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Abstract

Background: Elevated serum homocysteine is associated with an increased risk of cardiovascular disease (CVD). This may
reflect a reduced systemic remethylation capacity, which would be expected to cause decreased genomic DNA methylation
in peripheral blood leukocytes (PBL).

Methodology/Principal Findings: We examined the association between prevalence of CVD (myocardial infarction, stroke)
and its predisposing conditions (hypertension, diabetes) and PBL global genomic DNA methylation as represented by ALU
and Satellite 2 (AS) repetitive element DNA methylation in 286 participants of the Singapore Chinese Health Study, a
population-based prospective investigation of 63,257 men and women aged 45–74 years recruited during 1993–1998. Men
exhibited significantly higher global DNA methylation [geometric mean (95% confidence interval (CI)): 159 (143, 178)] than
women [133 (121, 147)] (P = 0?01). Global DNA methylation was significantly elevated in men with a history of CVD or its
predisposing conditions at baseline (P = 0?03) but not in women (P = 0?53). Fifty-two subjects (22 men, 30 women) who
were negative for these CVD/predisposing conditions at baseline acquired one or more of these conditions by the time of
their follow-up I interviews, which took place on average about 5?8 years post-enrollment. Global DNA methylation levels of
the 22 incident cases in men were intermediate (AS, 177) relative to the 56 male subjects who remained free of CVD/
predisposing conditions at follow-up (lowest AS, 132) and the 51 male subjects with a diagnosis of CVD or predisposing
conditions reported at baseline (highest AS 184) (P for trend = 0.0008) No such association was observed in women
(P = 0.91). Baseline body mass index was positively associated with AS in both men and women (P = 0?007).

Conclusions/Significance: Our findings indicate that elevated, not decreased, PBL DNA methylation is positively associated
with prevalence of CVD/predisposing conditions and obesity in Singapore Chinese.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death in

most countries [1]. Risk factors known to predispose to the

development of CVD include increasing age, male gender,

diabetes mellitus, high blood cholesterol, tobacco smoking, high

blood pressure (hypertension), obesity, physical inactivity, and

family history [1]. Elevated plasma homocysteine is also an

independent risk factor for CVD [2,3]. The mechanism by which

elevated homocysteine contributes to CVD risk is not well

understood, but it is well-established that dietary folate and

vitamin B supplementation can reduce serum homocysteine levels

by facilitating remethylation of homocysteine to methionine

[4,5,6]. Accumulation of homocysteine can lead to increased

intracellular levels of S-adenosylhomocysteine, a transmethylation

inhibitor [7,8]. The remethylation cycle is essential for the

systemic methyl donor supply, which is used for important

biological processes, such as cytosine-5 methylation of genomic

DNA, an epigenetic modification that plays an important role in

maintaining genomic stability, chromatin structure, and in

controlling transcriptional capacity [2,9]. Global DNA hypo-

methylation has been observed in atherosclerotic lesions as a

consequence of low dietary folate or elevated plasma homocysteine

in humans and animal models [10,11]. We have previously

identified age, sex, plasma folate, vitamin B-12 and vitamin B-6,

and methylenetetrahydrofolate reductase (MTHFR) genotype as

independent predictors of plasma homocysteine in Singapore

Chinese [12]. In this study, we examined the relationships between

prevalence of CVD (myocardial infarction, stroke) or its

predisposing conditions (hypertension, diabetes) and peripheral

blood leukocytes (PBL) global genomic DNA methylation to verify

the potential value of DNA methylation as a CVD biomarker,
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using a validated MethyLight-based assay for ALU and Satellite 2

repetitive element (AS) DNA methylation [13].

Methods

Study Population
The subjects were participants of the Singapore Chinese Health

Study, a population-based prospective cohort study of Chinese

men and women, aged 45–74 years at baseline. They belonged to

the two major Chinese dialect groups in Singapore (Hokkien and

Cantonese) and lived in government housing estates where 86% of

all residents in Singapore resided during the period of enrollment

[12]. A total of 63,257 individuals gave informed written consent

and enrolled between April 1993 and December 1998. The study

was approved by the Institutional Review Boards of the University

of Southern California, and the National University of Singapore.

