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The pyrrole-imidazole alkaloids, which comprise a large family of natural products,1 have
received a great deal of attention due to their potent biological activities and tremendous
structural diversity. Palau’amine (1a) was originally isolated from a sponge, Stylotella
agminata, in 1993 by Scheuer as a novel class of the pyrrole-imidazole alkaloid.2 Since the
initial disclosure of its proposed structure (1a), palau’amine (1) has been an attractive synthetic
target because of its intriguing molecular architecture and significant biological properties such
as antifungal, antitumor, and immunosuppressive activities. However, according to several
groups, the originally proposed structure 1a was recently revised as 1b, which possesses the
indicated the trans-D/E ring junction and the β-chlorine substituent.3, 5e, 5g

The noteworthy structural features of palau’amine include: two guanidine moieties, fused
polycyclic system with a spiro cycle, complex all carbon substituted cyclopentane ring,
nitrogen-substituted quaternary carbon center, and eight contiguous stereogenic centers. Not
surprisingly, many attempts to synthesize palau’amine and related natural products have been
reported so far, 4, 5 and the first total synthesis of the related natural products axinellamines A
and B (2) was recently accomplished.6 However, a total synthesis of palau’amine itself has not
yet been reported. Efficient construction of the complex cyclopentane core with the correct
stereochemistry at each carbon center, including a quaternary carbon center, is definitely one
of the most difficult synthetic challenges for the synthesis of palau’ amine. Herein, we describe
an efficient synthesis of the cyclopentane core of palau’amine by the application of a highly
efficient novel Hg(OTf)2-catalyzed reaction developed in our laboratory.7 In 2008, the Hg
(OTf)2-catalyzed alkyne cyclization reactions were expanded to the alkene cyclization
reactions by using allylic alcohol or vinyl methyl ether substrates that, after cyclization,
undergo a smooth proto-demercuration to give the cyclized products and the regenerated Hg
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(OTf)2 catalyst.8 For instance, Hg(OTf)2-catalyzed cyclization of N-tosylanilino allylic alcohol
3 provided 2-vinylindolines 4 in high yield (Scheme 1).8b Thus, the cyclization of
cyclopentylidene alcohol 5 is expected to give 6 by constructing a quaternary carbon center
that corresponds to the C16 of palau’amine. However, the catalytic cyclization of amide 5 is
also possible to give the O-cyclized product 7 in preference to the N-cyclized product 6. Indeed,
we confirmed this was the case. The conventional methods for N-selective cyclization are
limited by the cumbersome substrate modifications, the addition of strong Lewis acids and/or
strong base, or the formation of N-radical. 9 Moreover, the catalytic conditions for generating
such a quaternary carbon center have not yet to be determined. Therefore, we designed an
acylhydrazide 8 as a simple modification of primary amides for Hg(OTf)2-cataylized
cyclization. The vinyl lactum 9, prepared by the Hg(OTf)2-catalyzed cyclization of 8, could
be an excellent precursor to construct cyclopentane core 10 by introducing two CH2-N groups
(Scheme 1).

Commercially available 2-cyclopentene-1-one 10 was employed as the starting material. A
Morita-Baylis-Hillman reaction of 10 with a commercial preparation of (tert-
butyldimethylsilyloxy)-acetaldehyde afforded 11 in 70% yield. 11 was subsequently converted
to 13 by a sequential operation of acetylation, a Luche reduction, 10 and a TBS protection. The
acetate 13 were then obtained as a 2: 1 diastereomeric mixture, setting the stage for an Ireland-
Claisen rearrangement.11, 12 After the treatment of 13 with LHMDS/TBSCl/HMPA in THF
at −78 °C, refluxing in toluene induced the desired Ireland-Claisen rearrangement to afford the
cyclopentylidene carboxylic acid 15 via 14 in good yield. Next, we attempted to prepare an
acylhydrazide by the coupling of 15 with N-tosylhydrazide by the combined action of EDCI
and DMAP in dichloromethane. Surprisingly, the nitrogen masked with a tosyl group
participated in the condensation to give a 2: 1 diastereomeric mixture of 16 in 68% overall
yield after four steps from 13. Presumably, the nucleophilicity of the more basic primary amine
was attenuated by protonation with the HCl derived from the used EDCI-HCl salt.13 The double
bond geometry of 15 was determined to be Z by the NOE experiment of its amide derivative
(Scheme 2). The TBS groups were cleaved under mild acidic conditions to give diol 17.

