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 Introduction 

 The prevalence of allergy is increasing worldwide, es-
pecially in Western countries  [1, 2] . This trend may be due 
to increased hygiene which prevents early exposure to 
microorganisms in infancy and increases the risk of de-
veloping an allergic disease in the future  [3] . Air pollution 
may also favor the development of allergies  [4] . Among 
allergic diseases, asthma is of particular concern as it can 
evolve into a life-threatening chronic pulmonary disease. 
It is now recognized that inhalation of aeroallergens by 
sensitized patients initiates a massive T helper 2 (TH2) 
cell response resulting in the production of interleukin-4 
(IL-4), IL-5 and IL-13 by CD4+ T cells  [5] . This triggers 
the development of typical signs of bronchial asthma in-
cluding airway hyperresponsiveness, bronchoconstric-
tion, mucus secretion and airway remodeling. The re-
cruitment, differentiation and activation of TH2 cells 
play a cardinal role in the development of allergic disease. 
This TH2 polarization is mainly controlled by antigen-
presenting cells (APCs) that provide signals capable of 
supporting the differentiation of naïve T cells into TH2 
cells.

  Initially, Lafferty et al.  [6]  suggested that T lympho-
cytes require two coordinate signals to be fully activated. 
The first signal confers specificity to the immune re-
sponse and plays an important role in the recognition of 
the major histocompatibility class-peptide complex at the 
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 Abstract 

 The prevalence of allergic diseases has increased rapidly in 
recent years. It is well established that the deleterious aller-
gic response is initiated by T-cell recognition of major histo-
compatibility class II-peptide complexes at the surface of an-
tigen-presenting cells. While this first signal gives antigen 
specificity to the adaptive immune response, a second non-
specific costimulatory signal is required by T cells to become 
fully activated. This signal is provided by interactions be-
tween antigen-presenting cells and T cells through mole-
cules borne at the surfaces of the two cell types. Depending 
on the type of molecules involved, this secondary signal can 
promote the development of an inflammatory allergic reac-
tion or may favor immune regulation. Several molecules of 
the B7 family (CD80, CD86, PD-1, ICOS, CTLA-4) and tumor 
necrosis factor receptor family (OX40, CD30, 4-1BB, Fas, CD27, 
CD40) play an important role in delivering costimulatory sig-
nals in early and late phases of allergic response. Therefore, 
costimulatory molecules involved in promotion or preven-
tion of allergic immune responses are potential targets for 
the development of novel therapeutic approaches. This re-
view aims to recapitulate our current understanding of the 
relationship between allergic diseases and costimulatory 
molecules.  Copyright © 2009 S. Karger AG, Basel 
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surface of APCs by T lymphocytes. However, this pri-
mary signal is not sufficient to completely activate these 
T cells. To become fully effective, a second, nonspecific 
costimulatory signal is often required by T cells. These 
signals are provided by interactions between APCs and T 
cells through surface molecules expressed on T lympho-
cytes. APCs express costimulatory molecules such as 
CD80 (B7-1) and CD86 (B7-2) which belong to the B7 
family. They provide modulation of T-cell function by 
ligation to their receptors, CD28 or cytotoxic T lympho-
cyte-associated antigen 4 (CTLA-4). Engagement of 
CD28 or CTLA-4 has been observed to have opposite ef-
fects. CD28 promotes T-cell activation and survival while 
CTLA-4 inhibits T-cell responses and regulates periph-
eral T-cell tolerance  [7] . This demonstration provides 
clear evidence that costimulatory molecules are involved 
in the fine tuning of the T-cell response by mediating 
both stimulatory as well as inhibitory signals. In many 
recent studies, numerous new costimulatory molecules 
have been described leading to the recognition that co-
stimulation pathways are more complex than the classi-
cal two-signal model. In general, costimulatory mole-
cules are  divided  into  2   main   families:   molecules   from   

the   B7:CD28 family, such as CTLA-4 or programmed 
death (PD)-L1, and from the tumor necrosis factor recep-
tor (TNFR) superfamily such as OX40 or CD27  [8] . All 
these costimulatory molecules have particular effects on 
T-cell activation, function and survival ( table 1 ) and are 
implicated in nearly all inflammatory diseases. Studies to 
better characterize the specific role of these molecules in 
allergy and asthma are still ongoing. In this review, we 
summarize current knowledge concerning the role of co-
stimulatory molecules in allergy and analyze the poten-
tial functions of the emerging new subsets of costimula-
tory molecules recently described.

