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Purpose: To present, implement, and test a self-consistent pseudoinverse displacement vector field
�PIDVF� generator, which preserves the location of information mapped back-and-forth between
image sets.
Methods: The algorithm is an iterative scheme based on nearest neighbor interpolation and a
subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data
set with six CT images from different breathing phases and eight CT images for a single prostrate
patient acquired on different days. A diffeomorphic deformable image registration is used to vali-
date our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondif-
feomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm
for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both
Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined
by using a DIR to generate a displacement vector field �DVF� between reference image R and study
image S �DVFR–S�. The same DIR is used to generate DVFS–R. Additionally, our PIDVF generator
is used to create PIDVFS–R. Back-and-forth mapping of a set of points �used as surrogates of
contours� using DVFR–S and DVFS–R is compared to back-and-forth mapping performed with
DVFR–S and PIDVFS–R. The Euclidean distances between the original unmapped points and the
mapped points are used as a self-consistency measure.
Results: Test results demonstrate that the consistency error observed in back-and-forth mappings
can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the
PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not
affected by the exchanging of R and S. It is also demonstrated that differences between DVFS–R and
PIDVFS–R can be used as a criteria to check the quality of the DVF.
Conclusions: Use of DVF and its PIDVF will improve the self-consistency of points, contour, and
dose mappings in image guided adaptive therapy. © 2010 American Association of Physicists in
Medicine. �DOI: 10.1118/1.3301594�
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I. INTRODUCTION

The development of intensity-modulated radiation therapy
�IMRT� has provided the potential of delivering highly con-
formal dose distributions to the target volume while sparing
normal tissues and organs. However, full realization of IM-
RT’s advantages is limited by target and normal tissue posi-
tioning uncertainties, including interfraction and intrafraction
setup variations, internal organ motion, and tissue
deformation.1–13 In this study, for simplicity, intrafraction tis-
sue deformations for lung and interfraction tissue deforma-
tions for prostate treatment plans are used to demonstrate the
concepts and techniques developed. Studies on prostate mo-
tion have shown that both the position and the shape of the
prostate vary throughout the course of treatment

2–5,10,14–16
�fraction�. Recent developments of on-board imag-
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ing guidance systems provide real-time information on the
patient and target positions, and thus provide the opportunity
to realign the planned dose distribution to the actual position
of the tumor.17–23 Clinical studies using adaptive treatment
planning �ATP� for prostate cancer have demonstrated the
clinical feasibility of position correcting schemes as well as
an improvement in dose coverage.24

Recently, online reoptimization for adaptive radiation
therapy24 has gained some interest. However, positioning
correction alone cannot correct the changes in the target
shape. Treatment plan adjustment approaches could poten-
tially correct for both position changes and organ deforma-
tions. In order to facilitate replanning/reoptimizing in adap-
tive radiation therapy, contours need to be mapped from a

reference image R to the study �time of treatment or 4D
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phase� image S. Similarly, the dose already delivered to the
patient but accumulated on R needs to be mapped to S to
adjust the treatment plan for the remaining fractions. The
contour and dose mapping processes utilize the results from
deformable image registration �DIR�, which provides a non-
rigid map of information contained in R to its location in S.
DIR algorithms are used to generate a displacement vector
field �DVF� which can be viewed as a map of points’ coor-
dinates between R and S. Throughout this paper, DVFR–S is
used to denote a DVF which maps the points from R to S,
while DVFS–R denotes a map from S to R. Although it is
often customary to have R be a reference image, such as
from an initial treatment planning study or reference phase of
a 4DCT, and S for a study image, in some instances, their
roles may be reversed.

When DVFR–S and DVFS–R are used in IGRT or ATP to
map contours �or dose� back-and-forth between R and S to
replan/reoptimize the treatment, a desirable property is that
this back-and-forth mapping be self-consistent. For example,
assume information is mapped from R to S then back to R. A
natural requirement for this back-and-forth mapping is that
the original contour in R �or dose distribution� and the con-
tour �or dose distribution� mapped back from the study im-
age should be the same. If the back-and-forth mapping lacks
self-consistency, then after mapping the contour or dose dis-
tribution back-and-forth, the contour or dose distribution will
be distorted on the image. Clinically, if a contour is mapped
to S for dose planning and delivery, when the delivered dose
is mapped back to R, lack of self-consistency can result in
misalignment of the dose and the associated contours. This
might give the wrong dose volume information or dose vol-
ume histogram, which are used to evaluate and optimize the
treatment planning. Note that even though self-consistency is
a desirable property, satisfying this condition does not mean
the DVF is accurate. More discussion about self-consistency
and accuracy is given in Sec. IV.

To avoid the perils of inconsistent registrations, Chris-
tensen et al.,25 Joshi,26 and Yang et al.27 developed inverse
consistent deformable image registration algorithms. These
algorithms strive to achieve the desirable properties that the
deformation field be smooth and invertible, so that every
point in one image has a corresponding point in the other.
Such smooth, invertible transformations are called diffeo-
morphisms. The aforementioned DIR algorithms simulta-
neously generate the forward field DVFR–S= f and reverse
field DVFS–R=h such that both f and h are smooth and
f=h−1 holds. As a result, self-consistency is automatically
achieved for these DIR algorithms. While self-consistency is
a desirable property, there are several image registration al-
gorithms which neither automatically generate the reverse
field nor have proven to generate invertible DVFs.28–30 For
these algorithms, the prevailing approach takes the negative
of the forward deformation as the inverse deformation. This
method is oversimplified and can cause large errors for large
deformations or deformations that are composites of several
deformations. Hence, it is desirable that to have an algorithm

that can produce inverse field for the deformation field gen-
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erated by both diffeomorphic and nondiffeomorphic DIR al-
gorithms. This paper presents a pseudoinverse DVF �PIDVF�
generator to fill this need.

The concept of developing an inverse for an arbitrary de-
formation field is not new. In addition to being implicitly
included in the above mentioned diffeomorphic algorithms,
Chen et al.31 presented an approach to invert a deformation
field based on a fixed-point theory. One limitation reported
by Chen is that their method will fail to converge and fail to
produce an inverse if too many voxels in the forward field
have nonpositive Jacobian values.

The PIDVF developed in this paper has two important
properties related to prior works. �1� PIDVF exists for an
arbitrary deformation field. �2� If the forward field f is in-
vertible �f−1 exists� and f−1 is smooth, then when the inverse
computing error � (defined later) approaches zero, the
PIDVF will approach the true inverse field, namely, f−1.

