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try or nanoflow liquid chromatography and tandem mass 
spectrometry.  Results:  All fragments longer than and in-
cluding A � 1–17 displayed a tendency towards decreased 
levels upon  � -secretase inhibition, whereas A � 1–15 and 
A � 1–16 indicated slightly elevated levels during treatment. 
 Conclusion:  These data suggest that A � 1–15 and A � 1–16 
may be generated through a third metabolic pathway inde-
pendent of  � -secretase, and that these A �  isoforms may 
serve as biomarkers for secretase inhibitor treatment. 

 Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Alzheimer’s disease (AD) is the most common form of 
dementia, with characteristic pathological hallmarks that 
include intracellular neurofibrillary tangles and extracel-
lular senile plaques  [1] . The plaques consist mainly of  � -
amyloid (A � )  [2–4] , which is generated by cleavage of am-
yloid precursor protein (APP) by 2 different enzymes,  � -
and  � -secretase known as the amyloidogenic pathway  [5] . 
In the alternative ‘non-amyloidogenic pathway’,  � -secre-
tase cleaves within the A �  sequence precluding the forma-
tion of A �   [6–8] . The  � -site APP-cleaving enzyme 1 gene 
( BACE1 ) encodes the  � -secretase activity  [9–12] , while  � -
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 Abstract 
  Background:    Accumulation of amyloid  �  (A � ) in the brain
is believed to represent one of the earliest events in the 
 Alzheimer disease process. A �  is generated from amyloid 
precursor protein after sequential cleavage by  � - and  � -
secretase. Alternatively,  � -secretase cleaves within the A �  
sequence, thus, precluding the formation of A � . A lot of re-
search has focused on A �  production, while less is known 
about the non-amyloidogenic pathway. We have previously 
shown that A �  is present in human cerebrospinal fluid (CSF) 
as several shorter C-terminal truncated isoforms (e.g. A � 1–15 
and A � 1–16), and that the levels of these shorter isoforms are 
elevated in media from cells that have been treated with  � -
secretase inhibitors.  Objective:    To explore the effect of N-
[N-(3,5-difluorophenacetyl- L -alanyl)]- S -phenylglycine t-bu-
tyl ester (DAPT), a  � -secretase-inhibitor, treatment on the A �  
isoform pattern in brain tissue and CSF from Tg2576 mice. 
 Methods:  Immunoprecipitation using the anti-A �  antibod-
ies 6E10 and 4G8 was combined with either matrix-assisted 
laser desorption/ionization time-of-flight mass spectrome-
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secretase is a protease complex consisting of at least 4 es-
sential components: the homologous presenilins 1 and 2 
(PS1 and 2), nicastrin, Aph-1 and Pen-2  [13] . The  � -secre-
tase candidates so far identified all belong to the ‘A Disin-
tegrin and Metalloprotease’ (ADAM) family (ADAM9, 
ADAM10 and ADAM17)  [14] . 

  We and others have previously shown that the combi-
nation of immunoprecipitation (IP) and mass spectrom-
etry (MS) is a useful analytical method in targeted A �  
proteomics for simultaneous identification and quantifi-
cation of A �  isoforms with high mass accuracy in a single 
analysis  [15] . Using IP-MS, it has been shown that A �  is 
manifested in several isoforms in the human brain and 
cerebrospinal fluid (CSF), having both C- and N-termi-
nal truncations  [16, 17] . Further, IP-MS has also been 
used for analyzing the A �  isoform pattern in the brains 
of transgenic (Tg) mice and A �  isoforms in cell media 
 [18, 19] . 

  We have recently shown that the levels of shorter A �  
isoforms (A � 1–14, A � 1–15 and A � 1–16) are elevated in 
media from cells which have been treated with  � -secre-
tase inhibitors  [20] . Here, we analyze the effects of  � -
secretase inhibition on the A �  isoform pattern in CSF 
and the brain in a Tg mouse model of AD, Tg2576  [21] . 
We show that all A �  isoforms longer than and including 
A � 1–17 are  � -secretase dependent, whereas the shorter 
isoforms A � 1–15 and A � 1–16 are processed through a 
novel APP metabolic pathway.

