/a1 are the rise and decay times of

excitatory synapses and g2 = 1/b2, g1 = 1/b1 the corre-

sponding time constants of inhibitory synapses. Figure 7a

illustrates the stability regime with respect to c and x0
2

based on Eq. 30. We observe that the resting state is

unstable for c\ 1/2 only, whereas c[ 1/2 reflects a stable

resting state. In addition, Fig. 7a reveals that the specific

result b2 & 8.5b1 yields unstable and stable solutions for

c\ 1/2 and c C 1/2, respectively. The corresponding

analytical study shows that this result holds true for all

excitatory and inhibitory time scales (not shown).

Moreover Fig. 7b, c show the instability regime for

b2 & 8.5b1 with respect to the excitatory synaptic time

scales s1,s2 and the inhibitory decay time g1. One observes

that very small excitatory time scales destabilize the resting

state. Further the increase of inhibitory time scales

decreases the instability regime and shifts the critical

excitatory time scales to higher values. Consequently large

inhibitory decay times stabilize the resting state.

The general power spectrum

A prominent measure to determine the depth of general

anesthesia are electrophysiological monitors, which are

based on the power spectrum of the subject’s
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Fig. 7 Stability regimes of the resting state at p = 1, i.e. prior to the

administration of propofol. a The stable regime is given by Eq. 30 for

c\ 1/2, while c C 1/2 leads to stability for all x0
2. The specific result

b2 & 8.5b1 yields the specific solutions (31) represented by the

dashed line: for c\ 1/2 the solutions are unstable and for c C 1/2

they are stable. b, c show the stability regime with respect to the

excitatory time scales s1, s2 for the specific case b2 = 8.5b1 according

to Eq. 32. The border point C is located at s1 = s2 = g1/38. b
g1 = 10ms, c g1 = 30ms.
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electroencephalogram (EEG), see e.g. (John and Prichep

2005). Most of these monitors are indices, i.e. numbers,

which reflect the change of the EEG-power spectrum while

changing the level of propofol concentration. The most

prominent effect is the biphasic change of the power

spectrum while increasing the propofol concentration, i.e.

the increase and then decrease of spectral power in the

d-, h-, a- and b-band. This biphasic behavior has been

found both in rats (Dutta et al. 1997) and humans (Kuiz-

enga et al. 2001; Fell et al. 2005; Han et al. 2005).

To model this change of the power spectrum with

respect to the factor p reflecting the propofol concentration,

the subsequent paragraphs derive the power spectrum of

Local Field Potentials (LFP) and the EEG. The derivation

of the power spectrum follows previous studies on the

effect of finite axonal conduction speed on the activity of

neural populations involving a single neuron type (Hutt and

Atay 2007; Hutt and Frank 2005).

The power spectrum represents a statistical measure of

the system’s linear response to a spatio-temporal external

input. This input might originate from other neural popu-

lations or might represent direct external stimulation, as in

(Hutt et al. 2008; Masuda et al. 2005; Chacron et al. 2005),

and is assumed small compared to the resting states �Ve; �Vi

defined by Eq. 19. Then Lyapunov’s stability theorem states

that the stability of the driven system is determined by the

undriven system. Consequently the stability criteria in

section ‘‘Linear stability’’ still hold. Moreover the power

spectrum is defined in the linear regime and the system

remains about the resting state if it is linearly stable. Hence

the subsequent analysis steps are valid only if the system is

stable. However if the system approaches its instability

point, critical fluctuations occur and the spectral power

diverges (Hutt and Frank 2005). In the following, we

assume the system to be stable, i.e. the roots of Eq. 27 have

negative real parts, and the dynamics of the corresponding

stable spatial modes define the spectral properties of the

LFP and EEG.

Considering the excitatory external input C(x,t) and the

identities L̂e;ihe;iðtÞ ¼ dðtÞ; Eq. 21 read

ueðx; tÞ ¼ aedE

Z t

�1
dsheðt � sÞ �

Z
X

dyKeðx� yÞ

ueðy; s�
jx� yj

v
Þ � uiðy; s�

jx� yj
v
Þ

� 	
þ Cðx; tÞ

ð33Þ

uiðx; tÞ ¼ aidI f x
2
0

Z t

�1
dshiðt � sÞ �

Z
X

dyKiðx� yÞ

ueðy; s�
jx� yj

v
Þ � uiðy; s�

jx� yj
v
Þ

� 	
ð34Þ

The variables ue and ui denote the deviations of the PSPs

Ve and Vi from the stationary state and are linearly

dependent on the evoked currents in the membrane, that

are present in the dendritic tree and its surrounding.

Moreover, the evoked currents propagate along the

dendritic branch towards and away from the trigger zone

at the neuron soma. Since excitatory and inhibitory currents

add up at the trigger zone and have different signs, the

corresponding potentials also sum up at the trigger zone.