The purposes of this paper are: First, to present an algo-
rithm which can be used to generate a PIDVF with a small
inverse computing error and to describe a method which can
be used to compare the self-consistency between two fields
which are inverses of one another; second, to show that the
PIDVF can improve self-consistency in points �contour�
mapping when the Insight Segmentation and Registration
Toolkit �ITK� Demons is used with lung images and a
B-Spline is used with prostate images; third, using a diffeo-
morphic DIR to show that the PIDVF will converge to the
true inverse when inverse computing errors tends to zero.

II. MATERIALS AND METHODS

II.A. Patient data and DIR algorithms

A 4DCT data set with six CT images from different
breathing phases for a lung patient and eight image CT sets
acquired on different days for a single prostate patient are
used in this study. The lung images have 104 0.25 cm slices
with 0.097 cm pixel dimensions. A physician manually con-
toured each image set. For the prostate data set, the original
images were acquired at various resolutions and scan
lengths. The images are resampled to a uniform resolution
and scan length, as required by the DIR algorithm used. Af-
ter processing, each image has 78 0.30 cm slices with 0.082
cm pixel dimensions. A physician contoured these images for
treatment planning using the structures indicated in Ref. 30.
A six field 18 MV IMRT treatment was planned on the ref-
erence image R= I0 using the PINNACLE

3 treatment planning
system �Philips Medical Systems, Fitchburg WI� for the
prostate patient. The beam angles used are 180°, 230°, 280°,
330°, 30°, 80°, and 130° and the dose grid resolution is
0.2�0.2�0.2 cm3. Other than providing a clinically rel-
evant dose distribution, with nearly homogenous dose in the
target surrounded by gradients near the target edge and criti-
cal structures, the details of the dose planning are unimpor-
tant to this study.

Three DIR algorithms are used in this study—
Christiansen’s small deformation, inverse consistent, linear
elastic �SICLE� image registration algorithm,25,32 the De-

33
mons algorithm implemented in ITK, and a previously de-
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scribed in-house B-Spline DIR algorithm.30 The SICLE is
used with both the lung images and the prostate images. The
Demons algorithm is used to register the lung images and the
B-Spline was used on the prostate images. The quality of
DVFs produced by SICLE and Demons are evaluated via
visual comparison of the contours �see Fig. 1 for details�
mapped by the DVF with the physician-drawn contours. The
B-Spline algorithm30 was previously benchmarked by con-
tour comparison. Namely, contours autogenerated by the
DIR algorithm’s DVF were shown to reproduce physician-
drawn contour to within 0.2 cm.30 Generally, the registrations
created the DVFR–S. For the B-Spline and Demons algo-
rithm, DVFS–R are generated by reversing the roles of R and
S for each image pair and rerunning the image registration
algorithm. For the SICLE algorithm, DVFS–R is generated
simultaneously with the DVFR–S.

When generating DVFs, we found the DVF quality is
sensitive to parameters such as CT thresholds, optimization
threshold �, the number of iterations, etc. For example, when
SICLE is used to register the lung images, one can get better
results for the ribs if the CT threshold is set between 0 and
1300 instead of 0 and 800. Similarly, when the same DIR is
used on prostate images, the CT thresholds between 800 and
1100 produce better registrations than at other thresholds.
Finding the optimal parameters for each DIR algorithm and
each site is beyond the scope of this study. When different
parameters are used within a given algorithm, both the DVF
and the DVFs’ PIDVF will differ. However, the general
properties of the PIDVF will remain similar. Only DVFs
which are QAed via the aforementioned contour compari-
sons are used in this study.

The B-Spline DVF in Ref. 30 is generated �and evaluated�
only within a selected region of interest, corresponding to
slices in the range �x-slice, y-slice, and z-slice�: �150, 324�,
�150, 299�, and �40, 59�, which correspond to tissues sur-
rounding the high dose region of interest �ROI� area which
contains the prostate. The DVF therefore consists of 525 000
vectors. The displacement vectors outside these areas are set

FIG. 1. The first row compares the physician-drawn contour �in thick blue
lines� and the contours �in thin purple lines� mapped by the ITK DVF. The
second row compares the physician-drawn contour �in thick blue lines� and
the contours �in thin orange lines� mapped by the SICLE DVF generated on
lung images. The last row compares physician-drawn contour �in thick green
lines� and the contours �in thin red lines� mapped by the SICLE DVF gen-
erated on prostate images.
to be zeros and are not utilized in this study.
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II.B. Definition of PIDVF and PIDVF generator
algorithm

In the following discussion, the deformation is formulated
on the continuum and is discretized for implementation. Let
R and S be two image domains and f :R→S be the DVFR–S

from R to S. f can be viewed as a continuous function. In real
applications, it can be viewed as a map of points’ coordinates
between R and S. For any point x�R, f�x�=y is the location
of the corresponding point in S. We use f :x→y to denote it.
Assume g� is a function which will map S back to R. We say
g� :y→x is the PIDVF of f, if for any point y��S,
�f�g��y���−y���� holds. Note that the above definition does
not require g� be an inverse function of f, which is used as a
constraint for DIR algorithms in Ref. 25. In our formulation,
this constraint is relaxed. In the following, f−1 is used to
denote the inverse function of f when f is invertible. Two
important properties of the PIDVF are formally given in the
following with the detailed proofs in the Appendix.

PROPERTY 1: If the forward mapping f is between
two finite domains R and S, then there exists an ��0
such that g� exists.
PROPERTY 2: If f−1 exists and is smooth throughout S,
then for an arbitrary point y in S, �g��y�− f−1�y�� tends to
0 as �→0.

Property 1 guarantees that a PIDVF exists for an arbitrary
deformation field. Since both R and S represent finite do-
mains, if � is allowed to be large, one can always find an � to
make g� exist. � is called the inverse computing error. Obvi-
ously, we would like to find a g� with � as small as possible.
However, even when � is not small, the evaluation of � is
useful as a measure of the quality of the PIDVF. Property 2
provides a mechanism for checking our PIDVF generator—
Via generating PIDVFs for diffeomorphic DIRs and showing
that when �→0, g� approach f−1 for these cases.