At recruitment, each participant completed an in-person

interview using a structured questionnaire that requested infor-

mation about demographic characteristics, height and weight, use

of tobacco, usual physical activity, medical history, and family

history of cancer. The questionnaire included a validated semi-

quantitative food frequency section listing 165 food items

commonly consumed in the study population, from which average

daily intake of calories and roughly 100 nutrients and non-

nutritive ingredients per subject were computed using the

Singapore Food Composition Table [14] which we developed in

conjunction with the cohort study.

Between 1994 and 1998, a random 3% sample of cohort

participants was recontacted for donation of blood and urine

specimens. The 286 subjects in the current study represented the

first accrued participants of this biospecimen subcohort [15,16]

(Figure 1). The entire cohort has been continuously followed for

the occurrence of incident cancers and deaths ever since. All

surviving cohort participants were interviewed by telephone

during 1999–2003 for an updated medical history. The mean

time interval between the two interviews (baseline and follow-up) is

5?8 years (range, 2?6–11?0 years).

DNA Methylation Analysis
DNA was extracted from peripheral blood leukocytes collected

from the 286 (129 men, 157 women) study subjects. Sodium

bisulfite conversion of genomic DNA was conducted. The samples

used in our study were stored at 230uC to minimize DNA

degradation and (methyl)cytosine deamination. Methylation levels

of repetitive elements were determined using MethyLight

technology as described previously [13]. The performance

characteristics of the MethyLight assay, including precision and

reproducibility have been well described [17]. Briefly, bisulfite-to-

bisulfite coefficient of variation (CV) of percent of methylated

reference (PMR; degree of DNA methylation) ranged from 0?10 to

0?38 (mean, 0?21), and MethyLight run-to-run CV of PMR

ranged from 0?046 to 0?60 (mean, 0?31). The MethyLight data

specific for methylated repetitive elements were calculated as

Figure 1. Study Overview.
doi:10.1371/journal.pone.0009692.g001

Table 1. Geometric mean (95% confidence interval)1 levels of
the AS index according to gender and age at blood draw.

n Total n Men1 n Women1

286 144 (135, 155) 129 159 (143, 178) 157 133 (121, 147)

Age at blood draw (yrs)

55–59 47 155 (131, 183) 66 132 (115, 153)

60–64 38 171 (141, 206) 34 143 (117, 174)

65–69 27 136 (109, 171) 27 112 (89, 139)

70–77 17 178 (135, 236) 30 150 (122, 186)

p for trend1,2 (age) 0?82

p-value1,2 (gender) 0?01

p-value1,2 (age*gender) 0?91

1From Generalized Linear Model with adjustment for gender and age.
2Generalized Linear Modeling was performed on ranks (as opposed to actual
values) of AS, with adjustment for gender and age. All p-values are two-sided.

doi:10.1371/journal.pone.0009692.t001
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percent of methylated reference (PMR) using M. SssI-treated

DNA as a methylated reference and the ALU-based control

reaction (ALU-C4) as a control reaction to measure the levels of

input DNA to normalize the signal for each methylation reaction.

Thus the PMR can be defined as ((METHYLATED GENE/

CONTROL REACTION)sample)/((METHYLATED GENE/

CONTROL REACTION)SssI-Reference)*100, in which ‘‘METH-

YLATED GENE’’ refers the methylation measurement at a

particular locus such as ALU or SAT2 and ‘‘CONTROL

REACTION’’ refers to the methylation-independent measure-

ment using the Alu-based control reaction. The composite

methylation measurements of ALU (ALU-M2) and SAT2

(SAT2-M1) were used for MethyLight-based estimates of genomic

5-methylcytosine content [13]. The AS index for a given subject is

defined as the arithmetic mean of ALU-M2 and SAT2-M1.