This means the effective membrane potential ue - ii is

proportional to the current that flows in the tissue close to

the dendritic branch and along the dendritic branch. This

physical effect is supposed to represent the origin of the

EEG since the evoked current represents a current dipole

that generates the electromagnetic activity on the scalp. We

mention the important work of Paul Nunez on this topic, see

e.g. (Nunez 1974, 2000, 1981) and (Nunez and Srinivasan

2006, section 1.7). Such currents are measured

experimentally by electrodes in the neural tissue and the

corresponding potentials are the LFPs. Consequently LFPs

reflect the dendritic currents or correspondingly the

membrane potentials on the dendrites (Nicholson and

Freeman 1975; Freeman 1992). Since the EEG represents

the spatial average of the dendritic activity (Nunez 2000),

we consider the effective membrane potential u(x,t) =

ue(x,t) - ui(x,t) which is proportional to the dendritic

currents, see e.g. (Freeman 1992; Nunez 1974; Nunez and

Srinivasan 2006) for the physical details. Moreover we

point out that ue - ui represents the difference of PSP that is

identical at excitatory and inhibitory neurons, as found

while deriving Eq. 11 in section ‘‘Methods’’.

Moreover the system is assumed to be in a stationary

state in the presence of the external stationary input. Then

the ergodicity assumption holds and the power spectrum of

u(x,t), i.e. the LFP, at the spatial location x is given by the

relation

PLFPðx;xÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
�1

dsCLFPðx; sÞeixs ð35Þ

with the autocorrelation function CLFP(x,s) = hu(x,t)

u(x,t - s)i and the ensemble average h� � �i; i.e. the average

over many realizations.

The external input to the network C(x,t) represents the

excitatory synaptic responses to random fluctuations

uncorrelated in space and time n(x,t) with hn(x,t)i = 0,

hn(x,t)n(y,T)i = Qd(x - y)d(t - T) and the fluctuation

strength Q. Then the input reads

Cðx; tÞ ¼
Z t

�1
dsheðt � sÞnðx; sÞ ð36Þ

with the synaptic response function he(t) taken from Eq. 2.

To obtain the autocorrelation function, we apply standard

linear response theory (see the Appendix section ‘‘The

autocorrelation function’’).
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The power spectrum of LFPs

The correlation function CLFP(x,s) reads

CLFPðx; sÞ ¼
Q

ð2pÞ3
Z 1
�1

dk

Z 1
�1

dxj ~Gðk;xÞj2j�heðxÞj2e�ixs

ð37Þ

and the power spectrum is given by

PLFPðx; mÞ ¼
Q

ð2pÞ7=2

Z 1
�1

dkj ~Gðk; mÞj2j�heðmÞj2: ð38Þ

with the frequency m = x/2p. Equations 37 and 38 reveal

that the correlation function and the power spectrum are

independent of the spatial location which reflects the spa-

tial homogeneity of the population.

The power spectrum of the EEG

To obtain the power spectrum of the EEG, we take into

account the large distance of the EEG-electrode from the

neural sources and the spatial low-pass filtering of the scalp

and bone (Srinivasan et al. 1998; Nunez and Srinivasan

2006). Then as a first good approximation the EEG activity

represents the spatial summation of electric activity

uEEGðtÞ ¼
Z

X
dxuðx; tÞ: ð39Þ

Here we assume that the EEG-electrodes are far from the

neural population compared to the spatial extension of the

population. This is reasonable since EEG is measured on

the scalp, which typically has a distance of a few

centimeters from neural areas with a diameter of a few

millimeters (Nunez 1995). Interestingly we find uEEGðtÞ ¼
~uðk ¼ 0; tÞ with the Fourier transform in space ~uðk; tÞ; i.e.

the activity measured at the EEG-electrode just considers

the spatially constant mode. This result also reflects the

spatial low-pass filtering of the bone and scalp. In this

context we mention previous studies which reveal effects

of periodic spatial modes with k = 0 (Nunez and

Srinivasan 2006; Robinson et al. 2001). These studies

show that modes with k [ 0 contribute to the electric

activity on the scalp and, for instance, affects the

corresponding power spectrum but retain the power peaks

(Robinson et al. 2001). Since the detailed study of the

different mode contributions may exceed the major aim of

the present study, the subsequent paragraphs consider

k = 0 for the EEG power spectrum. Further assuming the

external input as the excitatory synaptic response to

uncorrelated random fluctuations, the similar application

of the previous analysis steps yields

CEEGðsÞ ¼ Qð2pÞ2
Z 1
�1

dxj ~Gðk ¼ 0;xÞj2j�heðxÞj2e�ixs:

ð40Þ

PEEGðmÞ ¼
Qffiffiffiffiffiffi
2p
p j ~Gðk ¼ 0; mÞj2j�heðmÞj2 ð41Þ

with the fluctuation strength Q.