An algorithm to generate the PIDVF is described in detail
in the Appendix. Note that in our implementation, the for-
ward mappings are discretized so that the two images R and
S are viewed as two sets of 3D grid points. The basic flow of
the algorithm is as follows. First, grid points are mapped
from R to S according to the DVFR–S. The values of the
inverse mapping PIDVFS–R are initially assigned to be the
negative of the DVFR–S mapping via nearest neighbor inter-
polation. Since the image voxel size is small, some of these
grid points in S are mapped back to R with small inverse
computing errors. The algorithm identifies points in S, which
can be mapped back to R with small inverse computing er-
rors �����, and are also close to points with computing
errors ���. These identified points �with small inverse com-
puting errors� are called active grid points. By systematically
searching around the points in R which are mapped to the
active points in S, the algorithm tries to reduce the inverse
computing errors for those points in S that previously had
���. Note that the PIDVF is similar in concept to the in-
verse computed on-the-fly by diffeomorphic DIR
algorithms.25 Differences between the PIDVF and the algo-

rithm used in Ref. 25 can be found in Sec. IV.
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II.C. Tests

The PIDVF algorithm is first tested on concocted dis-
placement vector fields to conceptually test the algorithm
and its implementation. Six concocted 4�4�4 DVFs are
generated. �1� DVF with all components 0 cm; �2� DVF with
x and y components 0 cm, but z component a constant �0.2
cm�; �3� DVF with y and z components 0 cm but x compo-
nent a constant �0.2 cm�; �4� DVF with x and z components
0 cm but y component a constant �0.2 cm�; �5� DVF with x,
y, and z components being constants �0.2 cm�; and �6� DVF
with x, y, and z components being variables �the correspond-
ing indices times 0.1�. The PIDVFs for each concocted DVF
are generated �with inverse computing error set to 0.01 cm
and verified to be the inverse of the supplied DVF.

II.C.1. Difference between DVFS–R and PIDVFS–R

The PIDVF algorithm is used to generate PIDVFs for the
DVFs generated by the SICLE algorithm on both the lung
and prostate data sets, the DVFs generated by the ITK De-
mons on the lung data sets, and the DVFs generated by the
B-Spline DIR algorithm30 on the prostate data sets. To dem-
onstrate that the PIDVF generator functions when the for-
ward DVF has nonpositive Jacobian values, the number of
voxels with nonpositive Jacobian values for the forward
DVF is reported. In computing the PIDVF, the maximum
allowed inverse computing error � is set to 0.01 cm. This
number was chosen to obtain a balance between accuracy
and running time.

For a DVFR–S, to quantify the differences between the
exchange of image sets to obtain DVFS–R and the PIDVFS–R

method to determine the inverse, the difference between
PIDVFs and DVFs is examined. For an arbitrary
image voxel i in S, �xpi

,ypi
,zpi

� is the pseudoinverse DVF
vector �an element of PIDVFS–R, as appropriate� and
�xdi

,ydi
,zdi

� is the reverse DVF vector �an element of

Run DIR algo
and S to ge

Run DIR algorithm between S
and R to generate DVFS-R

Use DVFR-S to warp a
points fro

Use DVFS-R to warp from S
back to R to get

Calculate the differences
between and Compare the

RP

d
SP

RP

d
RP

d
RP

FIG. 2. Scheme used to compare self-consiste
DVFS–R�, the difference between the two vectors is

Medical Physics, Vol. 37, No. 3, March 2010
��xpi
−xdi

�2+ �ypi
−ydi

�2+ �zpi
−zdi

�2. The difference is com-
puted for each image voxel and the average and maximum
differences are found.

II.C.2. Point mapping consistency

Contour mapping consists of transferring a connected set
of points on one image to another image by the application
of a DVF. The locations of exact points on a physician-drawn
contour are instance-specific—Even if the same physician
redraws the same contour on a given image sets, the points
on the two contours drawn do not exactly overlay. In this
study, instead of quantifying deviations in physician-drawn
contours, deviations in points that can be mapped by the
DVF are measured, thus allowing quantification of errors for
an arbitrary series of contours. By connecting a series of
these points, the error in a contour mapping could be deter-
mined.

The scheme shown in Fig. 2 is used to compare the self-
consistency of the DVF and PIDVF for mapping points. For
this test, both the lung and prostate images are used. A set of
points �in our study, each voxel in R contains at least one
point� are uniformly chosen from the reference image R and
are mapped to S by using DVFR–S. The points are mapped
back to R by using DVFS–R or the PIDVFS–R. Let p1 be the
coordinate of an arbitrarily chosen point in R and p3 be the
coordinate after the back-and-forth mapping. The Euclidean
distance 	d= �p1− p3� is defined as the consistency error,
which is used to quantitatively measure the self-consistency
between forward and reverse fields. With PR being the origi-
nal point locations, PR

D being the back-and-forth mapped
points �using DVFR–S and DVFS–R methods�, and PR

P being
the points mapped back using the PIDVF, the consistency
errors between the points in PR and the points in PR

D give the
inconsistency of the DVF-based inverse mapping, and the
consistency errors between the points in PR and the points in

P

between R
DVFR-S

Run PIDVF on DVFR-S to generate
PIDVFS-R

f uniformly chosen
o S to get

Use PIDVFS-R to warp from S
back to R to get

Calculate the differences
between and .ifferences

d
SP

d
SP
p
RP

RP
p
RP

between DVF and PIDVF in mapping point.
rithm
nerate

set o
m R t

two d
PR give the inconsistency of the PIDVF mapping. The maxi-
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mum average of the consistency errors are calculated and
compared.

II.C.3. Dose mapping consistency

In dose mapping, dose recorded �delivered� on R �or S�
needs to be mapped to its physical location on S �or R� via
the DVF to do replanning �or to accumulate the total treat-
ment dose delivered�. In this study, the trilinear method is
used to map the dose.34 To map a dose distribution from R to
S, the dose grid points PS on S are first mapped to PR ac-
cording to DVFS–R. The dose values of those points in PR are
obtained by trilinear interpolation of the dose in R. These
values are assigned as the dose to the points in PS. Even
though the trilinear method has been shown to be inaccurate
in some special circumstances of voxel merging and
splitting,35 it is used in this study since it is the standard dose
interpolation method.

Dose mapping quality is related to DVF errors, dose map-
ping methods, boundary conditions, dose gradients, and dose
grid resolution. A comprehensive study of these dependen-
cies is beyond the scope of this paper. The prostate patient
and the B-Spline DIR are used to investigate if the PIDVF
improves self-consistency in back-and-forth dose mapping
for DVFs generated by nondiffeomorphic DIR algorithm.

The scheme shown in Fig. 3 is used to compare the self-
consistency between DVFs and PIDVFs in dose mapping.
The dose on R is mapped to S using DVFS–R and PIDVFS–R,
then mapped back to R by using DVFR–S. The original dose
distribution on image R is compared to the back-and-forth
mapped dose with the difference between them quantifying
the effect of inconsistencies in the dose mapping. For clarity,
the dose mapped by DVF only is called DVF-only mapping

Run DIR algorithm between S
and R to generate DVFS-R

Use DVFS-R to map from
R to S to get

Use DVFR-S to map from S
back to R to get

Calculate the difference between
and Compare the

Generate a dose
using Pinnacle Trea

RD

d
SD

RD

d
RD

d
SD

d
RD

FIG. 3. Scheme used to compare self-consist
and the mapping done by DVF and PIDVF is called DVF-
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with-PIDVF mapping. The maximum and average dose dif-
ferences are compared.