  Involvement of the B7:CD28 Family Molecules in the 

Regulation of Allergic Diseases 

 The first costimulatory molecules described were the 
ligands of CD28: CD80 (B7-1) and CD86 (B7-2). The 
CD28 costimulation pathway is an important factor for 
the promotion of an effective antigen-specific immune 
response. However, CD28-deficient mice are still able to 
develop allergic airway inflammation showing that CD28 
cannot be solely responsible for the development of an al-
lergic response  [9] . The expression of CD28 ligands (CD80 
and CD86) has been extensively studied in clinical sam-
ples from asthmatic patients. Hofer et al.  [10]  reported 

that B lymphocytes from asthmatic patients exposed to 
allergens express higher levels of surface CD86, but not 
CD80, compared with those from asthmatic patients not 
exposed to allergen or with those from healthy individu-
als ( table 1 ). Another study demonstrated that CD80 and, 
to a lesser extent, CD86 were upregulated at the surface 
of alveolar macrophages from allergic patients compared 
with those from pulmonary sarcoidosis, extrinsic allergic 
alveolitis patients or from normal subjects  [11] . In con-
trast, Burastero et al.  [12]  observed that in allergic indi-
viduals, CD80, but not CD86, is highly expressed by al-
veolar macrophages. CD86 can also be expressed in a sol-
uble form, where the transmembrane domain is deleted. 
This form is mostly produced by circulating monocytes 
and, like membrane-bound CD86, cross-links CD28 or 
CTLA-4 and activates T lymphocytes  [13] . In patients 
with acute asthma, the level of soluble CD86 has been 
shown to be increased relative to that in patients with 
stable asthma or in healthy individuals  [14] . Monocytes 
from allergic patients produce more soluble CD86 com-
pared with those of healthy individuals  [14] . It was also 
observed  that the level of soluble CD86 is correlated with 
the severity of the airway hyperreactivity (AHR). These 
results are consistent with studies which show that the 
concentrations of soluble CD80 and soluble CD86 are el-
evated in asthmatic patients. Interestingly, the adminis-
tration of a glucocorticoid (e.g., prednisolone), used to 
reduce airway inflammation in allergic patients, reduces 
the level of circulating CD86  [15] . Recently, Ritprajak et 
al.  [16]  demonstrated that the topical administration of a 
silencer RNA specific to the CD86 gene reduced local in-
flammation in a mouse model of atopic dermatitis by de-
creasing the recruitment of dendritic cells (DCs) into the 
skin, production of antigen-specific IL-4 and induction 
of serum immunoglobulin E (IgE) and IgG1. It has also 
been reported that pulmonary tolerogenic DCs stimu-
lated by allergen exposure express high levels of both 
CD80 and CD86  [17] . Taken together, these studies sug-
gest that overexpression of CD80 and/or CD86 is corre-
lated with the development of allergic disease and asth-
ma.

  Within the B7 family, CD28 and inducible costimula-
tor (ICOS) are most homologous with respect to struc-
ture and function. Both are type I transmembrane recep-
tors expressed as homodimers, with an extracellular 
(Ig)V-like domain, a hallmark of receptors of the B7-re-
lated family  [18] . ICOS expression is induced in vitro  
 within 24–48 h of activation on all T helper-primed cells 
 [18, 19] . ICOS has been shown to regulate the production 
of TH2 cytokines  [20]  and plays a critical role in lung mu-
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cosal inflammatory responses  [21] . Furthermore, this co-
stimulatory molecule has been suggested not only to in-
tensify some of the functions of CD28 during an already 
established immune response but also to induce addi-
tional T-effector cell functions  [22] . Recent studies sug-
gest that ICOS-mediated costimulation may regulate 
TH2-effector cell function without affecting TH2 differ-
entiation  [23] . Another study showed that transfer of 
ICOS-enriched T cells followed by allergen airway chal-
lenge induced infiltration of recipient T and B cells as well 
as local production of allergen-specific IgE by intrapul-
monary plasma cells  [24] . In contrast, transfer of the 

ICOS-depleted T-cell fraction resulted in the recruitment 
of significantly lower numbers of B cells with no local IgE 
production. These data indicate that expression of ICOS 
defines a subset of T effector cells that are required for B-
cell infiltration and local IgE production in lung tissue. 
According to Tesciuba et al.  [23] , ICOS stimulation in-
creases the migration of lymphocytes into draining 
lymph nodes by augmenting the expression of attractant 
chemokines CCL21 and CXCL13. In other reports, the 
increased production of IL-5, which is a main factor for 
the differentiation, maturation and recruitment of eosin-
ophils, is attributed to ICOS+ cells  [24] . ICOS+ T cells 