Table 2. Geometric mean (95% confidence interval)1 levels of the AS index by selected medical conditions at baseline.

n Total subjects n Males n Females

Myocardial infarction

No 276 147 (127, 169) 123 160 (128, 202) 153 133 (110, 161)

Yes 10 198 (134, 291) 6 267 (155, 460) 4 173 (77, 387)

p-value2 0?15 0?07 0?52

Stroke

No 282 147 (127, 170) 127 163 (129, 205) 155 131 (107, 160)

Yes 4 215 (119, 389) 2 273 (111, 669) 2 140 (112, 175)

p-value2 0?15 0?16 0?41

Hypertension

No 203 140 (120, 164) 90 149 (116, 190) 113 134 (111, 162)

Yes 83 163 (137, 193) 39 191 (146, 251) 44 135 (76, 241)

p-value2 0?07 0?07 0?93

Diabetes

No 255 147 (127, 171) 111 161 (127, 204) 144 136 (111, 167)

Yes 31 152 (121, 191) 18 179 (127, 254) 13 127 (92, 175)

p-value2 0?87 0?47 0?58

Myocardial infarction
and/or stroke

No 272 145 (126, 168) 121 160 (127, 201) 151 133 (110, 162)

Yes 14 201 (145, 280) 8 269 (167, 434) 6 146 (91, 234)

p-value2 0?045 0?02 0?66

Hypertension and/or
diabetes among at-risk
subjects3

No 185 139 (118, 164) 78 147 (112, 191) 107 130 (105, 162)

Yes 87 155 (131, 184) 43 179 (137, 234) 44 136 (108, 171)

p-value2 0?19 0?14 0?59

History of Myocardial
infarction, stroke,
hypertension or diabetes

No 185 138 (118, 162) 78 143 (111, 185) 107 131 (106, 162)

Yes 101 160 (136, 188) 51 187 (145, 241) 50 138 (113, 171)

p-value2 0?055 0?03 0?53

1From Generalized Linear Model with adjustment for age, and gender (in total subjects).
2Generalized Linear Modeling was performed on ranks (as opposed to actual values) of AS, with adjustment for age, and gender (in total subjects). All p-values are two-
sided.

3Subjects who had a history of myocardial infarction and/or stroke at baseline were deleted from this analysis.
doi:10.1371/journal.pone.0009692.t002

Table 3. Geometric means (95% CI)1 of the AS index by
gender, stratified by CVD status.

CVD2 status Men Women p-value3

No 143 (111, 185) 131 (106, 162) 0.18

Yes 187 (145, 241) 138 (113, 171) 0.007

Total 161 (145, 179) 137 (124, 151) 0.01

1From Generalized Linear Model with adjustment for age and CVD status (for
total subjects).

2CVD is defined as history of myocardial infarction, stroke, hypertension or
diabetes.

3Generalized Linear Modeling was performed on ranks (as opposed to actual
values) of AS with adjustment for age and CVD status (for total subjects).

doi:10.1371/journal.pone.0009692.t003
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Table 4. Geometric means (95% confidence interval)1 levels of the AS index by methylation and cholesterol variables at baseline.

n Total subjects n Males n Females

Homocysteine (umol/L)

1st quartile 73 155 (125, 191) 23 165 (115, 236) 50 144 (111, 187)

2nd quartile 73 143 (117, 173) 24 142 (103, 197) 49 138 (108, 176)

3rd quartile 72 146 (122, 175) 37 155 (116, 207) 35 138 (109, 174)

4th quartile 68 153 (127, 184) 45 180 (138, 234) 23 121 (92, 159)

p for trend2 0?68 0?62 0?26

Folate (nmol/L)

1st quartile 67 142 (118, 171) 44 152 (116, 199) 23 136 (103, 180)

2nd quartile 67 175 (144, 214) 30 175 (12, 240) 37 173 (134, 224)

3rd quartile 70 145 (120, 174) 31 176 (131, 237) 39 121 (95, 154)

4th quartile 74 143 (118, 173) 24 160 (114, 225) 50 128 (101, 161)

p for trend2 0?65 0?42 0?15

Missing 8 0 8

Vitamin B-12 (pmol/L)