II.C.4. Effect of exchanging reference and study
images

As pointed out in Ref. 36, the DVFs resulting from image
registrations can depend on which image is the reference and
which is the study image. A desired property of mapping
points, contours, or dose is that the self-consistency does not
depend on which image is reference and which image is
study. Motivated by this, the R and S are exchanged and the
self-consistency tests shown in Figs. 2 and 3 are performed
again. In particular, points and doses are mapped back-and-
forth by using DVFS–R and DVFR–S and DVFS–R and
PIDVFR–S, where PIDVFR–S is the pseudoinverse of DVFS–R.

III. RESULTS

III.A. Difference between DVFS–R and PIDVFS–R

For the eight prostate CT �denoted by I0 , . . . , I7� images,
PIDVFs are created for the B-Spline and the SICLE DIR
results. A summary of the number of nonpositive Jacobian
values for the forward registration and summary statistics of
the difference between the PIDVF and the reverse field are
given in Table I. The B-Spline algorithm has a few voxels
with nonpositive Jacobians, and SICLE has none, as ex-
pected. All of the PIDVF elements report an inverse comput-
ing error less than the tolerance value 0.01 cm. Differences
between PIDVF and the reverse field are greater for the
B-Spline DVFs than they are with SICLE. This is in agree-
ment with Property 2 since, with SICLE, the forward DVF is
invertible and smooth. Hence, the SICLE PIDVF is close to

Run DIR algorithm between R
and S to generate DVFR-S

Run PIDVF on DVFR-S to generate
PIDVFS-R

Use PIDVFS-R to map from
R to S to get

Calculate the difference between
andifferences

bution by
Planning system

Use DVFR-S to warp from S
back to R to get

RD

RD
p
SD

p
RD

RD
p
RD

i
SD

between DVF and PIDVF in mapping dose.
two d

distri
tment
the SICLE computed inversely.
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For the lung PIDVFs generated for the ITK Demons
DVFs, multiple points have inverse computing errors greater
than 0.01 cm. For the PIDVFs generated for the SICLE
DVFs, all the inverse computing errors are less than 0.01 cm.
The maximum inverse computing errors and the number of
points with inverse computing errors greater than the 0.01
cm are listed in Table II together with the number of non-
positive Jacobians in the DVFs. For the Demons DVFs, even
though many elements have nonpositive Jacobians, the maxi-
mum inverse computing error observed is 0.043 cm.

The difference between PIDVF and the reverse fields gen-
erated by SICLE and Demons for the lung images are also
compared in Table II. The average differences for SICLE are
�30 times lower than that for ITK Demons. For ITK De-
mons DVFs, generation of the reverse field by exchanging
the reference and study images is about ten times slower than
by using the PIDVF algorithm. One may also notice the
maximum difference between SICLE reverse fields and the
PIDVF shown in Tables I and II are greater than 0.01 cm. To
understand the cause of this, we looked at the location of the
maximum difference, and found that in all cases, except
when image I0 and I5 from the prostate patient are used as
inputs, the maximum differences occur at the image edge.
This may be caused by the fact that not enough information

TABLE I. Differences between reverse field and the PIDVFs for registrations
the reverse field is generated by running the DIR algorithm with reference an
inverse computing errors greater than 0.01 cm for these PIDVFs. The numb

R and S

B-Spline DVF

No.
of nonpositive Jacobians

Maximum difference
�cm�

Average diff
�cm�

I0 and I1 103 2.69 0.053
I0 and I2 52 1.14 0.044
I0 and I3 23 1.14 0.032
I0 and I4 9 1.17 0.034
I0 and I5 8 0.77 0.029
I0 and I6 201 0.81 0.037
I0 and I7 8 0.97 0.026

TABLE II. The maximum inverse computing error �ICE� and the number of
error tolerance set in the PIDVF algorithm �0.01 cm� for the DVFs betwe
implemented in ITK and the DIR in Ref. 25. The maximum and average d
DVFs, the reverse field �DVFS–R� is generated by running the DIR algorithm
field. The number of DVFR–S elements with nonpositive Jacobians is also li

R and S

ITK Demons DVFs

No.
of nonpositive

Jacobians
Max. ICE

�cm�

No. of points
with

ICE�0.01 cm

Max.
difference

�cm�
A

Phases 0 and 1 575 314 0.034 61 2.03
Phases 0 and 2 657 154 0.032 95 2.90
Phases 0 and 3 668 586 0.043 121 3.11
Phases 0 and 4 670 976 0.035 127 3.29
Phases 0 and 5 671 638 0.029 119 3.16
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is available at the boundary of the image. In the interest of
making this paper short and focused, the detailed results are
omitted here.

III.B. Point and dose mapping consistency

A comparison of the B-Spline DIR consistency errors for
back-and-forth point mapping for one pair of prostate images
�with I0 being R and I1 being S� is shown in Fig. 4. Table III
lists the statistics of the consistency errors observed for other
image pairs. When mapping points back-and-forth, the DVF-
with-PIDVF method is more self-consistent than the DVF-
only method. The reason why some points have consistency
errors greater than 2� for the DVF-with-PIDVF method is
explained in Sec. IV. From Table III, we find that the average
consistency error for the DVF-with-PIDVF point mapping is
�2 to �9 times less than that for the B-Spline DVF-only
method. The consistency error in points mapping for the
prostate images with SICLE is also shown in Table III �in
columns denoted by S�. The maximum errors are small and
similar for both DVF-with-PIDVF methods. The average er-
rors for the PIDVF method are about half of the DVF
method; however, both errors are sufficiently small. For the
dose mapping, the statistics of the differences between the

rmed on the eight prostate image sets �I0 , I1 , . . . , I7�. For the B-Spline DVFs,
dy images exchanged. SICLE autogenerates the reverse field. No points had
nonpositive Jacobians for the DVFs is also listed for each registration.

SICLE DVFs

e No.
of nonpositive Jacobians

Maximum difference
�cm�

Average difference
�cm�

0 0.74 0.0068
0 0.87 0.0069
0 0.45 0.0075
0 0.27 0.0081
0 0.039 0.0022
0 0.076 0.0082
0 0.591 0.0052

s �out of 27 262 976 points� with inverse computing errors greater than the
e six lung images �Phase 0, Phase 1, … Phase 5� generated by the DIR

ences are evaluated between DVFS–R and PIDVFS–R. For the ITK Demons
h reference and study images exchanged. SICLE autogenerates the reverse
or each registration.

SICLE DVFs

difference
�cm�

No.
of nonpositive

Jacobians

Max.
ICE
�cm�

No. of points
with

ICE�0.01 cm

Max.
difference

�cm�

Ave.
difference

�cm�

.064 0 0.01 0 0.169 0.0024

.12 0 0.01 0 0.28 0.0027

.13 0 0.01 0 0.995 0.0498

.14 0 0.01 0 0.322 0.0029

.14 0 0.01 0 0.26 0.0029
perfo
d stu
er of

erenc
point
en th
iffer

wit
sted f

ve.