Table 1. Role of costimulatory molecules in allergic disease and asthma

Costimulatory
molecule family

APC Effector
cell

Functions and characteristics

B7 CD80
CD86

CTLA-4 Contributes to the suppressive activity of allergen-specific regulatory cells during sensitization
Polymorphism in Ctla-4 promoter and gene favors allergic diseases

CD28 CD80 and CD86 expression is upregulated on the surface of various cells of allergic patients
Soluble CD86 is increased in the sera of allergic patients

ICOS-L ICOS Regulates TH2-effector cell function and their infiltration in the lungs, production of TH2
cytokine
Promotes B-cell differentiation and IgE production
Expression on iNKT cells contributes to airway hyperreactivity
Contributes to the differentiation of regulatory cells in pulmonary lymph nodes

PD-L1 PD-1 Drives the differentiation of Foxp3+ CD4+ T cells
Downregulates contact hypersensitivity reaction

PD-L2 PD-1 Regulates asthma by an IFN-�-dependent mechanism
Downregulates airway hyperreactivity, prevents eosinophil infiltration in the lungs and
prevents IgE production

B7-H3 Receptor
unknown

Promotes TH2 differentiation, eosinophil infiltration and development of airway 
 hyper reactivity
Decreases the severity of allergic conjunctivitis

TNFR OX40L OX40 Promotes the development of TH2 cells
Prevents differentiation of Treg cells
Abrogates mast cell degranulation 

CD30-L CD30 CD30 is expressed by Langerhans cells, CD4+ and CD8+ T cells of atopic patients
Soluble CD30 is increased in the sera of allergic patients

4-1BB-L 4-1BB Promotes airway hyperreactivity, eosinophil infiltration and IgE production
Upregulates TH2 cell proliferation and mast cell cytokine production

Fas FasL Delays resolution of airway hyperresponsiveness
Promotes eosinophil apoptosis in the lungs

CD27 CD70 Increases production of IgE by B cells
CD40 CD40L Contributes to isotype class switching towards IgE

Enhances development of airway inflammation
Increases production of TH2 cytokine and decreases number of Treg cells

Other
costimulatory
molecules

CD2 CD58 Promotes differentiation of TH2 cells and the production of IgE
Expressed on monocytes of allergic patients
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also promote the differentiation of B cells and IgE-pro-
ducing plasma cells through the enhanced production of 
IL-4 and IL-10  [25] . ICOS-deficient mice are unable to 
induce high IgE responses demonstrating their role in the 
induction of IgE production  [26] . Some studies also sug-
gest that intermediate ICOS expression is associated with 
high production of TH2 cytokines, whereas high levels of 
ICOS predominantly translate into high IL-10 produc-
tion  [27] . Surprisingly, ICOS/ICOS-L interaction not only 
promotes the development of TH2-driven inflammation 
but also mediates mucosal tolerance, as studies have in-
dicated that pulmonary DCs in the bronchial lymph 
nodes of mice exposed to respiratory allergen induced the 
costimulation of regulatory T cells (T reg  cells) via the 
ICOS/ICOS-L pathway  [28] . These T reg  cells produce IL-
10, show inhibitory activity and, when adoptively trans-
ferred into sensitized mice, have the ability to inhibit the 
development of AHR. These reports suggest that both the 
development and inhibitory function of T reg  cells are de-
pending upon the presence of IL-10 and ICOS/ICOS-L 
interaction. Studies in ICOS-deficient patients supported 
the findings in mice by demonstrating that CD4+ T cells 
in those patients cannot be skewed towards suppressive 
or anergic phenotype  [29] . Interestingly, Taylor et al.  [30]  
demonstrated that IL-10 suppresses CD28 and ICOS-me-
diated T-cell costimulation by a mechanism dependent 
on Src homology 2 domain-containing protein tyrosine 
phosphatase 1 (SHP-1). Specifically, IL-10 ligation to its 
receptor triggers Tyk2 activation followed by SHP-1 phos-
phorylation. This active form of SHP-1 dephosphorylates 
the costimulatory molecules CD28 and ICOS. Thus, sig-
nal transduction downstream of engagement of either 
molecule is abolished and T-cell activation through these 
costimulatory molecules is impaired. Beside IL-10, ICOS 
is involved in expression and differentiation of IL-17-pro-
ducing helper T cells  [31] . A recent study by Bauquet et al. 
 [31]  suggests that there are significantly lower levels of IL-
17 from T cells in ICOS-deficient mice. The authors sug-
gest that engagement of ICOS induces the expression of 
c-Maf, which regulates IL-21 production and controls the 
expansion of TH17 cells. Beyond the role of ICOS on T 
cells, two recent studies have demonstrated the impor-
tance of ICOS in iNKT cell function in the development 
of AHR and in the homeostasis and survival of CD4+ 
iNKT cells. ICOS expression is upregulated on iNKT 
cells upon  � -galactosylceramide stimulation. Moreover, 
blockade of the ICOS pathway using a specific antibody 
or gene knock-out strategy abrogates cytotoxicity and cy-
tokine production triggered by  � -galactosylceramide 
treatment  [32] . The number of CD4+ iNKT cells were 