1st quartile 68 139 (115, 167) 39 143 (108, 188) 29 135 (103, 178)

2nd quartile 71 160 (133, 194) 33 192 (145, 253) 38 134 (103, 174)

3rd quartile 68 135 (111, 165) 36 141 (104, 190) 32 129 (99, 169)

4th quartile 72 158 (131, 190) 21 187 (133, 263) 51 138 (109, 173)

p for trend2 0?51 0?34 0?94

Missing 7 0 7

Vitamin B-6 (nmol/L)

1st quartile 66 138 (114, 166) 40 147 (111, 197) 26 127 (98, 166)

2nd quartile 69 139 (115, 168) 31 150 (109, 208) 38 127 (100, 161)

3rd quartile 71 162 (134, 197) 30 178 (132, 241) 41 148 (114, 192)

4th quartile 73 157 (130, 190) 23 175 (126, 242) 50 142 (112, 180)

p for trend2 0?07 0?16 0?23

Missing 7 5 2

Summed quartile ranks

(Folate + VB-12 + VB-6)

0 – 2 56 131 (107, 160) 37 145 (108, 195) 19 116 (85, 158)

3 – 4 78 164 (137, 198) 41 175 (131, 234) 37 156 (121, 201)

5 – 6 73 144 (119, 175) 29 158 (117, 213) 44 131 (102, 168)

7 – 9 64 153 (124, 188) 17 197 (136, 286) 47 130 (101, 168)

p for trend2 0?42 0?15 0?79

Missing 15 5 10

MTHFR

AA 168 157 (134, 183) 76 178 (140, 228) 92 139 (113, 171)

AV 91 133 (112, 159) 39 144 (109, 191) 52 123 (99, 154)

VV 24 133 (101, 177) 13 137 (91, 206) 11 132 (89, 197)

p for trend2 0?03 0?03 0?32

Missing 3 1 2

TS

3/3 199 152 (131, 176) 91 166 (131, 210) 108 138.3 (114, 168)

Other 87 137 (114, 165) 38 156 (116, 211) 49 120.4 (95, 153)

p-value2 0?24 0?78 0?18

n Total subjects n Males n Females

Total cholesterol

1st quartile 70 147 (120, 179) 41 138 (102, 186) 29 159 (122, 209)

2nd quartile 71 144 (121, 171) 37 175 (135, 227) 34 115 (90, 146)

3rd quartile 74 162 (134, 196) 24 180 (128, 252) 50 145 (115, 183)
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Statistical analysis
Global methylation as assessed by the AS index showed a

markedly skewed distribution toward high values. This deviation

from normality was largely corrected via a logarithmic transforma-

tion of the actual values of AS. Thus, geometric means (as opposed

to arithmetic means) of AS and their corresponding 95% confidence

intervals were presented. We decided on a more conservative, non-

parametric approach to formal statistical testings of the data.

Therefore, we employed the generalized linear modeling (GLM)

methods on ranked values of the AS index, as opposed to its

logarithmically transformed values, in calculating all P values

reported in this paper. Since length of sample storage may have an

influence on our data, we repeated all analyses with length of sample

storage (months) as an additional covariate in the GLM models. No

material changes to the results are noted. Since serum homocysteine

may be a confounder in the examination of AS in relation to BMI

and CVD, it was entered as a covariate to the appropriate GLM

models in addition to age, gender and BMI. All statistical

computations were conducted using the statistical program SAS,

version 6?12 (SAS Institute Inc, Cary, NC). All P values reported are

two-tailed and statistical significance was defined as P,0?05.

Results

Global DNA methylation and gender
Men had significantly higher AS values within each age group

(P = 0?02; Table 1), consistent with our recent finding of higher DNA

methylation at unique genomic loci in men than in women [15].

However, age, adjusted for gender, was not associated with AS. There

is no evidence of an interaction effect of age and gender on AS level. All

subsequent statistical analyses were adjusted for age and gender.