Reaction of 17 with 2 mol % of Hg(OTf)2 took place smoothly in nitromethane at room
temperature to afford 18α and 18β in 84% yield as a separable 1:2 diastereomeric mixture. The
lactone 19 was not detected (Sheme 3). Stereochemical outcome at the ring junction was
completely controlled to cis regardless of the stereocenter of the secondary alcohol at C17. The
structures of 18α and 18β were unambiguously confirmed by an X-ray diffraction study and
NOE studies (see supporting information). 14 We thus established that the Hg(OTf)2-catalyzed
protocol efficiently mediates N-selective cyclizations of amide carbony moieties, which is very
difficult to achieve using conventional methodologies.15

Having prepared a sufficient amount of N-cyclized product 18, we attempted to construct the
cyclopentane core of palau’amine. The SO3·pyridine oxidation of the mixture of 18α and
18β gave a single ketone 20 in quantitative yield.16 Direct oxidation of 20 to enone 22, using
IBX,17 and selenium dioxide, or enolate oxidation using selenium halide, sulfinimidoyl
chloride,18 and NBS, were unsuccessful. Although the preparation of the silyl enol ether was
not straightforward, a combination of TMSI and hexamethyldisilazane in dichloromethane was
found to give trimethylsilylenolether 21 in quantitative yield.19, 20 Saegusa-Ito oxidation of
21 provided enone 22 in good yield.21 Morita-Baylis-Hillman reaction of 22 with formaldehyde
gave alcohol 23 in excellent yield. Subsequent 1, 4-addition of nitromethane in the presence
of a catalytic amount of a 1, 1, 3, 3-tetramethylguanidine (TMG) afforded the desired 1, 4-
adduct 24.22 We found that 24 was readily converted to the exomethylene product by
dehydration during a column chromatography purification on silica gel. Therefore, the crude
24 was directly subjected to reduction with NaBH4 to give 25. The stereochemistry of 25 was
confirmed to be as we planned for our palau’amine synthesis by an NOE experiment. Finally,
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the primary alcohol of 25 was converted to azide 26 that is the targeted cyclopentene core of
palau’amine. The structure of 26 was unequivocally established by an X-ray diffraction study
(Scheme 6 and supporting information). 23

In summary, we have established an efficient route to the cyclopentane 26, which corresponds
to our E ring synthetic intermediate of palau’ amine by the application of novel Hg(OTf)2-
catalyzed cyclization. Furthermore, a selective N-cyclization protocol of acylhydrazide for
catalytic construction of a quaternary carbon center was also developed. Throughout this
investigation, Hg(OTf)2 was shown to be a powerful catalyst for the construction of complex
carbon frameworks of the type found in natural products. Total synthesis of palau’amine, one
of the most challenging synthetic targets in the last decade, is currently underway in our
laboratory.

Experimental Section
Experimental details, full data, 1H and 13C NMR spectra of each intermediate from 11 to 26,
and data of X-ray analysis are available in Supporting Information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Structure of Palau’amine (Original and Revised Structures) and Axinellamines (2).
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Scheme 1.
Hg(OTf)2-Catalyzed Cyclization of Allylic Alcohol and Synthetic Design of Palau’amine
Cyclopentane Core 10.
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Scheme 2.
Synthesis of Hydrazide 17
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Scheme 3.
Hg(OTf)2-Catalyzed Allyl Alcohol Cyclization of Acylhydrazide.
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Scheme 4.
Synthesis and X-ray crystallographic structure of 26.
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