greatly reduced in the periphery but not in the thymus of 
both ICOS–/– and ICOS-L–/– mice compared with wild-
type mice, indicating that ICOS/ICOS-L interactions are 
critical in homeostatic survival of CD4 iNKT cells  [19] . 
In contrast, the number of iNKT cells and the level of 
ICOS expression in CD28–/– mice is comparable with 
that in wild-type mice, suggesting that signaling via ICOS 
but not via CD28 plays a unique role in regulation of CD4 
iNKT cell homeostatic survival. Thus, the iNKT cells ex-
pressing ICOS contribute significantly to the develop-
ment of AHR. 

  CTLA-4 has been described to be an important regu-
lator of T-cell activation. CTLA-4 is constitutively and 
exclusively expressed by T lymphocytes in both mice and 
humans  [7] . CTLA-4 expression confers to T-lymphocyte 
regulatory functions  [33] . Indeed, the contribution of 
CTLA-4 in the regulation of the immune system is dem-
onstrated by the development of multiple organ autoim-
mune pathologies and lymphoproliferative disease in 
CTLA-4-deficient mice  [34, 35] . Blockade of CTLA-4 ac-
tivity abolishes the suppressive function of CD4+ CD25+ 
T cells  [33] . In a mouse model of inflammatory bowel dis-
ease, the effect of transfer of a population of CD4+ 
CD45RB low  T reg  cells in decreasing intestinal inflamma-
tion is abrogated by the coadministration of a blocking 
anti-CTLA-4 antibody ( table 1 )  [36] . These studies sug-
gest that the engagement of CTLA-4 at the surface of T reg  
cells by its ligands CD80 or CD86 contributes to the reg-
ulation of suppressive functions of T reg  cells. Polymor-
phism in CTLA-4 gene is also considered a risk factor for 
allergy and asthma. Howard et al.  [37]  characterized four 
single nucleotide polymorphisms which were related to 
allergic and asthma phenotypes. They demonstrated that 
these specific polymorphisms alone or in combinations 
are correlated with an elevated IgE titer or bronchial hy-
perresponsiveness in patients with asthma. Interestingly, 
in the same study, no correlation between allergic pheno-
type and single nucleotide polymorphisms for CD28 was 
observed. In a similar report, Lee et al.  [38]  studied the 
impact of two polymorphisms in the CTLA-4 promoter
(–318 C/T) and gene (+49 C/G)  [39] . They demonstrated 
that a polymorphism at the level of the promoter was cor-
related to asthma severity while the +49 C/G polymor-
phism is associated with airway hyperresponsiveness. 
These findings confirm that CTLA-4 is indeed involved 
in the course of allergic diseases. Furthermore, CTLA-4 
is often considered as a marker of T reg  cells. In that regard, 
Meiler et al.  [40]  demonstrated that, in response to mul-
tiple bee stings, beekeepers develop a protective immune 
response by the development of antigen-specific type 1 
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regulatory T cells. The authors observed that in periph-
eral blood mononuclear cells isolated from beekeepers, 
the suppressive activity of antigen-specific IL-10-secret-
ing cells is blocked by an anti-CTLA-4 and an anti-PD-1 
antibody. The authors confirmed the role of CTLA-4 in 
the suppressive activity of T reg  cells in humans and sug-
gest that the engagement of CTLA-4 on T reg  cells leads to 
reduced T-cell-receptor-derived signaling which is re-
quired for the  induction of the suppressive activity  [40] . 
Similarly, analysis of Bet v 1-specific CD4+ T cells from 
healthy individuals at the single-cell level using major 
histocompatibility class II peptide tetramer revealed that 
a fraction of these cells expressed CTLA-4 and Foxp3, 
suggesting that they represent a population of T reg  cells 
 [41] . Interestingly, CTLA-4 seems to play a more impor-
tant role in the sensitization phase than in established al-
lergy. In a model of mice sensitized with grass pollen, the 
administration of a blocking anti-CTLA-4 or a blocking 
anti-CD154 (anti-CD40L) antibody during the sensitiza-
tion phase prevents the production of allergen-specific 
antibody. In contrast, in sensitized mice, anti-CTLA-4 or 
anti-CD154 antibodies failed to decrease the level of al-
lergen-specific IgE  [42] .