0
0
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original dose distribution and the back-and-forth mapped
dose distribution are shown in Table IV. When B-Spline is
used to generate the DVFs between I0 and I1, the largest
difference in the DVFS–R with DVFR–S mapping is 951 out of
7000 cGy, while in DVFS–R with PIDVFR–S mapping, it is
254 cGy. The average difference in the DVFS–R with DVFR–S

mapping is 35 cGy, and it is 15 cGy in the DVFS–R with
PIDVFR–S mapping. SICLE back-and-forth dose mapping
consistency errors are also shown in Table IV �in columns
denoted by S�.

For the lung patient, the consistency errors are shown in
Table V. The DVFs are generated by the Demons in ITK
�denoted by I� and SICLE �denoted by S�, respectively. In
Table V, the points mapped by using DVF and its PIDVF are
more consistent than the DVF and its reverse DVF method
for the nondiffeomorphic ITK Demons. For SICLE, the
PIDVF is almost the same as the reverse field generated by
the DIR.

IV. DISCUSSION

The PIDVF generator described here finds a self-
consistent inverse to a pre-existing DVF and is useful for
DIR algorithms that do not autogenerate a self-consistent
inverse. It generates a PIDVF even when the initial DVF has
nonpositive Jacobian values. In this work, the PIDVF con-
cept is applied to DVFs generated by a previously bench-
marked B-Spline registration algorithm,30 the ITK Demons
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FIG. 4. Comparison of the consistency errors between DVF-only method
and DVF-with-PIDVF method in mapping points. The x-axis is consistency
errors �in cm� and y-axis is the logarithm of number of points with the
consistency error.

TABLE III. Point mapping consistency errors for DVFR–S with DVFS–R, DVF
column denoted by B� and SICLE �in the column denoted by S� are used to
to denote prostate images�. PIDVFS–R is the pseudoinverse of DVFR–S and P

R and S

Consistency errors by DVFR–S with DVFS–R

�cm�
Consistency erro

Maximum Average Maximum
B S B S B S

I0 and I1 1.94 0.54 0.06 0.005 1.92 0.5
I0 and I2 1.20 0.55 0.05 0.005 1.20 0.5
I0 and I3 0.88 0.25 0.04 0.006 0.74 0.2
I0 and I4 0.96 0.18 0.04 0.003 0.75 0.1
I0 and I5 0.66 0.05 0.04 0.001 0.66 0.0
I0 and I6 1.05 0.7 0.05 0.005 1.05 0.7
I0 and I7 0.95 0.42 0.03 0.004 0.75 0.3
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algorithm, and the SICLE algorithm.25 While the maximum
allowed inverse computing error may need to be adjusted for
different DIRs, the PIDVF concept can be applied to DVFs
generated by any DIR algorithm. The forward and reverse
fields generated by diffeomorphic SICLE are used to validate
our PIDVF generator. The comparison between the reverse
field generated by SICLE and PIDVF are used to verify
Property 2 which is proven in the Appendix.

The potential clinical impacts of the PIDVF concept are
threefold. First, although a DVF itself might not perfectly
map information from one image to another, its PIDVF will
still give self-consistent results when mapping points, con-
tours, dose, or other planning information back-and-forth be-
tween image sets. In adaptive therapy, when mapping con-
tours and dose from a reference image set out to a “time of
treatment” image set, mapping the per-treatment dose back
to the reference image set with the PIDVF assures that the
per-treatment dose resides within the reference image con-
tour. Second, the existence of a PIDVF and subsequent com-
parison with the reverse DVF generated by switching the
roles of R and S can test the quality of the DVF. However,
similar to the previously developed unbalanced energy
concept,37 passing this test is only a necessary but not suffi-
cient condition for evaluating the correctness of DVFs. For
example, consider DVFR–S and DVFS–R with all vectors be-
ing zeros. These DVFs are meaningless when the deforma-
tion is not zero. However, these DVFs will be perfectly self-
consistent since it does not move the information at all.
Similarly, the PIDVFS–R vectors will also be zeros and there
are no differences between PIDVF and DVF. Hence, the dif-
ference between PIDVF and the reverse DVF alone are not
sufficient condition for evaluating the correctness of DVFs.
Third, the PIDVF together with the method described in Sec.
III B, can be used as a tool to detect the irregularities in the
forward DVFs �between R and S�. The consistency errors in
point mapping can be considered to be a lower bound of
DVF errors, since the correct DVFs should be self-
consistent.

We use an example to show how the PIDVF and the
method described in the point mapping section can be used
to detect irregularities in the forward DVFs. For simplicity,

ith PIDVFS–R, and PIDVFR–S with DVFS–R methods. The B-Spline �in the
rate DVFs on a set of images from a prostate patient �I0, I1 , . . . , I7 are used
FR–S is the pseudoinverse of DVFS–R.

DVFR–S with PIDVFS–R

cm�
Consistency errors by PIDVFR–S with DVFS–R

�cm�

Average Maximum Average
B S B S B S

0.006 0.002 0.02 0.01 0.0008 0.0007
0.007 0.002 0.01 0.01 0.0009 0.0009
0.005 0.002 0.01 0.01 0.0007 0.0007
0.004 0.002 0.01 0.01 0.0007 0.0007
0.008 0.001 0.01 0.01 0.001 0.0006
0.01 0.003 0.01 0.01 0.002 0.0007
0.003 0.002 0.01 0.01 0.0008 0.0008
R–S w
gene
IDV

rs by
�

4
7
3
8
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assume the reference image consists of n points. Assume
DVFR–S maps all the points �x1 , . . . ,xn��R on to one point
y�S. That is the forward mapping f :xl→y , l=1, . . . ,n.
Then according to the definition of PIDVF, g� with �=0
exists. That is g0 :y→xk where k is an arbitrary integer be-
tween 1 and n. Note that in this special case, the PIDVF is
not unique. Now, a set of points are uniformly chosen from
�in our experiment, at least one point is chosen from each
voxel in reference image� R. Without loss of generality, as-
sume x1 , . . . ,xn are chosen. If the forward DVF is used to
map points from R to S, then all the points will be mapped to
y. When g0 is used to map them back to R, each point will be
mapped to xk. The consistency error for xk is zero and non-
zero for all other points. If such irregularities exist in the
forward fields, the PIDVF together with the method can de-
tect the location of such irregularities.