We observe that the EEG reflects the dynamics of the

constant spatial mode with k = 0, i.e. the mean spatial

activity, in contrast to the LFPs in Eqs. 37 and 38. Hence,

the LFP considers all spatial modes whereas the EEG takes

into account just the constant mode. This difference

between EEG and LFP is expected to yield different power

spectra of LFP and EEG. The effect of spatial modes on the

power spectrum in neural populations has been investi-

gated in great detail by Robinson’s group (Rennie et al.

2002; Robinson et al. 2001, 2004; Robinson 2003). Further

we mention the study of Fell et al. (2005), who measured

synchronously the EEG on the scalp and Local Field

Potentials intracranially in humans as a function of the

propofol concentration. They found, amongst other effects,

that the power spectra of EEG and LFP had similar

dependences on the propofol concentration. Consequently,

this finding suggests that the major contribution to the

propofol-induced changes in spectral power are due to the

spatially constant mode. To this end, the subsequent sec-

tion focusses on the EEG-power spectrum. Moreover it is

important to note that the propofol-induced changes of the

power spectrum have been found in invivo setups, in which

neural populations are part of the brain network and thus

the EEG-power changes may originate from the interac-

tions of the population with other populations. From this

point of view, the following paragraphs aim to answer the

question whether a single neural population may generate

the effects or a network of populations is necessary.

Biphasic EEG-power spectrum

A prominent experimental effect of propofol on neural

populations is the biphasic power spectrum, i.e. the power

increase and decrease at low and high frequencies while

increasing the anesthetics concentration (Fell et al. 2005;

Dutta et al. 1997; Forrest et al. 1994). In the following, we

first study the increase and decrease of the power at low

frequencies, and then reveal the biphasic power spectrum

also at higher frequencies. Then an additional criterion for

large frequencies allows an extended analysis.

The power increase at low frequencies is studied by

choosing m = 0 in Eq. 41 leading to

PEEGð0Þ ¼ Qj 1

1� L0ð0Þ
j2j�hð0Þj2=

ffiffiffiffiffiffi
2p
p 3 ð42Þ
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with

L0ð0Þ ¼ dEðpÞae � dIðpÞf ðpÞai: ð43Þ

Then dPEEG(0)/dp [ 0, i.e. the power increase at m = 0

with increasing propofol concentration, yields

odEðpÞ
op

ae �
o

op
dIðpÞf ðpÞð Þai

� 	�
1� dEðpÞae

þ dIðpÞf ðpÞai

�
[ 0:

ð44Þ

Hence the condition

1� dEðpÞae þ dIðpÞf ðpÞai [ 0 ð45Þ

requires aeqdE(p)/qp - aiq(dI(p)f(p))/qp [ 0 or

ae=ai [ XðpÞ;

XðpÞ ¼ of ðpÞdIðpÞ
op

=
odEðpÞ

op
:

ð46Þ

The following paragraphs discuss the validity of the

assumption (45).

Single solution case

This type of stationary solution occurs for �c ¼ ce ¼
ci;H ¼ HE ¼ HI ; i.e. d = dE = dI and condition (45)

reads 1 - d(ae - aif) [ 0 and holds for all p, cf. Eq. 28 for

kc = 0. Lengthy calculations yield

XðpÞ ¼ f ðpÞ þ ð1þ qðpÞÞ2

1� qðpÞ
1� aedðpÞ þ aidðpÞf ðpÞ

Smaxcai
: ð47Þ

with qðpÞ ¼ expð�cð �V� �HÞÞ and �V� ¼ �V�ðpÞ. We find

that X(p) increases with increasing p for all p, i.e. dX/

dp [ 0 (Appendix section ‘‘dX/dp [ 0 in single stationary

solutions’’). Hence remembering that the minimal value of

p is 1, it follows that:

• if ae/ai \ X(1), then condition (46) never holds and the

power at low frequencies decreases with increasing

propofol concentration.

• if ae/ai C X(1), then there is a threshold value of the

propofol concentration pc for which ae/ai = X(pc) and

the power at low frequencies increases for 1 B p B pc

and decreases for p [ pc.

Considering the definition of X(p) in (46), the condition

ae/ai C X(1) reads

ae � ai [
1

�cSmax

: ð48Þ

This inequality relates the synaptic efficacy of both

synapse types (left hand side) to the properties of the

population firing rate function of the neurons (right hand

side). Since 1=�cSmax [ 0; Eq. 48 reveals a power

enhancement in low frequencies if the population

excitation is larger than its inhibition at the absence of

propofol. Together with the previous constraint ae \ f(p)ai,

the single stationary solution exhibits power enhancement

for f ðpÞ[ 1þ 1=ðai�cSmaxÞ[ 1; i.e. for p [ 1. Figure 8

shows the values of p with respect to �c for which the power

enhancement occurs at low frequencies.

This enhancement is also visible in the spectral band

power computed from (41) at low temporal frequencies

(Fig. 9). We observe a power increase in the h- and a-band

and a sequential increase and decrease of power in the

d-band.