  The PD-1 receptor and its ligands PD-L1 (B7-H1) and 
PD-L2 (B7-DC) belong to the B7:CD28 family of recep-
tors. The PD-1 receptor was initially discovered in T cells 
undergoing cell death  [43] . The inhibitory signal provid-
ed by engagement of PD-1 was demonstrated by the de-
velopment of autoimmune diseases in PD-1-deficient 
mice  [44] . Several groups have subsequently reported that 
engagement of PD-1 by PD-L1 or PD-L2 results in inhibi-
tion of proliferation and polarized or altered cytokine 
production  [45–47] . Studies are just beginning to eluci-
date PD-L1 and PD-L2 function in allergy and asthma. 
In a mouse model of asthma, Matsumoto et al.  [48, 49]  
demonstrated that PD-L2 is highly expressed on pulmo-
nary DCs and macrophages of sensitized mice. Moreover, 
administration of blocking antibody against PD-L2, but 
not  PD-1 or PD-L1, during challenge enhances the air-
way hyperresponsiveness and production of TH2 cyto-
kines ( table 1 )  [49] . This effect is mediated by interferon 
(IFN)- � , given that no improvement is observed in IFN-
 � -deficient mice following treatment with anti-PD-L2 
 [48] . In addition, administration of the sHIgM12 anti-
body (an antibody inducing reverse signaling through 
PD-L2) in a mouse model of allergic asthma blocks the 
development of AHR  [50] . An additional study demon-
strates that administration of PD-L2-Fc in a mouse mod-
el of allergic asthma resulted in elevated levels of serum 
IgE and increased eosinophilic and lymphocytic infiltra-

tion into the bronchoalveolar lavage fluid  [51] . These 
studies emphasize the pivotal role of PD-L2 in the devel-
opment of allergic asthma. In addition, in a model of ex-
perimental allergic conjunctivitis, treatment with anti-
PD-L2 blocking antibody during the effector phase en-
hanced infiltration of eosinophils into the conjunctiva 
without change in the systemic response  [52] . Finally, us-
ing PD-L2-deficient mice, it was reported that this mol-
ecule is dispensable for TH2 differentiation and required 
for the induction of mucosal tolerance  [53] . Taken togeth-
er, these reports strongly suggest that PD-L2 is involved 
in the downregulation of TH2-allergic immune response. 
In a mouse model of hapten-induced contact hypersensi-
tivity, Kim et al.  [54]  demonstrated that blockade of PD-
L1 enhanced the activity of hapten-specific T cells and 
the administration of hapten-carrying PD-L1 on DC-in-
duced tolerance in animals sensitized by hapten chal-
lenge. Similarly, Tsushima et al.  [55]  demonstrated that 
anti-PD-L1 blocking antibody, but not anti-PD-L2 block-
ing antibody, enhanced contact hypersensitivity reac-
tion, possibly by increasing the proliferative response of 
T cells in response to hapten-pulsed APCs. This suggests 
a unique role of PD-L1 in the regulation of inflammatory 
responses ( table 1 ). Piconi et al.  [56]  had reported earlier 
that during allergen-specific immunotherapy, the ex-
pression of PD-L1 on both monocytes and B lymphocytes 
is increased relative to that in the untreated control group. 
The authors proposed that PD-L1 could be used as a 
marker to monitor the effect of allergen-specific immu-
notherapy and could also be targeted to enhance immu-
nosuppression. A subset of PD-L1-positive tolerogenic 
Langerhans cells was described by Allam et al.  [57]  in the 
sublingual mucosa in humans. The authors observed that 
upon stimulation by a Toll-like receptor 4 (TLR4) ligand, 
these cells release a higher level of IL-10 compared with 
untreated control cells. These Langerhans cells have de-
creased capacity to stimulate T cells and are able to sup-
port the differentiation of T reg  cells expressing Foxp3, 
producing IL-10 and transforming growth factor- �   [58] . 
These sublingual tolerogenic Langerhans cells stimulated 
via their TLR4 expressed higher levels of the coinhibitory 
molecules PD-L1 and B7-H3, while CD86 expression is 
lowered. Consequently, the expression of these molecules 
by APCs seems to be linked with tolerogenic properties. 
These studies represent a body of evidence which sug-
gests that PD-L1 is involved in the maintenance of the 
peripheral tolerance and may contribute to the induction 
of allergy. Clearly, further work is required to understand 
the role of PD-1 and its ligands in allergic diseases and 
asthma.
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  The precise role of the other ligands of the B7 family, 
such as B7-H3, is far less clear. The ligand of B7-H3 is still 
unknown but seems to be present at the surface of acti-
vated T cells  [40] . A recent study proposed that B7-H3 
supports the differentiation of TH2 cells during sensiti-
zation in animal models of asthma, as blocking B7-H3 
with an antibody results in a decreased production of 
TH2 cytokines in draining lymph nodes, reduced infil-
tration of eosinophils in lungs and in reduced AHR  [59] . 
In contrast, administration of blocking B7-H3 antibody 
during the sensitization phase increases the severity of 
allergic conjunctivitis in mice, possibly by inducing IL-5 
production in the spleen  [60] . These studies indicate that 
B7-H3 is potentially involved in the regulation of allergic 
disease and asthma. However, many questions pertain-
ing to B7-H3 will still need to be addressed in future 
mechanistic and prospective studies. 