As shown in Tables III and IV, the fact that the average
distance and dose discrepancies obtained when using
PIDVFS–R with DVFS–R are similar to those for DVFS–R with
PIDVFR–S indicates that the self-consistency accuracy is not
dependent on which image is chosen as the reference and
study images during the image registration. In all cases, the
self-consistency is improved if the DVF and its PIDVF are
used to map points or dose back-and-forth. In Table III, one
may notice that the maximum and average distance devia-
tions for the PIDVFS–R with DVFS–R are much smaller than

TABLE IV. B-Spline �B column� and SICLE �S column� back-and-forth dos
PIDVFS–R, and PIDVFR–S with DVFS–R mappings. The DVFs are generated f
smaller deviations for B-Spline and similar performance for SICLE.

R and S

Statistics of dose differences
by DVFS–R with DVFR–S

�cGy�

Stati
by P

Maximum Average Maxim
B S B S B

I0 and I1 952.0 200.6 35.6 17.8 254.1
I0 and I2 1055.5 187.9 42.7 14.5 168.4
I0 and I3 540.9 243.7 27.3 16.8 117.6
I0 and I4 719.9 197.5 32.0 16.6 178.8
I0 and I5 374.9 191.2 26.9 15.1 139.7
I0 and I6 349.3 268.8 25.0 16.5 343.7
I0 and I7 364.3 157.7 21.9 16.7 180.7

TABLE V. Point mapping consistency errors for DVFR–S with DVFS–R, DVFR–

by the Demons in ITK �I column� and SICLE �S column� on the images fr

R and S

Consistency errors by DVFR–S

with DVFS–R �cm�
Con

Maximum Average Maxim
I S I S I

Phase 0 and 1 2.01 0.03 0.07 0.0005 0.71
Phase 0 and 2 2.87 0.04 0.12 0.001 0.84
Phase 0 and 3 3.11 0.99 0.14 0.05 0.90
Phase 0 and 4 3.30 0.06 0.14 0.001 1.02
Phase 0 and 5 3.16 0.06 0.14 0.001 0.80
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the values in for the DVFS–R with PIDVFR–S. This is due to
the points close to the edge of ROI. If DVFR–S is used to map
points, then some points close to the edge are mapped out of
the ROI. Since the components of PIDVFS–R and DVFS–R are
set to zeros, these points will not be mapped back to the ROI.
This can cause large consistency errors. These consistency
errors might be reduced by expanding the ROI used to gen-
erate the DVFs. Due to the limit of space, only QAed DVFs
are used in this study and expanding the ROI to avoid the
boundary condition is left for our future study.

Figure 5 shows the spatial locations of the consistency
errors. Since the PIDVFR–S is self-consistent with DVFS–R

and the components of DVFS–R out of the ROI are zeros,
PIDVFS–R will not map the edge points out of ROI, hence,
those points will stay in ROI and will be mapped back. As a
result, the maximum and average discrepancies are much
smaller.

By comparing Tables III and IV, one can see that the
improvement in self-consistency in points and dose mapping
are different. For example, when mapping points back-and-
forth, the average distance consistency error can be reduced
by three to nine times if PIDVF is used �as shown in Table
III�. When dose is mapped back-and-forth, the improvement
is only 1.5–2.5 times. The dose consistency error is less due
to the low dose gradient in the discrepant regions and inter-
polation blurring. If the point-based mapping is off by some

pping self-consistency comparison for DVFR–S with DVFS–R, DVFR–S with
et of prostate images �I0 , I1 , . . . , I7�. The PIDVF approach has 1.5–2.5 times

of dose differences
FS–R with DVFR–S

�cGy�

Statistics of dose differences
by DVFS–R with PIDVFR–S

�cGy�

Average Maximum Average
B S B S B S

.2 15.6 15.5 223.1 208.1 14.6 17.5

.9 20.4 17.1 149.1 186.1 20.4 18.5

.7 16.8 13.1 163.2 200.5 17.2 14.6

.2 18.3 15.8 153.7 187.4 17.8 15.9

.6 19.8 14.4 188.8 190.8 19.9 14.6

.5 14.6 18.1 262.3 255.6 14.4 15.4

.1 14.4 18.4 114.8 165.9 14.6 16.2

h PIDVFS–R, and PIDVFR–S with DVFS–R methods. The DVFs are generated
lung patient.

cy errors by DVFR–S

PIDVFS–R �cm�
Consistency errors by PIDVFR–S

with DVFS–R �cm�

Average Maximum Average
I S I S I S

3 0.009 0.0002 0.68 0.03 0.007 0.0002
3 0.01 0.002 0.76 0.03 0.009 0.001
3 0.01 0.002 0.91 0.03 0.01 0.002
6 0.01 0.002 0.96 0.05 0.01 0.001
6 0.01 0.002 0.74 0.03 0.01 0.002
e ma
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distance �e.g., even several cm�, but the dose at the offset
point is the same as the true point �e.g., the dose gradient is
zero�, then the dose consistency error will be zero. The
boundary conditions also affect the dose mapping accuracy.
Figure 6 shows the distribution of the dose inconsistency in
dose mapping. Due to space limitations, dose mapping errors
and inconsistency will be further studied in our future work.

When mapping points back-and-forth, there are consis-
tency errors greater than 2� �0.02 cm�, where � is the maxi-
mum mapping error of PIDVF. There are two sources for
such consistency errors. The first source comes from the
points located at the edge of the region of interest. For ex-
ample, Fig. 5�b� shows the consistency error in points map-
ping on one slice of R with I0 being R and I1 being S. Near
the image boundary, insufficient information exists to accu-
rately interpolate the DVF, and hence large consistency er-
rors result. The second source of large consistency error is
due to the interpolation error which is related to the reso-
lution and magnitude of the DVF. A one-dimensional ex-
ample is used to illustrate the source of this consistency error
�Fig. 7�. Let p1 be a point in R, and p2 be the point after
mapping p1 to S by using DVFR–S �shown in solid black
lines�. The PIDVFS–R �shown in dashed red lines� is used to

FIG. 5. �a� Consistency error distribution when points are mapped by DVF
only for the B-Spline algorithm on the prostate images. �b� Consistency
error distribution when points are mapped by DVF and PIDVF. In this
mapping, errors are only at the DVF box edges.

FIG. 6. The dose mapping inconsistency for the B-Spline DVF for a prostate
image displayed on a single transverse slice. �a� and �b� show the dose
consistency errors for DVF-only and PIDVF-with-DVF, respectively, for a
2�2�2 mm3 dose grid resolution. �d� and �e� show the DVF-only and
PIDVF-with-DVF dose consistency errors when the dose grid resolution is

3
4�4�4 mm .
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map p2 back to R, yielding p3. d is the consistency error in
this back-and-forth mapping. Here, when �→0, d ap-
proaches the voxel size. Note that if the PIDVFS–R is evalu-
ated and stored at additional points in the image space of S
�e.g., at an increased resolution�, then d is reduced since the
interpolating points are more closely spaced, thereby reduc-
ing the interpolation error. The standard PIDVF algorithm
can be used to determine the PIDVF at the additional points.
We have implemented this approach, tested it for mapping
points, and found that it improved the self-consistency of the
back-and-forth point mapping. Details of the implementation
and testing are omitted here in the interest of space.