  Material and Methods 

 Experimental Animals 
 In this study, we used Tg2576 mice overexpressing APP with 

Swedish mutations (hAPP695.SWE) on a C57B6/SJL background 
 [21] . Male Tg2576 mice were mated with female C57B6/SJL wild-
type mice. Offspring were genotyped as described previously  [22] , 
and were used as hemizygotes (+/–) of APP and wild-type mice.

  Treatment Protocol 
 The protocols for mouse treatment and sample collection were 

approved by the Institutional Animal Care and Use Committee 
at the University of Pennsylvania. Six-month-old Tg2576 mice 
were subcutaneously injected with either N-[N-(3,5-difluoro-
phenacetyl- L -alanyl)]- S -phenylglycine t-butyl ester (DAPT, 100 
mg/kg, Calbiochem, Calif., USA), a  � -secretase inhibitor, or corn 
oil in 5% ethanol as control (n = 5/group, all females). Mouse CSF 
and brain tissues were collected 6 h after treatment.

  CSF Collections 
 To collect CSF, mice were anesthetized by an intraperitoneal 

injection of ketamine hydrochloride (100 mg/kg) and xylazine (10 
mg/kg). The skin and muscle above the cisterna magna were ex-
posed and the meninges were punctured using a 30-gauge needle. 

CSF samples were aspirated from just below the surface of the 
punctured meninges using a P20 micropipette. The samples were 
stored at –80   °   C as described earlier  [23, 24] .

  Mouse Brain Tissue Collection 
 After CSF collection, the mice were decapitated after lethal 

anesthesia. Different regions of the exposed brains were dissect-
ed, i.e. the cortex, hippocampus, cerebellum and remaining re-
gions. All brain samples were stored at –80   °   C until further study, 
as described earlier  [25] . 

  A �  Extraction 
 The brain samples (30–120 mg) were homogenized (Pellet Pes-

tle � , Sigma-Aldrich, St. Louis, Mo., USA ) on ice in Tris-buffered 
saline (20 m M  Tris, 137 mM   NaCl, pH 7.6) with complete protease 
in hibitor tablets (Roche, Basel, Switzerland). The extraction ratio 
(brain tissue:Tris-buffered saline) was 1:   5 (w/v). Formic acid (FA) 
was added to the sample (final concentration 70%) followed by son-
ication (power: 15 amplitude microns; tune: ‘middle’) and centrifu-
gation at 30,000  g  for 1 h at 4   °   C. The FA-soluble A �  extract was 
dried and dissolved in FA, and finally neutralized using 0.5  M  Tris.

  Immunoprecipitation and Mass Spectrometry 
 IP using the KingFisher magnetic particle processor (Thermo 

Scientific, Waltman, Mass., USA) and mass spectrometric analy-
sis using MALDI-TOF MS were performed as described earlier 
 [17] . Briefly, an aliquot (8  � g) of the anti-A �  antibody 6E10 (Sig-
net Laboratories, Dedham, Mass., USA), which is reactive to ami-
no acids 1–17, was added to 50  � l magnetic Dynabeads M-280 
Sheep Anti-Mouse IgG (Invitrogen, Carlsbad, Calif., USA). The 
antibody-coated beads were added to 5–10  � l CSF, and diluted to 
1 ml in 0.025% Tween 20 in phosphate-buffered saline (pH 7.4). 
After washing, using the KingFisher magnetic particle processor, 
the A �  isoforms were eluted using 100  � l 0.5% FA. The neutral-
ized A �  extract from brain tissue was immunoprecipitated by 
adding 50  � l 6E10-coated beads (8  � g) and 50  � l 4G8-coated 
beads (8  � g, Signet, reactive to amino acid 17–24). 

