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Abstract

In this note we discuss the issues involved in attempting to model pandemic dynamics. More specifically, we show how it
may be possible to make projections for the ongoing H1N1 pandemic as extrapolated from knowledge of seasonal
influenza. We derive first-approximation parameter estimates for the SIR model to describe seasonal influenza, and then
explore the implications of the existing classical epidemiological theory for the case of a pandemic virus. In particular, we
note the dramatic nonlinear increase in attack rate as a function of the percentage of susceptibles initially present in the
population. This has severe consequences for the pandemic, given the general lack of immunity in the global population.
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Introduction

The renewed interest in modelling the dynamics and forecasting

the evolution of emerging and reemerging diseases has been

spurred on further with the arrival of the recent new H1N1

influenza pandemic [1,2]. Unfortunately, conventional modelling

techniques are usually, at best, only able to provide a general idea

of how a pandemic might evolve, since crucial information

concerning model parameters is generally unavailable. For

example,the initial fraction of susceptibles in the population

(S0), and the basic reproductive number (R0) are rarely known,

and are often difficult to estimate. Yet without accurate

information on both of these, it is impossible to predict the

proportion of the population infected, or attack rate, of the the

epidemic.

To make the problem more transparent, during the start of the

recent H1N1 pandemic, there were several large-scale research

efforts into estimating the reproductive number R0 of the new

influenza strain in a fully susceptible population. However, from

the initial growth rate of the epidemic one can only estimate the

effective reproduction number Re~S0R0 and not the two

parameters S0 and R0 separately. The equality R0~Re holds

only if S0~1 (the entire population is susceptible), which may not

be the case for past pandemics and the new influenza strain H1N1

[3]. The importance of distinguishing between the basic

reproductive number R0 and the effective reproductive number

Re is far from a merely terminological matter. For example,

consider two epidemics, one with R0~3, S0~0:5 and the other

with R0~1:5,S0~1. In both cases Re~1:5, and the two

epidemics will initially grow at the same exponential rate, but

the final attack rate of the epidemic with R0~1:5, S0~1 will be

twice that of the epidemic with R0~3, S0~0:5. Thus measuring

growth rate at the beginning of an epidemic cannot provide one

with a prediction for the future, unless one has an independent

estimate of the fraction of susceptibles S0 [4,5].

In this paper we discuss an approach to partially address these

problems, to estimate key variables and to make projections. Our

methodology is general, but we focus on the specific case study of

influenza, because of the exigency of the current pandemic and

because information about seasonal flu is available. Already there

have been a number of studies attempting to model the H1N1

pandemic (e.g. [6–10]). Intriguingly, despite the fact that our

knowledge of seasonal influenza is at a relatively advanced level,

few if any attempts have made use of this information to derive

forecasts for the H1N1 pandemic by simple extrapolation. Even

basic back-of-the-envelope calculations are lacking. We follow this

path by first using the known characteristics of seasonal influenza

epidemics to estimate the basic parameters R0 and S0 which fully

determine the epidemic dynamics in the context of the well known

SIR model. This includes taking into account the duration of the

outbreak, an important factor that is often neglected.

The standard approach for fitting epidemic models is to use

detailed data from epidemic curves as obtained through

surveillance. However, we believe that the type of rough fitting

proposed here is useful as a complement, with the advantage that

it depends only on robust characteristics of influenza epidemics

and is thus less sensitive to the uncertainties involved in the

surveillance process. Furthermore, we think it is useful for

epidemiologists to be able to make simple calculations such as

those demonstrated here, which can serve as a check on results

obtained by more computationally intensive fitting methods (e.g.

MCMC methods), and also help develop the modeler’s ‘‘feel’’ for

the processes and quantities involved.

Having estimated the key parameters R0, S0 for seasonal

influenza, we then proceed to make projections for the expected

attack rate of pandemic influenza, under the assumption that

pandemic influenza differs from seasonal influenza mainly in terms

of the larger initial percentage of susceptibles in the population

(although, as we argue, in contrast to many other investigators,

taking the percentage of susceptibles to be %100 is questionable).
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The task is then to estimate the effect of the larger pool of

susceptibles on the size of the epidemic, which we again approach

by using results derived from the SIR model.