Global DNA methylation and CVD
Subjects with a self-reported history of physician-diagnosed

heart attack (myocardial infarction) and/or stroke at baseline

showed a borderline (P = 0?045) significantly higher mean AS

[n = 14; geometric mean (95% confidence interval (CI)): 201 (145,

280)] compared to those without such a history [n = 272; 145 (126,

168)] (Table 2). Subjects with a self-reported history of myocardial

infarction, stroke, hypertension and/or diabetes showed a higher

mean AS measurement that is of borderline statistical significance

(P = 0?055) relative to those without such histories [n = 101; 160

(136, 188) vs. n = 185; 138 (118, 162)]. This relationship between

prevalence of myocardial infarction, stroke or their predisposing

medical conditions and global DNA methylation was principally

observed in men (P = 0?03). To further delineate whether this

gender effect and CVD status were correlated, we analyzed the AS

index by gender stratified by CVD status. The gender effect was

mostly coming from the subgroup of subjects with a history of

CVD at baseline (P = 0?007; Table 3).

Global DNA methylation and BMI
The constellation of positive associations between global PBL

DNA methylation and prevalence of CVD or its risk factors

suggests a potential relationship between metabolic syndrome

n Total subjects n Males n Females

4th quartile 71 144 (119, 175) 27 151 (108, 212) 44 133 (106, 168)

p for trend2 0?81 0?35 0?59

HDL

1st quartile 72 154 (128, 185) 42 165 (126, 216) 30 141 (109, 182)

2nd quartile 71 143 (119, 171) 37 148 (112, 197) 34 134 (106, 170)

3rd quartile 76 146 (120, 177) 32 193 (143, 260) 44 112 (87, 144)

4th quartile 67 152 (124, 185) 18 142 (98, 205) 49 142 (112, 179)

p for trend2 0?93 0?59 0?71

LDL

1st quartile 67 148 (122, 180) 33 142 (105, 193) 34 154 (119, 199)

2nd quartile 70 151 (125, 183) 41 172 (130, 227) 29 132 (101, 172)

3rd quartile 71 143 (118, 173) 26 165 (119, 230) 45 126 (99, 160)

4th quartile 69 142 (117, 172) 23 168 (119, 237) 46 125 (99, 158)

p for trend2 0?42 0?38 0?07

Missing 9 6 3

Triglyceride

1st quartile 73 140 (115, 170) 26 147 (108, 199) 47 129 (100, 166)

2nd quartile 73 140 (117, 169) 42 170 (128, 226) 31 113 (87, 146)

3rd quartile 69 152 (126, 184) 28 174 (128, 236) 41 135 (107, 172)

4th quartile 71 159 (132, 191) 33 166 (121, 229) 38 151 (120, 191)

p for trend2 0?14 0?55 0?14

1From Generalized Linear Model with adjustment for age, and gender (in total subjects).
2Generalized Linear Modeling was performed on ranks (as opposed to actual values) of AS, with adjustment for age, and gender (in total subjects). All p-values are two-
sided.

*Quartile cut-points of plasma homocysteine, B vitamins and cholesterols were shown in Supplementary Table S2.
doi:10.1371/journal.pone.0009692.t004

Table 4. Cont.
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[18] and global DNA methylation. However, serum triglyceride

levels, total cholesterol, high density lipoprotein cholesterol, and

low density lipoprotein cholesterol were not correlated with AS

(Table 4), in agreement with the finding that DNA methylation of

LINE-1 repetitive sequences was not altered in atherosclerosis-

prone Apolipoprotein E-null aortic DNA compared with controls

[10]. Similarly, there were no statistically significant associations

between plasma homocysteine, folate, vitamin B12, vitamin B6,

and AS levels (Table 4). Furthermore, levels of homocysteine

were unrelated to AS, independent of CVD status (Supplemen-

tary Table S1). Quartile cut-points of plasma homocysteine, B

vitamins and cholesterols were shown in Supplementary Table

S2. We then examined the polymorphisms of two folate

metabolizing enzymes, MTHFR and TYMS, in relation to AS

levels. Genotypes of MTHFR (P = 0.03) but not TYMS (P = 0.24)

were significantly associated with AS levels (Table 4). Meanwhile,

baseline body-mass index (BMI) was positively associated with AS

(P = 0?007; Table 5), consistent with our hypothesis. Subjects with

BMI of 24 kg/m2 or higher [n = 74; 178 (147, 214)] showed

elevated AS compared to those with BMI below 24 kg/m2

[n = 212; 140 (121, 163)].