  The Role of TNFR Costimulatory Molecules in Allergy 

and Asthma 

 Members of the TNFR superfamily can have distinc-
tive cytoplasmic death domains which are involved in 
apoptotic signaling. Other members of the superfamily 
lack such a domain, with no apparent homology in the 
cytoplasmic tail. This latter group of receptors is involved 
in gene activation and antiapoptotic signaling. The role 
in    allergy    of    TNFR    family   members   such   as   OX-40,   

4-1BB, CD30, Fas, CD27 and CD40 has been recently 
studied and reported by several investigators.

  OX40 and its ligands play an important role in co-
stimulation of allergen-specific lymphocytes. Activated 
CD4+   T cells express OX40, whereas OX40L is mainly 
expressed by APCs  [61, 62] . It was observed that ligation 
of OX40 increases IL-4 production by naïve cells and 
promotes their development into effector cells produc-
ing high levels of the TH2 cytokines IL-4, IL-5 and IL-13 
 [62] . OX40-OX40L interaction also plays an important 
role in deciding the fate of CD4+ T cells during allergic 
inflammation. It was reported that OX40L expressed by 
thymic stromal lymphopoietin-activated DCs enables 
these APCs to trigger allergic inflammatory TH2 re-
sponses  [63] . In a similar study, Ito et al.  [63]  showed that 
blocking of OX40-OX40L interaction inhibits the pro-
duction of TNF- �  and TH2 cytokines and enhances the 
production of IL-10. In allergen-induced models of asth-
ma, OX40- or OX40L-deficient mice exhibit markedly 
impaired reactivation of TH2 memory cells and TH2 re-
sponses as well as diminished lung inflammation  [64, 

65] . OX40-deficient mice developed a weak TH2 re-
sponse and airway inflammation after sensitization to 
ovalbumin indicating the cardinal role of this molecule 
in the initiation of allergic  immune responses  [66] . Ad-
ditionally, Duan et al.  [67]  reported that intranasal expo-
sure to lipopolysaccharide/endotoxin leads to the inter-
action between OX40 and OX40L, which, with other in-
flammatory effects of TLR4 signaling, alters the balance 
between Foxp3+ T reg  cells and effector T cells and influ-
ences the susceptibility to allergic inflammatory disease. 
Moreover, it was reported that OX40 inhibits the devel-
opment of adaptive Foxp3+ T reg  cells from naïve CD4+ 
T-cell populations in response to transforming growth 
factor- �   [68, 69] . These studies suggest that preventing 
OX40-OX40L interaction might be beneficial in improv-
ing the effectiveness of allergen immunotherapy as those 
interactions might induce mucosal tolerance through 
development of regulatory cells. Interestingly, OX40L 
can also be present at the surface of mast cells, which play 
a pivotal role in allergy. T reg  cells can abrogate mast cell 
degranulation following Fc � RI engagement by IgE, via 
OX40-OX40L interaction  [70] .

  Similarly to ICOS, OX40-OX40L interaction can mod-
ulate the function of iNKT cells which also play an im-
portant role in allergic disease and asthma. A recent re-
port suggests that iNKT cells interact with plasmacytoid 
DCs via OX40-OX40L interaction, downregulate the 
CD8+ immune response and prevent tissue damage  [71] , 
while iNKT stimulated with OX40L-expressing DCs pro-
duces more IFN- �  and CD69  [72] . However, the pheno-
typical difference between OX40-deficient and OX40L-
deficient mice suggests that OX40 might have more than 
1 ligand; thus, it is difficult to draw a definite conclusion 
regarding OX40L.