Methods

To begin we recall that the SIR model assumes that the

dynamics of Susceptible (S) and Infected (I) and recovered (R)

fractions of the population are governed by the following

equations [11]:

S’~{bIS ð1Þ

I ’~bIS{cI ð2Þ

R’~cI : ð3Þ

The contact rate between individuals is set at a constant b, while

the recovery rate is defined by the parameter c.

In order to make predictions we need to fit the above model to

epidemic incidence data for seasonal influenza. Three character-

istic properties specific to seasonal influenza are drawn upon:

(a) The attack rate, A, or fraction of a region’s population

infected over the entire influenza season, lies somewhere

between 5{15% [12]. For convenience, the attack rate is

approximated as 10%, or A~0:1.

(b) The duration of seasonal influenza epidemics is approxi-

mately 3 months [13].

(c) The average infectious period of a sick individual is 3 days

[14]. Since, by (2), the average length of time that an

individual spends in the I compartment is c{1 days, this

implies that c~ 1
3

days{1.

We now show that these three properties are sufficient to fit the

SIR model.

Since c is determined by (c), fitting the SIR model requires

determining b and the initial condition S0. It is assumed that the

initial number of infectives is nearly negligible.

A key epidemiological parameter is the basic reproduction

number [15]

R0~
b

c
,

which denotes the number of individuals infected by a single

infected individual placed in a totally susceptible population.

(Of course estimating R0 immediately gives us an estimate of b).

At least as important is the effective reproduction number (see eg.,

[3,16])

Re~S0R0~S0
b

c
, ð4Þ

which denotes the number of individuals infected by a single

individual placed in a population with fraction S0 of susceptibles.

To proceed further it is necessary to take into account the

epidemic’s duration.

For our purposes the duration of an epidemic is defined as the

length D~t2{t1 of the time period ½t1,t2� such that 90% of

infections occur during this period, along with the condition

I(t1)~I(t2). For the SIR model this duration can be expressed in

an integral formula (see Supporting Text S1) which depends only

on c and on Re. This integral may be computed for various values

of Re and c, and typical results are displayed in table 1. This

enables us, assuming that c and the duration of an epidemic is

known, to determine the value of Re for which the duration of the

epidemic fits the one predicted by the SIR model.

Once Re is chosen appropriately it is possible to determine the

population’s initial susceptibility S0 as follows. First, we need Z,

the fraction of susceptibles who are infected during the epidemic,

which can be found as the solution of the final-size equation

[11,17] (see also Supporting Text S1):

1{Z~e{ReZ: ð5Þ

Since the attack rate is known ((a) above) and is given by

A~S0Z, we estimate the fraction of susceptibles in the population

as S0~A=Z.

Results

Fitting parameters for seasonal influenza
Since, by (b), seasonal flu lasts approximately 3 months, table 1

shows that, assuming c{1~3 days, it becomes necessary to take

Re~1:2 to fit the duration of the epidemic.

Substituting Re~1:2 in (5) and solving numerically, we obtain

Z~0:31, that is 31% of the susceptibles become infected.

Therefore the attack rate is A~0:31S0. Based on the assumption

that the attack rate for seasonal flu is A~10%, we conclude that

S0~
0:1

0:31
~0:32. That is, at the beginning of the season some one

third of the population is susceptible and has the potential to be

infected. This level of susceptibility seems reasonable given that a

large component of the population has most likely gained

immunity from previous exposure to related strains of the current

influenza virus. Finally, since Re~1:2 and S0~0:32, we obtain

R0~
Re

S0
~

1:2

0:32
~3:75:

Predicting attack rate for pandemic influenza
Having estimated parameters for seasonal influenza, consider

now the arrival of pandemic influenza into a region. In the absence

of previous exposure to the pandemic, it is reasonable to assume

that a much larger proportion of the population is susceptible than

is the case for the seasonal flu. Our working hypothesis is that there

Table 1. Duration of an epidemic (in days) as a function of
c{1 (average infection period) and Re.