Triple solution case

This type of resting state exists if �c ¼ ce ¼ ci and HE [ HI

as found in section ‘‘The resting state’’. The condition (45)

holds for the top and bottom solution branch which may be

stable for some values of p, while the solutions on the

center branch are linearly unstable for all p (section

‘‘Linear stability’’) and do not satisfy (45). Since Eq. 41

gives the power spectrum for stable solutions, the sub-

sequent paragraphs consider the top and bottom branch

only.

0 0.1 0.2
1

1.2

1.4

1.6

1.8

2

c [1/mV]

p

ai=0.5

ai=0.8

Fig. 8 Parameter regime of power enhancement for single stationary

solutions. The shaded areas give the parameter regime for p and �c
where the power is enhanced in the d-frequency band. Parameters are

ae = 1.0mVs, HE = HI = -60mV, with other parameters taken

from section ‘‘Methods’’
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Fig. 9 The spectral power in different frequency bands in the single

solution case. p is the power enhancement and defined as p = 10log10

(PEEG(m)/PEEG(0)). The frequency bands are defined in the intervals

[0.1 Hz;4 Hz] (d-band), [4 Hz;8 Hz] (h-band) and [8 Hz;12 Hz] (a-

band). Here ce = ci = 0.06/mV and other parameters are taken from

Fig. 8 and section ‘‘Methods’’
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The condition (46) reads

ae=ai [ XðpÞ;XðpÞ

¼ e��cg 1� q
1� qe�cg

1þ qe�cg

1þ q

� 	3

f

 

þ1� dEae þ dIaif

Sm�cai

ð1þ qe�cgÞ3

ð1þ qÞð1� qe�cgÞ

! ð49Þ

with qðpÞ ¼ expð��cð �V� �HÞÞ and g = HE - HI [ 0. In

contrast to the previous single stationary solution, here dX/

dp may take positive or negative values while increasing p.

Figure 10 presents the parameter regime of (49) for which

the power at low frequencies increases while increasing p,

i.e. dPEEG/dp [ 0. Since g is the difference of the excit-

atory and inhibitory firing thresholds and 1=�c ¼ 1=ce ¼
1=ci reflects the slope of the corresponding firing rate

functions and the width of the firing rate threshold distri-

bution, the parameter regime of the power enhancement is

large for shallow firing rate functions (corresponding to a

large spread of firing thresholds).

The latter treatment assumes that the systems activity

remains close to the stationary state, i.e. either on the top or on

the bottom branch. Moreover it is well-known from stochastic

dynamics that the system may also jump from one branch to

the other due to the external noise as known e.g. in stochastic

resonance (Gammaitoni et al. 1998). Since the analytical

treatment of the corresponding power spectrum would exceed

the aim of the present work, we neglect such jumps.

Essentially Fig. 11 shows the computed EEG-spectral

power for the top branch according to Eq. 41 and reveals

the sequential power increase and decrease in the d-, h- and

the a band, i.e. biphasic behaviour. Since the condition (49)

holds for the bottom solution branch as well, the power

spectrum behavior with respect to p in Fig. 11 is expected

to be also valid on the bottom solution branch. For further

corresponding details, we refer to future work.

Comparison to general anesthesia

At a first glance the previous sequential increase and

decrease of the EEG-power resembles the biphasic behavior

found in propofol-induced general anesthesia. In addition, a

closer look at Fig. 11 reveals a subtle difference to general

anesthesia: the d-power increases and decreases before the

h- and a-power follows, while the power spectra in general

anesthesia reveal the power enhancement and attenuation at

high frequencies first, followed by enhancement and atten-

uation at low frequencies. Consequently the theoretical

results obtained are close to the experimental findings, but

the sequence of enhancement and attenuation are the reverse

of what is seen in experiments. The subsequent paragraphs

investigates this reverse power spectrum behavior briefly.

We keep the condition dPEEG(0)/dp [ 0 and add the

condition dPEEG(m)/dp \ 0 at high frequencies m. Similar to

the previous paragraphs, the calculation of the Greens’

function ~Gð0; mÞ leads to an expression of the power

spectrum pEEG(m), see Appendix section ‘‘The power

spectrum for large frequencies’’ for more details. The

power spectrum is valid for both the single and triple

solution case. Moreover, for a large but finite axonal con-

duction speed, we find the conditions

dPEEGðmÞ=dp\0;

dL0;r

dp
1� L0;r

� �
[ 0:

ð50Þ

In addition the condition for the power enhancement at

low frequencies holds, i.e. ae/ai [ X(p) with X(p) taken

from (46). Consequently both conditions (50) and (46)

define the parameter set for bi-phasic behavior. In the

following we focus on the single solution case and apply a

numerical parameter search in �c; ai; b1 which satisfies

conditions (50) and (46) considering the previous result

b2 = 8.5b1. Figure 12 presents the spectral power for a set

of parameters obtained numerically. The power in the

d-,h- and a-band exhibits a sequential increase and

decrease of power in according to experiments. Moreover
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Fig. 10 The parameter regime of power enhancement at low

frequencies for triple solutions according to Eq. 49. Here the upper

branch of stationary solutions is considered. The corresponding

regimes lie above the corresponding lines. The shaded areas give the

parameter regime of g and �c where the power is enhanced in the

d-frequency band. Here ae = 1.0 mVs and other parameters are taken

from section ‘‘Methods’’
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Fig. 11 The spectral power enhancement on the top branch of the

triple stationary solutions. The definition of p and the frequency bands

are given in Fig. 9. Parameters are HE = -50 mV, HI = -60 mV,

ce = ci = 0.114/mV, others are taken from Fig. 10
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the maxima of the a- and d-,h-power occur at p & 1.4 and

p & 1.6 and thus at concentrations 1 lM (*0.5 lg) and

2 lM (*1.1 lg), respectively. This result shows good

accordance to the biphasic behavior observed

experimentally in general anesthesia.

Hence the sequence order of enhancement and attenu-

ation depends on specific parameters, at least on the single

branch of solutions, and our model can thus be made

compatible not only with the experimentally observed non-

monotonic behavior of the power in the different bands, but

also with the observed order in which the different spectral

bands go through their maxima.

Considering the previous results, we learn that the

bi-phasic power spectrum can be modelled both in the single

and the triple solution case. Since the biphasic spectrum is

an omnipresent feature in experimentally observed GA, we

conclude that the present model can reproduce this experi-

mental feature. This result also indicates that the assumption

of a single neural population appears reasonable to explain

the power spectrum of GA and no global network interaction

is necessary.

Discussion

The present work aims to obtain some insight into the

effect of propofol on neural populations. At first we derived

a neural population model for anesthetic effects which, to

our best knowledge, is the first to study the system’s power

spectrum in the presence of nonlocal interactions. The

model extends previous standard neural field models of a

single cell type (Atay and Hutt 2005) by an additional cell

population and the action of propofol on the neural field. In

addition, it extends a previous model involving two cell

types (Hutt and Schimansky-Geier 2008) by the a realistic

model for the inhibitory action of anesthetic agents.

Moreover, the model is rather simple due to its two field

variables and two evolution equations compared to other

models such as the Steyn-Ross-model (Steyn-Ross et al.

2001a) with 12 field variables and 8 evolution equations.

Further we have derived the relation of the inhibitory

synaptic charge transfer and the scaling factor of the

inhibitory synaptic decay time f(p) in section ‘‘The

weighting factor p’’. In addition the subsequent modeling

study of experimental results reveals the necessary condi-

tion b2/b1 = 8.5 that represents the condition between the

rise and decay time of the inhibitory synaptic response.

This relation guarantees the constancy of the amplitude of

evoked inhibitory postsynaptic potentials with respect to

the propofol concentration as found in experiments.

The subsequent sections investigate the resting state and

its stability. We showed that the increase of the propofol

concentration may render the resting state bistable (triple

solution case) or monostable (single solution case). The

former case has been investigated in detail in previous

studies (Steyn-Ross et al. 2001a; Wilson et al. 2006), while

the latter monostable case has been investigated by Molaee-

Ardekani et al. (2007); Bojak and Liley (2005). Section

‘‘The resting state’’ reveals the existence of monostable

states for excitatory firing thresholds lower than inhibitory

thresholds at equal nonlinear gains, while the bistable

resting state may occur for all other parameter sets. Hence

the resting state may be bistable for some propofol con-

centrations for most sets of physiological parameters. We

point out that the present work considers both cases.

Moreover section ‘‘The resting state’’ reveals a fast drop

of the firing rate at larger propofol concentration, which

reflects reduced resting state neural activity. This reduction

of the firing rate has been found experimentally in cortical

tissue slices (Antkowiak 1999). Further one may argue that

the reduced resting activity indicates worse information

transmission yielding LOC (Steyn-Ross et al. 2001a),

which however is still an open question.

In healthy subjects, the resting state is expected to be

stable in the absence of propofol. Section ‘‘Stability con-

ditions in the absence of propofol’’ reveals the necessary

conditions for the linear stability of the stationary state of

the neuronal population. We find in particular that the

relation of the sum of the excitatory synaptic time scales to

the time scales of the inhibitory synapses plays an important
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Fig. 12 The spectral power of the single solution case with respect to

p. The definition of P and the frequency bands are taken from Fig. 9.

Parameters are HE = HI = -60 mV, ce = ci = 0.038/mV, ae =

1.0 mVs, ai = 0.2 mVs, b2 = 5780 Hz, b1 = 680 Hz, others are

taken from Fig. 8
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role. This finding may be important for future modeling

studies and even may be compared to experimental

measurements

Further the derivation of the power spectrum in section

‘‘The general power spectrum’’ takes into account both the

excitatory and inhibitory membrane potentials, whose dif-

ference represents the effective membrane potential

(Freeman 1992) or, equivalently, the effective dendritic

current generating experimental signals such as LFPs

(Nicholson and Freeman 1975) and EEG (Nunez 2000).