  MALDI-TOF MS measurements were performed using an Au-
toflex instrument (Bruker Daltonics, Bremen, Germany) operat-
ing in linear mode at 19 kV acceleration voltage. Each spectrum 
represents an average of 1,500 shots acquired 75 at a time. The 
MALDI samples were prepared with the seed layer method using 
 � -cyano-4-hydroxycinnamic acid as the matrix. 

  LC-MS/MS was conducted by nanoflow liquid chromatogra-
phy coupled to electrospray ionization Fourier transform ion cy-
clotron resonance tandem mass spectrometry (LC-ESI-FTICR-
MS/MS) with an Ettan MDLC (GE Healthcare, Uppsala, Sweden) 
coupled to an LTQ-FT (ThermoFisher Scientific, Bremen, Ger-
many), a hybrid linear quadrupole ion trap-Fourier transform ion 
cyclotron resonance mass spectrometer equipped with a 7-T mag-
net, as described previously  [26] .

  Results 

 To test whether the IP-MS method using MALDI-
TOFMS was sufficiently sensitive for analyzing such 
small volumes as 5–10  � l CSF, a pilot study was conduct-
ed using untreated Tg2576 mice ranging in age from 3–4 
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months up to older than 15 months. We analyzed 4 age 
groups with 3 mice in each group. Using IP-MS, 6 differ-
ent peaks at different mass-to-charge ratios  (m/z)  were 
reproducibly detected, which by mass were assigned to be 
6 isoforms of A �  (A � 1–15, A � 1–16, A � 1–17, A � 1–19, 
A � 1–38 and A � 1–40). The data revealed an age-depen-
dent shift in the A �  pattern; the older Tg2576 mice pro-
duced more A � 1–40 and less A � 1–17 than the younger 
animals ( fig. 1 ). Mice aged 6–7 months were used for the 
 � -secretase-inhibitor treatment study.

  Using IP-MS, a study including 5 mice treated with  � -
secretase inhibitor (DAPT) and 5 treated with corn oil 
(vehicle) was performed. All 6 isoforms were reproduc-
ibly detected in the CSF of all mice. As seen in  figure 2 a,b, 
treatment with DAPT greatly increased the mass spectro-
metric signal for A � 1–16 (p  !  0.01, Mann-Whitney U ex-
act test). The signal corresponding to A � 1–15 showed a 
tendency towards increased levels, while the signals for 
the longer isoforms, including A � 1–17, indicated slightly 
decreased levels ( fig. 2 c). 

  From the same mice included in the CSF study, the 
hippocampus, cortex and cerebellum were analyzed 
 using IP and MALDI-TOFMS to study changes in the
A �  isoform pattern in response to  � -secretase inhibition. 
The detected A �  isoforms were also confirmed using
LC-MS/MS (data not shown).  Figure 3 a–b displays 
 MALDI-TOF mass spectra from FA-extracted A �  iso-
forms from the hippocampus, where A � 1–15, A � 1–17 
A � 1–19, A � 1–38, A � 1–40 and A � 1–42 were reproduc-
ibly detected in all mice. A � 1–16 was not detected in all 
samples, and was omitted from the evaluation. The same 
trend as for CSF was noted; the short A �  isoforms indi-
cated slightly increased levels, while isoforms longer 
than and including A � 1–17 showed a tendency towards 
decreased levels ( fig. 3 c). Similar data were obtained in 
the cerebellum ( fig. 3 d) and cortex ( fig. 3 e), although the 
number of reproducibly detected A �  isoforms differed 
between the different brain regions.