ª{1~2 ª{1~3 ª{1~4 ª{1~5

Re~1:05 239.5 359.1 479.0 599.0

Re~1:1 121.7 182.4 243.3 304.2

Re~1:15 82.4 123.6 164.8 206.0

Re~1:2 62.7 94.1 125.5 156.9

Re~1:25 50.9 76.4 101.9 127.3

Re~1:3 43.1 64.7 86.2 107.7

Re~1:4 33.2 49.9 66.5 83.1

Re~1:5 27.3 41.0 54.7 68.4

doi:10.1371/journal.pone.0009565.t001
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are no other relevant epidemiological differences between the two

types of influenza. As far as the average duration of infectivity (or,

equivalently, the mean serial interval), c{1, there is some direct

evidence based on infection networks that it is indeed close to that

of seasonal influenza [18,19]. We shall henceforth assume (in

the absence of hard data) that the intrinsic transmissibility b is

also the same. Therefore we are assuming, in particular that

R0(pandemic)~R0(seasonal)~3:75. It should be noted that this

assumption disregards the effect of seasonality on the reproduction

number: our estimate R0(seasonal)~3:75 is appropriate for the

winter season, in which seasonal flu occurs. Therefore our working

assumption that R0(pandemic)~3:75 is most appropriate when

the pandemic virus is introduced into the population at a date close

to the usual initiation period of the seasonal influenza epidemic.

This was the case for the current H1N1 pandemic in the southern

hemisphere, and less so for the northern hemisphere, where the

virus was introduced ‘out of season’. However, since quantitative

knowledge about the extent of the effect of seasonality on the

transmission rate is meager, we do not take this factor into account

in the following estimates.

When modeling pandemic influenza and estimating R0 it is

often taken for granted that the entire population is susceptible.

This assumption, however, has been shown to be questionable

(Mathews et. al. 2007, McCaw et. al. 2009). Indeed Mathews et

al. (personal communication), based on model-fitting, have

estimated that in the 1918 pandemic in the UK only 52% (95%
confidence interval 41{66%) of the population were suscep-

tible. Moreover, we argue that by considering the expected

duration of an epidemic, calculations based on the SIR model

indicate that 100% population susceptibility is unlikely: it would

imply Re~R0~3:75, which would lead to an epidemic with an

extremely short duration of 12 days. Examining epidemic

curves from past pandemics indicates that their duration is

indeed shorter than those of seasonal influenza epidemics, but

not to such an extent, and usually of the order of one month.

(Note, however, that small isolated communities such as

documented in Alaska in 1918 exhibited 90{100% attack

rates [1], and thus provide examples where S0 may be as large

as 1). Lastly, let us note that the various current estimates of the

effective reproductive number [2,7,10,20,21] for the 2009

H1N1 influenza give results in the range 1:4{3:1. It is

important to note that as most of these estimates are based

on the initial growth rate of the epidemic, these are actually

estimatesof Re and not of R0 [3]. Under our assumption

R0(pandemic)~R0(seasonal)~3:75, it follows that S0 must be

significantly less than 1 in order for Re to be in the range of

these previous estimates.

In the following we begin by assuming there is 64%
susceptibility for pandemic influenza (that is, since the number

of infected at the beginning of the epidemic is very small, we

assume 36% of the population is initially immune), which is twice

that we estimated for seasonal influenza. How then does this

simple difference in population susceptibility change the influenza

attack rate? A naive approach might suggest that if there are twice

as many more susceptibles in the population, the attack rate for the

pandemic might be expected to be 20% of the population instead

of 10% for seasonal influenza.

The appropriate calculation of the attack rate (as based on the

SIR model) involves two stages:

(a) Determining the fraction Z of susceptibles who become

infected during an epidemic as the solution of the final-size

equation (5).

(b) Calculating the attack rate as given by A~S0Z.