This approach is different to most previous studies of the

power spectrum of neural populations (Steyn-Ross et al.

2001a; Wilson et al. 2006; Molaee-Ardekani et al. 2007;

Bojak and Liley 2005; Liley and Bojak 2005; Rennie et al.

2002; Robinson 2003; Robinson et al. 2004), which con-

sider the power spectrum of either the excitatory or

inhibitory membrane potential only.

Moreover, the analytical study of the EEG-power spec-

trum in 3.6 reveals biphasic power spectra in both the single

solution case and the triple solution case and reproduces the

strong activity enhancement in the d-frequency band

observed in experiments. In this context it is interesting to

note that Steyn-Ross et al. (Steyn-Ross et al. 2001a; Wilson

et al. 2006) suppose the biphasic power spectrum observed

in general anesthesia to originate from a first-order phase

transition and thus assume the triple solution case. In con-

trast Liley and Bojak (Bojak and Liley 2005; Liley and

Bojak 2005) and Molaee-Ardekani et al. (Molaee-Ardekani

et al. 2007) treat a monostable resting state and also show

biphasic power spectra indicating that first-order phase

transitions are not compulsory to gain biphasic behavior.

Hence our result supports both the findings of Liley, Bojak

and Molaee-Ardekani et al., i.e. the bi-phasic power spectra

may emerge in the presence of a single resting state, and the

results of Steyn-Ross et al. who suppose an instability as the

origin of the biphasic behavior. However in contrast to these

studies, we performed a detailed analytical study and

derived parameter conditions for both cases.

In addition, we point out that the LOC has been

observed to be strongly related to the bi-phasic EEG-power

spectrum which, our model predicts, may occur both in

monostable and bistable systems. Consequently our results

on the power spectrum concludes that the LOC may occur

in both systems. It is interesting to note that the propofol

concentration of LOC measured in experiments is larger

than the propofol concentration of the return of con-

sciousness (ROC), see e.g. (Wessen et al. 1993), i.e. a

hysteresis effect is present. Previous studies indicate that

this effect might not be fully explained by the pharmaco-

kinetics of propofol (Kazama et al. 1998) and, in the

context of our work, hence indicates the presence of a triple

solution case. Since the present work studies in detail the

bi-phasic power spectrum and not the origin of the LOC

and ROC, the question of hysteresis is not attacked but may

represent an exciting topic for future research.

Considering the results obtained, it is interesting to note

that previous studies and the proposed model allow for the

description of similar effects, e.g. the single and triple case

of stationary solutions and the biphasic power spectrum

although the models are different. The reason for the sim-

ilarity of some of the results originates from the common

major elements of neural populations in the models, namely

the non-linear transfer function of membrane potentials to

the population firing rate (typically a sigmoidal function),

the involvement of two cell types (excitatory and inhibitory

neurons) and the response function of both excitatory and

inhibitory synapses. These elements may be viewed as the

key elements in the neural population. Moreover, both the

previous studies and the present work assume a single cell

population, i.e. a single spatial domain, to reproduce the

experimental biphasic power spectrum while neglecting any

global network interaction. This result indicates that the

generation of the bi-phasic power spectrum is rather

unspecific to brain areas and does not depend on network

interactions.

To verify the model assumptions and the corresponding

theoretical results, various quantities may be verified by

future experiments in cortical or subcortical areas. For

instance the dependence of the experimentally obtained

population firing rate on the propofol concentration as

shown in Fig. 5 may give interesting insight into the basic

assumption of a sigmoidal transfer function and the effect

of propofol on the inhibitory synapses. Further the mea-

surement of the rise and decay-time of inhibitory synapses

subjected to the propofol concentration may verify the

derived condition b2/b1 = 8.5 and thus indicate the valid-

ity of the derived function f(p). Finally the measurement of

excitatory and inhibitory synaptic time scales may verify

the stability conditions for the resting state in the absence

of propofol.

The theoretical study of anesthetic agents and their

effect on the neural processing remains challenging in

many aspects due to its functional diversity such as syn-

aptic receptor desensitization (Bai et al. 1999), off-synaptic

action (Pittson et al. 2004; Franks 2008) or its action on the

cerebral blood flow (Kaisti et al. 2002). In addition the

importance of the interactions between brain structures is

still under discussion, since anesthetic agents affect the

neural activity in both invitro slices and invivo networks.