Global DNA methylation and CVD at follow-up
We explored the association between CVD or predisposing

conditions and global DNA methylation in more detail by

analyzing newly diagnosed cases at follow-up among the 185

subjects free of CVD or predisposing conditions at the time of the

baseline interview. All cohort participants were interviewed by

telephone during 1999–2003 for an updated medical history (The

Follow-up I Survey). The mean time interval between the two

interviews (baseline and follow-up I) was 5?8 years (range, 2?6–

11?0 years) among the 52,325 participants of the Follow-up I

Survey. We identified 47 subjects who were free of a history of

myocardial infarction, stroke, hypertension, and/or diabetes at

recruitment but had developed at least one of these conditions

during follow-up. In addition, we identified from death certificate

reviews that five subjects had died of one of these listed conditions

as of December 31, 2004. Meanwhile, 133 subjects were still

negative for CVD or its predisposing conditions by the time of

their follow-up interviews. Male (P = 0.008) but not female

(P = 0.91) subjects exhibited an association between AS levels

and status of CVD/predisposing conditions at baseline and at

followup/death (Table 5). Among men, the 22 incident cases [177

(126, 250)] exhibited higher levels of AS relative to the 56 subjects

[132 (101, 173)] without any of these medical conditions both at

baseline and at follow-up. The highest levels of AS were observed

among the 51 subjects [184 (141, 240)] who already were positive

for these medical conditions at recruitment. When BMI and

medical history were examined in combination with respect to AS,

the highest levels of AS were noted among subjects who, at

baseline, possessed the highest level of BMI (24 kg/m2 and above)

and a physician-diagnosed history of myocardial infarction, stroke,

hypertension and/or diabetes (Table 5), although the small

number of subjects in each cell precludes firm conclusions.

Discussion

We present here the results of a population-based prospective

cohort study of risk factors for CVD. This study was initiated to

Table 5. Geometric mean (95% confidence interval)1 levels of the AS index according to baseline BMI and subjects’ history of
myocardial infarction, stroke, hypertension and/or diabetes at baseline and at follow-up/death.

BMI at
baseline

Myocardial infarction,
stroke, hypertension
and diabetes at
baseline

Myocardial infarction,
stroke, hypertension
and diabetes at
follow-up/death n

Mean AS at
baseline Total
subjects n

Mean AS at
baseline Males n

Mean AS at
baseline Females

,24 212 140 (121, 163) 93 152 (119, 194) 119 126 (103, 154)

24+ 74 178 (147, 214) 36 189 (139, 256) 38 160 (126, 204)

p value2 (BMI) 0?007 0?04 0?07

No No 133 139 (117, 165) 56 132 (101, 173) 77 138 (110, 173)

No Yes 52 140 (113, 174) 22 177 (126, 250) 30 114 (86, 151)

Yes3 Yes3 101 161 (136, 189) 51 184 (141, 240) 50 139 (112, 172)

p for trend2 (myocardial infarction, stroke,
hypertension, diabetes)

0?11 0?008 0?91

,24 No No 111 138 (116, 164) 48 133 (102, 175) 63 136 (108, 171)

,24 No Yes 38 130 (103, 165) 15 163 (111, 239) 23 107 (80, 145)

,24 Yes Yes 63 139 (115, 168) 30 162 (120, 220) 33 119 (93, 151)

24+ No No 22 139 (104, 186) 8 109 (66, 181) 14 144 (102, 206)

24+ No Yes 14 166 (119, 232) 7 199 (119, 335) 7 134 (86, 208)

24+ Yes Yes 38 202 (162, 252) 21 217 (156, 303) 17 185 (137, 251)

1From Generalized Linear Model with adjustment for age, gender (in total subjects), and serum homocysteine.
2Generalized Linear Modeling was performed on ranks (as opposed to actual values) of AS, with adjustment for age, gender (in total subjects), and serum homocysteine.
All p-values are two-sided.

