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Abstract
New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-
resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial
arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the
same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more
different RNA strand segments or molecules. We use a base-centered approach to construct efficient,
yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA
structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first
modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each
base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the
rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-
stacking interactions are calculated from the base geometries and are represented symbolically
according to the Leontis/Westhof basepairing classification, extended to include base-stacking.
These data are stored and used to organize motif searches. For geometric searches, the user supplies
the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate
motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity
of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by
rigidly rotating candidates to align optimally with the query motif and then comparing the relative
orientations of the corresponding bases in the query and candidate motifs. Given the growing size
of the RNA structure database, it is impossible to explicitly compute the discrepancy for all
conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening
algorithm that we describe finds all candidate motifs whose geometric discrepancy with respect to
the query motif falls below a user-specified cutoff discrepancy. This technique can be applied to
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RMSD searches. Candidate motifs identified geometrically may be further screened symbolically to
identify those that contain particular basepair types or base-stacking arrangements or that conform
to sequence continuity or nucleotide identity constraints. Purely symbolic searches for motifs
containing user-defined sequence, continuity and interaction constraints have also been implemented.
We demonstrate that FR3D finds all occurrences, both local and composite and with nucleotide
substitutions, of sarcin/ricin and kink-turn motifs in the 23S and 5S ribosomal RNA 3D structures
of the H. marismortui 50S ribosomal subunit and assigns the lowest discrepancy scores to bona
fide examples of these motifs. The search algorithms have been optimized for speed to allow users
to search the non-redundant RNA 3D structure database on a personal computer in a matter of
minutes.

1 Introduction
The database of atomic-resolution RNA 3D structures is growing rapidly [6,7,11,21] and now
includes ribozymes [1,14,25], ribosomal subunits [3,16,44] and intact 70S ribosomes [42]. The
number, size, and complexity of these structures make manual analyses to find and classify
recurrent RNA 3D motifs difficult and time-consuming. Systematic and exhaustive RNA motif
identification and classification is crucial for integration of RNA structural and sequence data.
As new experimental structures become available they must be systematically searched for
new motifs as well as for new examples of known motifs. Data integration will make possible
more powerful RNA sequence searching in genomes, more accurate alignment of homologous
RNA sequences and more realistic modeling of RNA 3D structures, and will thus increase
knowledge of RNA structure, function and evolution [28].

RNA molecules form compact 3D structures by hierarchical folding of the RNA chain. RNA
secondary structure comprises the double helices made of contiguous Watson–Crick basepairs,
which contribute most of the free energy of stabilization and serve as structurally well-defined
struts connecting the other elements of the 3D structure. These elements appear in RNA
secondary structures as single-stranded hairpin, internal, and multi-helix (junction) “loops,”
but in fact most of their nucleotides form non-Watson–Crick basepairs that stack in
characteristic ways to form modular motifs. RNA bases can pair in 12 geometrically distinct
ways, depending on which of their three edges interact (Watson–Crick, Hoogsteen, or Sugar)
and the relative orientations of their glycosidic bonds (cis or trans) [32]. The Watson–Crick
basepairs belong to the cis Watson–Crick/Watson–Crick geometric family. The Watson–Crick
edges of bases forming non-Watson–Crick basepairs are available to form tertiary interactions
that stabilize the compact folding of the biologically active structures of RNA molecules. In
addition, unpaired bases extruded from motifs may intercalate to form tertiary basepairs or
stacking interactions that also stabilize tertiary interactions with other RNA regions, distant in
the secondary structure.

RNA motifs are called recurrent when they occur independently in different, non-homologous
places of the same or different RNA molecules while sharing a similar 3D structure. Many of
the motifs composing hairpin, internal and junction “loops” and the RNA tertiary interactions
they form recur in RNA 3D structure and so a general approach to 3D motif searching must
handle all these cases. Recurrent motifs usually share a core of base-paired and -stacked
nucleotides arranged in the same way while differing from each other in the identity of the
nucleotides forming each basepair and the number of unpaired bases bulged out or extruded
from the motif. By comparing all available examples of recurrent motifs, we can better
understand the natural variability within each motif family.