  Several clinical studies have revealed a link between 
the upregulation of CD30 and allergic diseases and asth-
ma. Initially, it was reported that the concentration of the 
soluble form of CD30 is higher in patients with asthma or 
atopic dermatitis than in healthy controls and correlates 
directly with the severity of the disease  [73, 74] . In atopic 
dermatitis patients, CD30 expression is increased at the 
surface of Langerhans cells, CD4+ and CD8+ T cells  [74, 
75] . Rojas-Ramos et al.  [75]  demonstrated that the level of 
CD30 expression at the surface of CD4+ T cells was cor-
related with the production of IL-4 after restimulation of 
CD4+ T cells isolated from allergic patients. These data 
suggest that the expression of CD30 at the surface of dif-
ferent immune cells or in a soluble form in the serum 
could be linked to a TH2 polarization. A recent study 
demonstrating a reduction of the level of soluble CD30 in 
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venom-specific immunotherapy also suggests a relation-
ship between TH2 activity and CD30 expression  [76] . 

  Another member of the TNFR superfamily is 4-1BB 
(CD137), which has been suggested to suppress antigen-
specific helper T cells and B cell-dependent humoral im-
mune response  [77] . Additionally, 4-1BB is specifically 
expressed by eosinophils from atopic patients with IgE-
mediated dermatitis or asthma  [78] . In a mouse model of 
allergic asthma, 4-1BB blocking antibody decreased air-
way hyperresponsiveness and reduced the level of aller-
gen-specific IgE in sera of sensitized mice  [79] . Also, 
 pulmonary T lymphocytes of anti-4-1BB-treated mice 
showed a decreased proliferation and produced less IL-5 
in response to ovalbumin. However, IL-4 and IL-5 levels 
in BAL fluid were only marginally reduced. 4-1BB is also 
expressed by mast cells and acts as a costimulatory mol-
ecule when mast cells are stimulated through their Fc � RI. 
Agonistic anti-4-1BB antibody enhances mast cell cyto-
kine production after engagement of Fc � RI  [80] . Polte et 
al.  [81]  demonstrated that in a mouse model of asthma, 
prophylactic administration of a blocking anti-4-1BB is 
capable of preventing the establishment of airway hyper-
responsiveness, eosinophil infiltration and production of 
allergen-specific IgE and reduces the production of TH2 
cytokines while enhancing secretion of TH1 cytokines. 
Depletion of CD8+ cells or blockade of IFN- �  abolished 
the protective effect of 4-1BB blocking antibody, which 
suggests that the effect of 4-1BB is dependent on IFN- � -
producing CD8+ T cells  [82] . Interestingly, after sensiti-
zation, injection of anti-4-1BB blocking antibody totally 
reverses the allergic phenotype in mice, which suggests 
that intervention within the 4-1BB pathway might offer a 
novel therapeutic approach in patients with asthma. Fi-
nally, in a similar approach using a model of atopic con-
junctivitis, treatment with an agonistic anti-4-1BB before 
or after sensitization abolished the development of aller-
gic conjunctivitis  [83] .

  The CD95 (Fas or APO-1) antigen is a 40- to 50-kDa 
transmembrane glycoprotein that also belongs to the 
TNF superfamily. This cell surface molecule mediates 
apoptosis (programmed cell death) and is strongly up-
regulated on activated T cells, B cells, natural killer cells 
and thymocytes. In the field of allergy, it is important to 
note that Fas is also expressed by eosinophils in sensitized 
mice  [84] , and stimulation of this receptor with an anti-
Fas antibody triggers apoptosis of eosinophils. In vivo  
 studies have also shown that lung eosinophilia is reduced 
by administration of anti-Fas antibody. Moreover, failure 
of induction of eosinophil apoptosis by Fas/FasL interac-
tion could explain the chronic eosinophilic airway in-

flammation found in patients with asthma. Fas-deficient 
mice sensitized to ovalbumin show a delayed AHR reso-
lution compared with wild-type mice  [85] , an observa-
tion that could be explained by a decreased apoptosis of 
eosinophils and effector T cells. In this regard, a study by 
Tong et al.  [86]  proposed that this delayed resolution of 
eosinophilia in Fas-deficient mice is due to the absence of 
Fas on T cells but not on eosinophils. Consistent with 
those studies is the observation that transfer of DCs ge-
netically engineered to express FasL significantly reduces 
induction of AHR in sensitized recipients  [87] . On the 
other hand, Uller et al.  [88]  showed that anti-Fas antibody 
exacerbates established airway inflammation since stim-
ulation of Fas receptor by eosinophils triggers cytolysis 
and causes secondary necrosis of apoptotic eosinophils. 
Therefore, time kinetics and location of Fas/FasL expres-
sion play a major role in the regulation of immune re-
sponses in allergy and asthma. 