3ICD9 codes on death certificates are:
Myocardial infarction = 402 (hypertensive heart disease), 410 (acute myocardial infarction), 411 (other acute and subacute ischemic heart disease), 412 (old myocardial
infarction), 413 (angina), 414 (other forms of chronic heart disease), 427 (cardiac dysrhythmia), and 428 (heart failure).
Stroke = 430–438.
Diabetes = 250.
Hypertension = 401 (essential or primary hypertension), 402 (hypertensive heart disease), 403 (hypertensive renal disease), 404 (hypertensive heart and renal disease),
and 405 (secondary hypertension).
doi:10.1371/journal.pone.0009692.t005
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ascertain whether PBL DNA methylation could serve as a stable

measure of systemic methyl group supply, analogous to the use of

glycated forms of hemoglobin to provide measures of long-term

mean blood glucose levels. However, we did not observe the

anticipated correlations between PBL DNA methylation and

plasma folate and homocysteine, dietary folate and the B vitamins,

and folate metabolizing genotypes such as TYMS. Furthermore, we

noted a statistically significant, positive association between PBL

DNA methylation and prevalence of CVD or its risk factors,

primarily in men, when we had anticipated an inverse association

between the two sets of factors. This suggests that, rather than folate

insufficiency, a different mechanism, such as systemic inflammation,

may lead to increased PBL DNA methylation. Our results differ

from those of Castro et al. (2003), who found that vascular disease

patients with elevated plasma tHcy and AdoHcy concentrations and

low plasma AdoMet/AdoHcy ratios had lower levels of genomic

DNA methylation [19]. However, this study was based on a very

small sample size of 17 vascular disease cases and 15 controls.

Although Castro et al. (2003) used the intracellular AdoMet/

AdoHcy ratio as a predictor of cellular methylation capacity, they

failed to observe such association in their study. The global DNA

methylation status and homocysteine, both plasma tHcy and

AdoHcy, also seemed to be less correlated each other (r = 0.47;

r = 0.54, respectively). Moreover, it has been observed that

imprinted gene H19 is hypermethylated, not hypomethylated, in

brain and aorta of hyperhomocysteinemic mice, although the effect

of hyperhomocysteinemia on H19 DMD methylation was tissue-

specific in these mice [20]. The result of significantly higher AS in

men is consistent with our recent finding of higher DNA

methylation at unique genomic loci in men than in women [15].

It has been reported that global DNA methylation levels decrease

with age [21,22]. However, the relatively narrow elderly age range

(55–77 years) of our study population at blood draw may account

for the lack of association between age and AS in this study. Age-

dependent decrease of global DNA methylation levels measured by

HPLC was also fairly small in human PBL among age groups [22].

Although we did not find a link between lipid metabolites [18]

and global DNA methylation, baseline BMI was positively

associated with AS. High relative weight is considered a risk

factor for CVD in both western [23] and Chinese [24]

populations. It is worth noting that most diabetics among Chinese

have normal BMI according to western standards [25] and the

recognized cutpoint for at-risk Chinese is BMI of 24 kg/m2 [26] or

higher.

In summary, this is the first report of an association between

global DNA methylation assessed by ALU/SAT2 methylation

[13] and prevalence of CVD, in addition to its risk factors,

including male gender and obesity in a population-based

Singapore Chinese cohort, a relatively lean population. Our novel

findings, derived from analysis that were exploratory in nature,

require confirmation from studies on other Asians as well as more

distinct ethnic groups, such as those in the West with higher BMI.

If confirmed, this blood-based marker could offer exciting new

opportunities for population-based CVD risk assessment and

prevention.
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