Nevertheless theoretical studies of isolated neural popula-

tions may yield important insights, since they may answer

the question on the major underlying neural mechanisms:

which minimum assumptions and mechanisms are neces-

sary to implement in a model to reproduce sufficiently the

experimental findings? The answer may be found by

reduced models such as the one presented here which
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consider basic mechanisms of neural populations such as

synaptic response functions and nonlinear threshold

dynamics of neurons. Future work may continue on the

analytical treatment of the power spectrum in the presence

of two stationary stable states to gain further analytical

conditions on physiological parameters. Moreover the

consideration of a neural population in two spatial

dimensions and an additional neural population, e.g. the

thalamus, may render the model more realistic and prom-

ises new insights into the effects of anesthetic agents.
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Appendix

Variables from section ‘‘Linear stability’’

This section gives the polynomial constants of the char-

acteristic Eq. 27:

Cðp; kÞ ¼ ce þ ci þ A1 � B1

Dðp; kÞ ¼ x2
0 þ 1� A0 þ ðce þ A1Þci � B1ce þ B0

Eðp; kÞ ¼ ðx2
0 þ B0Þce þ ð1� A0Þci þ x2

0A1

Fðp; kÞ ¼ x2
0ð1� A0Þ þ B0

ð51Þ

with

A0ðp; kÞ ¼ dEðpÞM0ðrekÞ;A1ðp; kÞ ¼ dEðpÞseM1ðrekÞ
B0ðp; kÞ ¼ x2

0f ðpÞdIðpÞM0ðrikÞ;
B1ðp; kÞ ¼ x2

0f ðpÞdIðpÞsiM1ðrikÞ

and se = re/v,si = ri/v. For p = 1, dE, dI & 0 and A0, B0,

A1, B1 & 0. Hence the pre-factors of the polynom (27)

read

Cðp; kÞ ¼ ce þ ci; Dðp; kÞ ¼ x2
0 þ 1þ ceci

Eðp; kÞ ¼ x2
0ce þ ci; Fðp; kÞ ¼ x2

0

The autocorrelation function

To obtain the effective membrane potential u(x,t) in section

‘‘The general power spectrum’’, we may write

uðx; tÞ ¼
Z

X
dx0
Z 1
�1

dt0Gðx� x0; t � t0ÞCðx0; t0Þ ð52Þ

¼
Z 1
�1

dk

Z 1
�1

dx ~Gðk;xÞ~Cðk;xÞeikx�ixt: ð53Þ

Here G(x,t) is the Greens’ function of the system, ~Gðk;xÞ
denotes its Fourier transform and ~Cðk;xÞ is the Fourier

transform of the external stimulus C(x,t). Considering (53),

then the correlation function reads

CLFPðx; sÞ ¼huðx; tÞuðx; t � sÞi

¼ 1

ð2pÞ2
Z 1
�1

dk

Z 1
�1

dk0
Z 1
�1

dx
Z 1
�1

dx0

� ~Gðk;xÞ ~Gðk0;x0Þh~Cðk;xÞ~Cðk0;x0Þi
eiðkxþk0xÞ�ixt�ix0ðt�sÞ: ð54Þ

Since the power spectrum pLFP(x,x) is defined by

CLFP(x,s), we deduce from (54) that the power spectrum is

determined by the Fourier transform of the Greens’ func-

tion ~Gðk;xÞ and the input correlation function in Fourier

space h~Cðk;xÞ~Cðk0;x0Þi:

The Greens’ function

To compute the Greens function, we apply the Fourier

transform in space to Eqs. 33 and 34, and obtain

~ueðk; tÞ ¼ aedE

Z t

�1
dsheðt � sÞ

Z
X

dzKeðzÞ

~ue k; s� jzj
v

� 	
� ~ui k; s� jzj

v

� 	� 	
e�ikz þ ~Cðk; tÞ

~uiðx; tÞ ¼ aidI f x
2
0

Z t

�1
dshiðt � sÞ

Z
X

dzKiðzÞ

~ue k; s� jzj
v

� 	
� ~ui k; s� jzj

v

� 	� 	
e�ikz:

Then it follows that

~uðk; tÞ¼ ~ueðk; tÞ� ~uiðk; tÞ¼ aedE

Z t

�1
dsheðt� sÞ

Z
X

dzKeðzÞ

~ue k;s�jzj
v

� 	
� ~ui k;s�jzj

v

� 	� 	
e�ikz�aidI f x

2
0

Z t

�1
dshiðt� sÞ

Z
X

dzKiðzÞ
�

~ue k;s�jzj
v

� 	

� ~ui k;s�jzj
v

� 		
e�ikzþ ~Cðk; tÞ

¼
Z t

�1
ds
Z

X
dzHðz; t� sÞ~u k;s�jzj

v

� 	
e�ikzþ ~Cðk; tÞ

ð55Þ

with

Hðz; tÞ ¼ aedEheðtÞKeðzÞ � aidI f x
2
0hiðtÞKiðzÞ:

In addition

gðk; tÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z 1
�1

dx ~Gðk;xÞe�ixt ð56Þ

is the spatial Fourier transform of G(x,t) and we write

~uðk; tÞ using (52) as
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~uðk; tÞ ¼
Z 1
�1

dsgðk; t � sÞ~Cðk; sÞ: ð57Þ

Further we recall the identity (see e.g. Atay and Hutt 2006)