Recurrent motifs can be local or composite. Local motifs are composed of nucleotides that
belong to the same hairpin (terminal) or internal loop. Terminal loops occur at the ends of
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individual helices while internal loops are flanked by two helices. Composite motifs are
composed of nucleotides from disparate and discontinuous stretches of polynucleotide
sequence. The same recurrent motif can occur in local and composite versions. For example,
composite instances of sarcin motifs [31] and kink-turn motifs [34] have been identified in the
structures of the 5S, 16S, and 23S ribosomal RNAs (rRNA). The internal loop in Helix 95 of
23S rRNA is a local example of the sarcin/ricin motif. A composite version of this motif occurs
in the multi-helix junction in Domain 2 of 23S rRNA (Helices 35, 37, 39, 40 and 45) [31].
Composite motifs are easy to overlook in visual analyses and are generally missed by
computational approaches that analyze the conformations of successive nucleotides in the RNA
chain [18,43]. Thus, none of the composite kink-turn motifs were identified in the original
paper [26]. Recurrent motifs play similar roles in different RNA molecules or domains. Some
play architectural roles, for example forming bends, kinks or branch points, while others serve
as anchors for tertiary interactions that compact and stabilize the folded 3D structure of the
molecule [12]. Still others mediate RNA–protein or RNA–ligand inter-molecular interactions.

A variety of approaches for motif search and classification have been reported and recently
reviewed [29,33]. Yang et al. introduced three programs, BPViewer, RNA-View, and
RNAMLView, to aid in the classification and visualization of RNA structure [45]. These
programs automatically produce 2D symbolic representations of RNA 3D structures that can
then be searched manually for recurrent motifs. BPViewer provides a web interface for
displaying three-dimensional coordinates of base pairs. A web server, RNAview, automatically
identifies and classifies the base pairs in an RNA 3D structure. RNAView produces secondary
structure (2D) diagrams annotated with symbols representing each type of non-Watson-Crick
basepair and stores them in Postscript, VRML or RNAML formats. The application
RNAMLview can be used to rearrange various parts of the RNAView 2D diagram to generate
a standard representation (like the cloverleaf structure of tRNAs) or any layout desired by the
user. The application S2S integrates the 2D and 3D representations of an RNA molecule with
sequence alignments of homologous sequences [24].

Several different representations of RNA backbone conformations have been introduced to
search for, analyze, and classify recurrent RNA 3D conformations [9,10,18,37,38,41,43]. In
general, backbone search methods are relatively fast and can be automated to find new recurrent
motifs [43]. However, such methods have limitations when searching for composite motifs or
recurrent tertiary interactions. Backbone search also has difficulty assessing the similarity of
motifs that differ due to inserted nucleotides in some of the motifs [23].

Huang et al. 2004 used a purely geometric approach to find and classify all four-nucleotide
(tetraloop) hairpin motifs [23]. They calculate the geometric distance between two RNA
fragments of the same length, superposed in 3D space, using an RMSD metric that employs
15 atoms per nucleotide, including 3 atoms in each base. The metric was applied to cluster
hairpin tetraloops using UPGMA. This algorithm also compares continuous chain segments.

Major and co-workers pioneered the combined geometric and symbolic approach to analyze
RNA 3D structure [13,36]. Their program MC-Annotate uses 4 × 4 homogeneous
transformation matrices (HTM) to calculate the relative positions and orientations of pairs of
bases in an RNA structure. By separating the translational and rotational components of the
HTM they calculate a distance measure between pairs of bases that corresponds to our pairwise
geometric discrepancy (see below). They use HTMs to reduce RNA structures to graphs in
which each nucleotide is a node and interacting bases in the structure are connected by edges
labeled by the pairwise distance measure. To find 3D motifs, they use subgraph isomorphism
algorithms. This has been implemented in the program MC-Search. [20,35,39]. Note that
symbolic search methods depend on consistent and precise coding of all pairwise base-base
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interactions. Symbolic searches cannot find motifs comprising interactions that have not
already been defined and found in 3D structures during the preprocessing of structure files.

Harrison and co-workers also apply subgraph isomorphisms to search for motifs in graphs
representing RNA 3D structure [17], using methods that were first developed for substructure
searching libraries of small molecule structures and then applied to proteins, carbohydrates,
and most recently, RNA [4]. For RNA structure searching, each base is represented by two
vectors and the whole RNA structure as a labeled graph so the search problem is reduced to
finding subgraph isomorphisms representing query motifs in graphs representing RNA 3D
structures. This approach was applied to search for non-Watson–Crick basepairs and other
small motifs in RNA structures [17]. As the Ullman algorithm used for subgraph searching
scales with n factorial (n!), where n is the number of nodes in the query motif (subgraph), it is
not clear how practical this approach will be for searching larger motifs representing entire
hairpin or internal loops.

Recently a new computational method appeared, Alignment of RNA Tertiary Structures
(ARTS), which compares and aligns pairs of 3D nucleic acid structures (RNAs or DNAs) to
identify common substructures. Each nucleotide is represented by the position of its phosphate
group. The program seeks the rigid transformation of one structure onto another that
superimposes the largest number of phosphate groups of one structure onto the phosphate
groups of the second structure, within a specified distance error [8]. ARTS can also be used to
discover new motifs.