Since we assume that S0 is twice as high for the pande-

mic influenza as for the seasonal flu, we obtain that

Re(pandemic)~2Re(seasonal)~2|1:2~2:4. From (i) & (ii)

above, a larger value of S0 increases the size of the epidemic in

two ways. Firstly, the quantity Z, the fraction of susceptibles who

become infected, is much larger. Solving (5) forRe~2:4 we obtain

Z~0:88 (that is - 88% of susceptibles will be infected during

the pandemic), in contrast to Z~0:31 for seasonal flu. Secondly,

there are more susceptibles so that the attack rate A~

S0Z~0:88|0:64~0:58. Thus although the estimated number

of susceptibles for the pandemic is twice that for the seasonal flu,

the resulting attack rate is 5:8 times higher (and 2:9 higher than the

‘‘naive’’ prediction).

Discussion

It is interesting to note that the naive prediction is based on the

supposition that doubling the number of susceptibles should

double the number of people infected. However the flaw in this

logic derives from the collective phenomenon whereby for low

levels of susceptibles the population inherits a protection akin to

herd immunity [15]. That is, large numbers of immune individuals

tend to block infection routes and thereby reduce the risks of

infection for the entire population. Thus increasing the number of

susceptibles leads to a breakdown in herd immunity and effectively

amplifies the risks of the epidemic to levels well beyond the naive

prediction. This is demonstrated in Figure 1 which displays a

graph of the true attack rate as a function of S0 and provides a

comparison with the naive prediction.

It should be stressed that the above estimates are subject to the

uncertainty in the estimate of the attack rate of seasonal influenza

Figure 1. Attack rate as a function of the initial fraction of
susceptibles. Assuming R0~3:75, the attack rate (continuous line) is
plotted as a function of the initial fraction of susceptibles S0 in the
population. An epidemic will not trigger unless the initial susceptibles
are greater than S0~0:27, due to herd immunity. The dashed line
shows the naive prediction for the attack rate, obtained by
extrapolating linearly from the 10% attack rate for S0~0:32, which
can be well below the theoretical estimate.
doi:10.1371/journal.pone.0009565.g001

(i)

(ii)
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(assumption (a)) as well as to uncertainty in the actual fraction of

the population susceptible to the pandemic influenza (which we

took to be S0~0:64). Nevertheless, the goal here is not to give

exact predictions but to convey the conceptual mechanisms

involved, and sometimes the nonintuitive outcomes when a

pandemic triggers. Most significantly, the epidemic attack rate

can reach unexpectedly high levels.

At this point in time the attack rate of the current H1N1

pandemic is not known with any confidence, and the results of

serological studies which can shed light on this are awaited.

Nevertheless, based on sureveillance data, it appears that while the

outbreaks in various countries have been larger than those of

seasonal influenza, they have not been as large as would be

predicted based on the above estimates (5:8 times as large as

seasonal epidemics). If this indeed turns out to be the case, it

becomes an important question for epidemiologists to explain this

discrepancy. There are several possibilities which need to be

considered:

(1) It may be that the fraction of susceptibles is even lower that

the value S0~0:64 that we posited, which would result in

reduction of the value of Re. If this is the case, then the

biological mechanisms behind a considerable prior immunity

need to be investigated.

(2) It may be that, contrary to what was posited above, the

reproduction number R0 (hence also Re) for pandemic H1N1

is considerably lower than that for seasonal influenza, reflecting

a lower transmissibility. If this is true, it could be explained as

a result of the fact that the seasonal strains, having already co-

evolved with the human population’s immunity, have

developed higher transmissibility, in comparison with the

new swine flu virus which has not yet had this opportunity.

(3) While the above SIR modeling analysis provides an outline of

the processes at work, it obviously does not take into account a

number of subtleties and complexities characteristic to

influenza dynamics in heterogeneous populations. It could

be that some of these effects could lead to a reduction of the

the relative sizes of pandemic influenza as compared to

seasonal influenza, as predicted by the above analysis. If this is

indeed the case, it is important for future modeling studies to

identify what are these important factors that must to be taken

into account.

We believe that the considerations and calculations presented

here, and the questions raised, can serve as a starting point for

stimulating future debate around these important issues.

Supporting Information

Text S1 We derive characteristics of an epidemic described by

the SIR model in terms of the parameters of the model.

Found at: doi:10.1371/journal.pone.0009565.s001 (0.09 MB

PDF)
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