~u k; t � jzj
c

� 	
¼
X1
n¼0

1

n!
�jzj

c

� 	n
on~uðk; tÞ

otn
ð58Þ

and obtain from (55), (56), (57) and (58) after a Fourier

transformation into frequency space

~Gðk;xÞ ¼ 1ffiffiffiffiffiffi
2p
p 1

1�
P1

n¼0 Lnðk;xÞð�ixÞn ð59Þ

with

Lnðk;xÞ ¼
1

n!
�1

v

� 	nZ 1
0

dt
�
aedEheðtÞ ~Kn

e ðkÞ

� aidI f x
2
0hiðtÞ ~Kn

i ðkÞ
�
eixt

ð60Þ

and the kernel Fourier moments (Atay and Hutt 2005)

~KnðkÞ ¼
Z

X
dzKðzÞjzjne�ikz:

The external input

Considering the input (36), then the Fourier transform in

space and time yields

~Cðk;xÞ ¼ 1ffiffiffiffiffiffi
2p
p �heðxÞ~nðk;xÞ; ð61Þ

�heðxÞ ¼
Z 1

0

dtheðtÞeixt ð62Þ

with the Fourier transform of the external signal ~nðk;xÞ:
Since the external fluctuations in Fourier space are

uncorrelated,

h~nðk;xÞ~nðk0;x0Þi ¼ Qdðk þ k0Þdðxþ x0Þ; ð63Þ

we obtain finally

h~Cðk;xÞ~Cðk0;x0Þi ¼ Q

2p
�heðxÞ�heðx0Þdðk þ k0Þdðxþ x0Þ:

ð64Þ

dX/dp [ 0 in single stationary solutions

Considering Eq. 47,

dXðpÞ
dp
¼ f 0 � d0q0ðae � aif Þ � daif

0

Smcai

ð1þ qÞ2

1� q

þ 1� dðae � aif Þ
Smcai

ð3� qÞð1þ qÞ
ð1� qÞ2

q0
ð65Þ

with f0 = df/dp [ 0, d0 = qd/qq[ and q0 = dq/dp [ 0.

Further Fig. 3b illustrates the limits �V� � Hðq � 0Þ for

p & 1 and �V� ! Hðq! 1Þ for p ? ? and section ‘‘The

resting state’’ shows that ae - aif \ 0. Then (65) gives
dXðpÞ

dp [ 0 for all p.

The power spectrum for large frequencies

To compute pEEG(m), we consider Eq. 41 and compute the

Greens’ function (59) in the long wavelength limit as

~Gð0; mÞ � 1ffiffiffiffiffiffi
2p
p 1

1� L0ðp; mÞ þ i2pmL1ðp; mÞ
ð66Þ

with L0ðp; mÞ;L1ðp; mÞ defined as

L0ðp; mÞ ¼L0;rðp; mÞ þ i2pmL0;iðp; mÞ
L1ðp; mÞ ¼L1;rðp; mÞ þ i2pmL1;iðp; mÞ

with

L0;rðp; mÞ ¼AeðmÞdEðpÞ � Aiðp; mÞdIðpÞf ðpÞx2
0ðpÞ

L0;iðp; mÞ ¼BeðmÞdEðpÞ � Biðp; mÞdIðpÞf ðpÞx2
0ðpÞ

L1;rðp; mÞ ¼AeðmÞaedEðpÞ ~K1
e ð0Þ=v

� Aiðp; mÞaidIðpÞf ðpÞx2
0ðpÞ ~K1

i =v

L1;iðp; mÞ ¼BeðmÞaedEðpÞ ~K1
e ð0Þ=v

� Biðp; mÞaidIðpÞf ðpÞx2
0ðpÞ ~K1

i =v

and

AeðmÞ ¼
1� ð2pmÞ2

1þ ð2pmÞ2ðc2
e � 2Þ þ ð2pmÞ4

AiðmÞ ¼
x2

0 � ð2pmÞ2

x4
0 þ ð2pmÞ2ðc2

i � x2
0Þ þ ð2pmÞ4

BeðmÞ ¼
ce

1þ ð2pmÞ2ðc2
e � 2Þ þ ð2pmÞ4

BiðmÞ ¼
ci

x4
0 þ ð2pmÞ2ðc2

i � x2
0Þ þ ð2pmÞ4

:

Equation 66 assumes the approximation of a large but finite

propagation speed v. Then inserting (66) into (41) yields

the power spectrum

PEEGðmÞ

¼ Q

2p
A2

eðmÞþB2
eðmÞ

ð1�L0;rÞ2þ4p2m2ð2ð1�L0;rÞL1;iþðL0;iþL1;rÞ2ÞþL2
1;i

:

ð67Þ

The functions L1;r;L1;i depend on the propagation speed

and are small compared to L0;r: Hence neglecting terms

containing L1;r;L1;i; we find the conditions (50).
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