  Discussion 

 Using MALDI-TOFMS measurement on 6E10 immu-
noprecipitated A �  from CSF, a distinct pattern of 6 differ-
ent peaks at different  m/z  was detected in both treat -
ed and untreated mice. They were, by mass, assigned to be 
6 isoforms of A � (A � 1–16, A � 1–17, A � 1–18, A � 1–19, A � 1–
38 and A � 1–40). In human CSF, more than 20 different 
A �  isoforms have been detected  [15] , while in this study 
on mouse CSF, 6 isoforms were reproducibly detected. 
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  Fig. 1.  MALDI-TOFMS intensities for A � 1–17 and A � 1–40. The 
mass spectrometric signals for A � 1–17 were divided by 3. 
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  Fig. 2.  MALDI-TOF mass spectra showing the A �  isoform pat-
tern in CSF from vehicle ( a ) and  � -secretase-inhibitor treated 
(DAPT;  b ) mice.  *  Unidentified peak. The average MALDI-TOF 
mass spectrometric signals for the detected A �  isoforms are dis-
played from the 2 different treatment groups ( c ). 
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The fewer A �  isoforms detected in mouse CSF probably 
reflects the small volume of CSF available for analysis 
(5–10  � l, compared with 1 ml in human CSF studies).

Analysis of the A �  isoform pattern in CSF from mice 
of varying ages indicated an age-dependent increase in 
the longer and more aggregation-prone A �  peptides. If 
verified in human studies, this may provide an explana-
tion for the strong age-dependency of amyloid pathology 
in the brain.

     The isoform patterns varied in different brain re-
gions. In the IP extract from approximately 30 mg hip-
pocampus, 6 different isoforms were detected compared 
with only 3 in the cortex (93–115 mg). This may be due 
to either the method used not being sufficiently sensitive 
for detecting low abundant isoforms or that the shorter 
isoforms (A � 1–15, A � 1–17 and A � 1–19) are absent in the 
cortex. Further, by normalizing the peaks to the sum of 
the intensities of the 3 most abundantly detected iso-
forms in all brain regions (A � 1–38, A � 1–40 and A � 1–
42), the cortex displayed an approximate 2-fold increase 
in the A � 1–40/A � 1–42 ratio (in both DAPT and untreat-
ed). A � 1–42 also had the highest mass spectrometric sig-
nal in the cortex. It should be noted that the ratio be-
tween the A � 1–42 and A � 1–40 peaks in the mass spec-
trum cannot be interpreted as a direct reflection of their 
relative abundance since the ionization efficiency might 
be different for the 2 peptides and that A � 1–42 is more 
hydrophobic and less soluble than A � 1–40. However, 
these data suggest that A � 1–42 is present at higher levels 
in the cortex relative to the other brain areas studied. 

  In the two APP processing pathways described in the 
literature, the ‘amyloidogenic’ and ‘non-amyloidogenic’, 
either  � - or  � -secretase cleaves APP followed by  � -secre-
tase-mediated cleavage of the remaining C-terminal APP 
fragment  [27] . We show here that CSF A � 1–15 and A � 1–
16 indicated slightly increased levels, whereas the levels of 
all fragments longer than and including A � 1–17 were 
slightly decreased in response to  � -secretase inhibitor 
treatment. These data are in agreement with previous re-
sults on  � -secretase-inhibitor-treated cells  [20] . Similar 
results were obtained using IP-MS on formic-acid-ex-
tracted A �  isoforms from the hippocampus, cerebellum 
and cortex. This suggests that all fragments longer than 
and including A � 1–17 depend on  � -secretase, directly or 
indirectly, while A � 1–15 and A � 1–16 do not. These short-
er A �  isoforms may be processed along a third APP-pro-
cessing pathway involving concerted  � - and  � -secretase-
mediated cleavages of APP. Additional knowledge on this 
putative third APP processing pathway may be gained 
from ongoing secretase inhibitor studies in humans.
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  Fig. 3.  MALDI-TOF mass spectra showing the A �  isoform pattern 
in the hippocampus from  � -secretase inhibitor- (DAPT;  a ) and 
vehicle- ( b ) treated mice.      *  Unidentified peaks. The average 
 MALDI-TOF mass spectrometric signals for the detected A �  iso-
forms are displayed from the 2 different treatment groups in the 
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