  CD27 is a type I glycoprotein expressed on T and B 
cells and also belongs to the TNFR family. The ligand for 
CD27 is CD70, another member of the TNF family  [89] , 
which is expressed not only on activated B cells but also 
on T cells, particularly on activated CD4+ CD45RO+ T 
cells  [90] . It has been demonstrated that the CD27/CD70 
interaction is involved in the differentiation of B cells into 
plasma cells  [17, 18] . The roles of CD27 and CD70 as co-
stimulatory molecules in allergic diseases are less clear. 
One report suggests that B cells transfected with a plas-
mid expressing CD70 significantly augments IgE pro-
duction by enhancing B-cell proliferation and differen-
tiation into plasma cells. However, another recent report 
shows that CD27 and CD70 do not play a role in the de-
velopment of experimental allergic conjunctivitis in mice 
 [91] . Although it seems that the effects of CD27/CD70 in-
teraction on B-cell and Ig synthesis in the murine and 
human systems are somewhat different, more experi-
ments in both animal models and humans need to be 
done to further clarify their role in allergy and asthma. 

  Another member of the TNFR superfamily, CD40, is 
a costimulatory protein found on APCs and is required 
for their activation. This receptor has been found to be 
essential in mediating a broad variety of immune and in-
flammatory responses including T cell-dependent im-
munoglobulin class switching, memory B-cell develop-
ment, germinal center formation, B- and T-lymphocyte 
activation and regulation  [92] . During allergen sensitiza-
tion, cooperation between T and B lymphocytes through 
CD40-CD40L interaction is a fundamental signal to trig-
ger isotype class switching towards IgE  [93] . CD40 is also 
expressed at the surface of airway epithelial cells. Its en-
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gagement increases the production of inflammatory me-
diators suggesting that CD40 ligation favors airway in-
flammation  [94, 95] . Recently, Suzuki et al.  [96]  showed 
that the inhibition of CD40 expression using small inter-
fering RNA in ovalbumin-sensitized mice results in a de-
creased production of TH2 cytokines and increases the 
number of T reg  cells.

  Other Costimulatory Molecules Involved in the 

Regulation of Allergy and Asthma 

 CD2 is a member of the immunoglobulin superfamily 
and is expressed on all peripheral blood T cells. It is one 
of the earliest T-cell markers, being present on more than 
95% of thymocytes, and is also found on some natural 
killer cells but not on B lymphocytes. CD2 interacts with 
lymphocyte function-associated antigen-3 to mediate ad-
hesion between T cells and other cell types  [97] . CD2 is 
also considered as a costimulatory molecule on T and 
natural killer cells. Engagement of this receptor by its li-
gand lymphocyte function-associated antigen-3 induces 
T-cell proliferation and cytokine production  [98] . CD2 
engagement seems to inhibit TH1 activity while favoring 
TH2 development  [99] . In a model of mercury chloride-
induced autoimmune disease in mice, administration of 
a specific CD2 antibody increased the production of TH2 
cytokines such as IL-4 and increased the serum level of 
IgE and IgG1 autoantibodies. Interestingly, the CD2 co-
stimulation signal can be counteracted by regulatory cy-
tokines such as IL-10  [100] . Since CD2 is also expressed 
by monocytes, the high CD2 expression on monocytes 
defines a population with elevated Fc � RI expression  [101] . 
In asthmatic patients, CD2 expression at the surface of 
these monocytes is correlated with the level of plasma 
IgE. In addition, administration of an anti-IgE (omaliz-

umab) decreases the expression of Fc � RI at the surface of 
CD2 high  monocytes. Therefore, it has been proposed that 
monocytes expressing a high level of CD2 represent an 
attractive target for the treatment of allergic disease and 
asthma. 

  Conclusion 

 Families of costimulatory molecules are involved in 
the regulation of most inflammatory diseases by finely 
controlling the intensity of the immune response. Co-
stimulatory molecules are implicated in the development 
and control of allergic inflammation characterized by the 
establishment of an acute TH2 polarization. Elucidation 
of the role of costimulation pathways in the development 
of new subsets of T helper cells has just begun, and most 
of the mechanisms underlying the regulation of atopic 
diseases by costimulatory molecules are unknown and 
require further investigation. With an increased under-
standing of these immunological mechanisms, new 
 therapeutic strategies in the treatment of allergic airway 
diseases can be created by analyzing the role of costim-
ulatory molecules which are critically involved in the in-
duction and maintenance of allergen-induced airway dis-
eases. Taken together, recent studies have begun to pro-
vide insight into the role of costimulatory molecules and 
give us new clues to design more efficient therapies to 
fight the increasing public health problem that allergies 
represent.
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