The PIDVF method described in this paper and the Ap-
pendix is different from the inverting method in Ref. 25. The
inverting algorithm used in Ref. 25 can be described as the
following: For each point q in S, the algorithm first picks a
point p in R and calculates the inverse computing error
�f�p�−q�. Points p= p+ �q− f�p�� /2 are then iteratively picked
and the inverse computing error is recalculated until the in-
verse computing error is smaller than a threshold or the
maximum number of loops is reached. Note that Ref. 25
assumes that the forward field f is continuously differentiable
and has positive Jacobian throughout R, thus f−1 exists and is
smooth. This implies the inverse computing error can be
made arbitrarily small. When the algorithm in Ref. 25 en-
counters a point which does not converge, it stops. In con-
trast, the algorithm presented in this paper �and detailed in
the Appendix� only assumes the forward field is finite. The
PIDVF algorithm first finds a PIDVF value with finite error
at each point, and then iterates around each point to identify
locations which reduce the inverse computing error at each
point. The algorithm is described in further detail in the Ap-
pendix. At completion, the algorithm reports not only the
PIDVF, but also the inverse computing error at each point.
The PIDVF algorithm described in this paper can generate
reverse fields with small inverse computing error for DVFs
generated by both B-Spline and ITK Demons algorithms.
This is not assured for the algorithm in Ref. 25. To demon-
strate this, an in-house implementation of the algorithm in
Ref. 25 is developed. In testing with SICLE forward DVFs,
the reverse DVF is quickly computed with a maximum com-
puting error of less than 0.01 cm. However, when the ITK

δ2p

1p d
R

S

3p

FIG. 7. An example of how the finite DVF resolution can contribute to
consistency errors. DVFR–S is shown in black lines and PIDVFS–R �shown in
red dashed lines�. � is a small distance in comparison with the DVF voxel
resolution. By interpolation of DVFR–S, p1 in R is mapped to p2 in S. By
interpolation of PIDVFS–R, p2 in S is mapped back to p3 in R. d is the
consistency error which is due to the interpolation of the finite resolution
DVF.
Demon lung DVF between Phases 0 and 4 is input into our
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in-house implementation of the algorithm in Ref. 25, 35 110
points have a inverse computing error greater than 0.01 cm
and the maximum inverse computing error is 0.9 cm. When
our PIDVF generator is used with the same inputs, only 127
points have an inverse computing error greater than 0.01 cm,
and the maximum inverse computing error is reduced to
0.035 cm—A substantial improvement over our implementa-
tion of the method in Ref. 25 for this test.

An incidental finding during our back-and-forth dose
mapping tests is that the dose consistency error is propor-
tional to the dose voxel size, due to interpolation error. Fig-
ure 6 shows the improvement in self-consistency when a 2
�2�2 mm3 dose voxel size is used compared to a 4�4
�4 mm3 voxel size. The improvement suggests that in order
to improve the self-consistency of mapping dose back-and-
forth, it is not sufficient to improve the self-consistency of
DVFs and PIDVFs alone. Instead, dose voxel resolution and
dose mapping algorithms should also be improved. In the
past few years, various methods have been introduced to
incorporate organ motion into dose calculations
quantitatively.38,39 Assessment of dose reconstruction errors40

has also been reported. Self-consistency should not only be a
constraint for DVFs, it should also be a requirement for dose
mapping algorithms. By using DVF and its PIDVF with
small inverse computing errors, one can be assured that the
DVF and PIDVF are consistent, so one can focus on the
self-consistency of dose mapping methods.

V. CONCLUSION

In IGRT and ATP, points, contours, dose, and other rel-
evant treatment information may need to be mapped back-
and-forth between reference image and study images. Incon-
sistent forward and backward mappings may result in dose
being mapped out of contours. Motivated by this, the PIDVF
concept is developed in this paper. We have demonstrated
that it is possible to generate a PIDVF with a small incon-
sistency error. Our PIDVF generator algorithm is just an ex-
ample implementation and alternative algorithms to generate
PIDVFs may exist. Our algorithm can be easily parallelized.
The difference between the DVF generated by reversing the
roles of R and S in image registration and PIDVF could be
used as a metric to measure the goodness of the DVFs. As
shown in our testing results, if a DVF and its PIDVF is used
to map information back-and-forth, then the self-consistency
is improved as compared with mapping by using the DVF
only. Moreover, when using DVF with its PIDVF, the im-
provement in self-consistency does not depend on which im-
age is reference and which image is study, which is a desir-
able property in clinical application. The PIDVF algorithm is
available upon request from the first author.
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APPENDIX: PIDVF GENERATOR
AND ITS PROPERTIES

I. PIDVF generator

In describing the PIDVF generator, the DVF generated by
the B-Spline DIR in Ref. 30 is used as an example. However,
the DVF generated by an arbitrary deformable image regis-
tration algorithm could have been used. The input to the
algorithm is a DVF between R and S, DVFR–S. The output of
the algorithm is a pseudoinverse DVF PIDVFS–R, which is
self-consistent with the DVFR–S.

The reference and study images can be viewed as two 3D
grids. The DVFR–S can be viewed as a map from the grid
points of R to the points in S. By interpolation of DVFR–S,
the mapping of an arbitrary point p in R is mapped to the
point q in S. Finding the PIDVF at each grid point q in S
consists of finding the point p in R, such that p is mapped to
within � of q according to the forward DVFR–S. The PIDVF
for q is then g� :q→p.

In the description of the algorithm, g�q� is used to denote
the mapping of q to R, e�q� denotes the inverse computing
error and f�p� is the point where p is mapped into S. Initially,
e�q� is set to infinity for every grid point in S.

The algorithm has two main steps, each consisting of sev-
eral subroutines. The first step consists of finding a finite
pseudoinverse mapping for each point, the second step in
reducing the mapping error for point with errors greater than
the tolerance threshold. Pseudocode for the algorithm is
shown in Fig. 8.

The first step consists of the following: Each grid point p
in R is mapped to a point f�p� in S. The set of grid points q
in S which surround f�p� are chosen and mapped back to p
with the negative of the forward transformation �see Fig. 9�.
The PIDVF and error in each mapping e�q� equal to the
distance between f�p� and the chosen grid point is updated if
e�q� is reduced by the mapping. The maximum distance sur-
rounding f�p� for these assignments is user adjustable. For
the B-Spline test case, the distance is set to be the largest
diagonal distance in one 0.08�0.08�0.3 cm3 voxel,
�0.32 cm. Note that the maximum inverse computing error
for these points is then 0.32 cm. At this point, it is possible
that some points in S have unassigned initial PIDVF�q� and
e�q� values. Each point q in S with unassigned PIDVF and
e�q� values is assigned by choosing the nearest neighbor q�
of q with finite e�q�� and setting g�q� to g�q�� and computing
e�q�. At the completion of this first step, all the points in S
are mapped back to R with a finite inverse computing error.

The second step focused on reducing the inverse comput-
ing error for points with e�q��� as follows, with � being a
user-specified tolerance value. In this work, �=0.01 cm.
First, for each point q in S with e�q���, a box centered at

g�q� is constructed with size equal to e�q�. The eight corners
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of the box are mapped to S and the reverse mapping of q is
updated if e�q� can be reduced. The box size is iteratively
halved six times in search of locations with smaller comput-
ing errors. Next, several rounds of a systematic search are
performed to reduce e�q� for the remaining points with
e�q��� as follows. The search first identifies a set of active
grid points. A grid point q in S is an active grid point if
e�q��� and a grid point in N1�q� has an inverse computing
error greater than �, where N1�q� is a set of grid points in S
directly adjacent to q. For the previously stated voxel size,

// Step 0: initialize delta, MAXLOOP and inverse computing er
Initialize tolerance (e.g. 0.01), MAXLOOP (e.g. 6) and set inve
// Step 1a: Map points from p in R, assign e(q) for points q in S
foreach grid point p in R do
// f(p) is map of point p in R to image S, g(q) is map of point q

foreach point q in S which surrounds f(p) do
if e(q) > |q-f(p)| then { g(q) = p; e(q) = |q-f(p)| } // assi

endfor
endfor
// Step 1b: map unmapped points in S via nearest neighbor
foreach q in S with e(q) being infinite do
find nearest neighbor q’ in S with finite e(q’)
{ g(q) = g(q’); e(q) = |q - f(g(q’))| } // assign a mapping, com

endfor
// Step 2a: Search around points with e(q) > tolerance in S
foreach grid point q in S do

stepSize = e(q) // initialize search box step size
while e(q) > tolerance and numberOfLoops < MAXLOOP

construct a 3D box G(g(q)) centered around g(q) in R
foreach corner point p’ of the 3D box G(g(q)) do
if e(q) > |q-f(p’)| then { g(q) = p’; e(q) = |q-f(p’)| }

endfor
numberOfLoops = numberOfLoops + 1; stepSize = 0

endwhile
endfor
// Step 2b: Systematic search around active grid points (adjac
while there exists a point q’ in S with e(q’) > tolerance AND
foreach grid point q in S do

if e(q) < tolerance AND q has an adjacent grid point q
stepSize = sqrt(dx2 + dy2 + dz2); numberOfInnerLo
while numberOfInnerLoops < MAXLOOP do

use g(q) as the center and construct a 3D box
foreach corner point p’ of the 3D box G(g(q)) d
foreach grid point q’’ surrounding f(p’) in S d
if e(q’’) > |q’’-f(p’)| then { g(q’’)=p’ ; e(q’’)

endfor
endfor
numberOfInnerLoops = numberOfInnerLoops +

endwhile
endif

endfor
numberOfLoops = numberOfLoops + 1

endwhile

FIG. 8. Pseudocode for the inverse DVF a

(a) Reference image (b) Study image

p

q

FIG. 9. Demonstration of the selection of points to assign initial reverse
mappings to. Assume the grid point p in the reference image R is mapped to
q in the study image S. The yellow points in S are grid points for the voxel,
which contain q. In our first step, the grid points in yellow are mapped back

to p.
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this corresponds with a distance of at most
�0.082+0.082+0.32=0.32 cm from q. For each identified
active grid point q in S, a box centered at g�q� is constructed
in R. For each grid point p of the constructed box, the in-
verse computing errors for the grid points surrounding f�p�
are recalculated and points with reduced computing errors in
that search space are identified and assigned, thereby reduc-
ing the errors for some points. The spacing of the box around
p is iteratively reduced in the search for a point with reduced
mapping error. The systematic search described above, be-
ginning with the reidentification of active grid points, is re-
peated several times until the inverse computing error is less
than � or the maximum number of iterations is reached. The
maximum number of iterations can be chosen to balance the
tradeoff between inverse computing error and running time.

II. PIDVF properties

The two properties of PIDVF are given as two lemmas.
Their proofs are given below.

Lemma 1. If the forward mapping f is between two finite
domains R and S, then there exists an ��0, such that g�

exists, i.e., �f�g��y���−y���� for any y��S.
Proof. Assume the largest distances between any two

points in R is d1 and the largest distances between any two

omputing errors e(q) to infinity for each point q in S
h are immediately adjacent to f(p) if assignment reduces e(q)

o image R

pping when it reduces error

rror

box edge length is stepSize

ign mapping if it reduces error

tepSize

ints with low errors) instead of around the points themselves
erOfLoops < MAXLOOP do

with e(q’) > tolerance then
1 // dx, dy, dz are image voxel size of R

)) in R, the box edge length is stepSize

(p’)| } // assign mapping if it reduces error

epSize = 0.5 * stepSize

hm. See text for explanation of the steps.
ror
rse c
whic

in S t

gn ma

pute e

do
, the

// ass

.5 * s

ent po
numb

’ in S
ops =

G(g(q
o
o
=|q’’-f

1; st

lgorit
points in S is d2, let �=d=max�d1 ,d2	. Since R and S are
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finite, d must exist. Now, for any given point y in S, suppose
gd :y→x for x in R. Assume in the forward mapping f :x
→z, where x is a point in R and z is point in S. By the choice
of d, �y−z��d=� holds. Hence, gd is well-defined.

Lemma 2. If f−1 exists and is smooth in S, then for an
arbitrary point y in S, �g��y�− f−1�y�� tends to 0 when � ap-
proaches zero,

Proof. The proof is by contradiction. Assume that there is
y0 such that �g��y0�− f−1�y0�� does not approach zero as �
tends to 0. According to the definition of g�, suppose
g��y0�=x�, then �f�x��−y0��� holds. Since f is invertible,
there exists exactly one x such that f−1�y0�=x. Since �g��y0�
− f−1�y0�� does not tend to zero, it implies that there exists a
sequence of ��i	 ,�i→0, such that

�g�i
�y0� − f−1�y0�� � C �A.1�

for some constant C. Note that f−1 is a continuous smooth
function. When �f�g�i

�y0��−y0���i→0, �f−1�f�g�i
�y0���

− f−1�y0����i→0, which contradicts Eq. �A.1�.
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