For comparison with these papers, we note that our approach is base centered. For searching,
each base is represented by a single “center” point, so that we may treat base substitutions with
no difficulty, and the RMS deviation of centers is a component of our measurement of
discrepancy between a candidate motif and the query motif. We derive an inequality that allows
us to reject candidates whose discrepancy with the query motif will be large, based on pairwise
distances between centers. This leads us to a screening algorithm that bears some resemblance
to subgraph isomorphism, but which differs in important ways. In particular, it is possible to
incorporate symbolic criteria at the screening stage. With or without symbolic criteria, the
screening algorithm runs quickly in most searches.

2 Materials and methods
The sample searches and performance trials were run on a Dell Optiplex GX280 with two Intel
Pentium 4 processors running at 3.4 GHz and with 1 GB of RAM. We used MATLAB version
7.1.0.246 (R14) Service Pack 3 for program development, Canvas 8 was used for annotations
of motifs, and Microsoft Excel was used for tables. Structure files were obtained in Protein
Data Bank (PDB) format from the Protein Data Bank
(http://www.rcsb.org/pdb/Welcome.do) [5].

3 Results
3.1 Overview of discrepancy-based geometric motif search

The goal of RNA 3D motif searching is to find and rank candidate motifs according to how
closely they resemble the structure of the query motif. An objective numerical measure to
compare the structures of motifs is therefore needed. This measure must maintain a delicate
balance: it must be simple enough to compute or approximate quickly, while able to
discriminate meaningfully between candidate motifs. We define an entirely geometric measure
that we call the geometric discrepancy that takes into account the general shape of the candidate
motif and the orientations of its bases. First, we determine the shift vector and rotation matrix
which map the geometric centers of the bases of each candidate motif onto the corresponding
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base centers in the query motif with the smallest error, called the fitting error. After the rigid
body operations are performed, we compute the angles of rotation needed to align each base
of the candidate with the corresponding base of the query motif. The square root of the sum of
the squares (RMS sum) of these angles (in radians) is called the orientation error. The
geometric discrepancy is defined to be the RMS sum of the fitting and orientation errors,
divided by the number of bases in the query motif. The mathematical details regarding the
discrepancy are given in Sect. 3.4 below. The mathematical formula for the discrepancy for
motifs with three or more nucleotides is given in Eq. (3).

Given an RNA structure containing n nucleotides and a query motif consisting of m nucleotides,
the number of candidate sets of nucleotides is roughly nm. Unless n and m are both small, there
are simply too many candidates to allow the computation of each discrepancy in order to rank
all candidates. We have developed an algorithm to quickly screen out high discrepancy
candidates with minimal computation. The user sets a cutoff discrepancy D0, and the algorithm
returns all candidate motifs in the RNA structures with discrepancy below this cutoff. For a
query motif having four nucleotides, the screening process works this way: Each of the six
distances between pairs of base centers are calculated for each conceivable candidate motif in
a 3D structure file and are compared to the corresponding six distances in the query motif. If
any of the six distances in a candidate is too far above or below the corresponding distance in
the query motif, that candidate is rejected immediately, using an inequality that we derive below
[Eq. (9)]. A reasonable cutoff discrepancy will typically leave fewer than 100,000 candidates
at this stage; see Sect. 5. Further screening can be done by adding the squares of the six
differences in distances; the inequality we derive shows that if this number is too large, the
discrepancy will exceed the cutoff discrepancy, and the candidate will be rejected without
further computation. This typically rejects 30 to 90% of the remaining candidates. In general,
for a query motif with m nucleotides, there are m(m − 1)/2 distances that can be used for
screening, and the process is similar. Only at this point, after the initial screening is completed,
is it necessary to compute the shift vector, rotation matrix, and angles of rotation to determine
the full geometric discrepancy between the remaining candidates and the query motif.

3.2 Operation of FR3D
FR3D is a suite of Matlab programs that implement the geometric search algorithm described
above and provide additional features. The inputs include a query motif in the form of a list of
m nucleotides from a particular RNA 3D structure file, a set of RNA 3D structure files to search,
and a cutoff discrepancy D0. The output is a list of candidate motifs from these structure files,
sorted according to the geometric discrepancy between the candidate and query motifs. The
m nucleotides of each candidate motif are listed in the order of the corresponding nucleotides
in the query motif. Additional modules display the candidate motifs geometrically, indicate
the basepairs and stacking in the motif, and perform other analyses. The programs are available
at http://rna.bgsu.edu/FR3D.

Symbolic constraints can be used in FR3D to focus the search and reduce search time. The
user can specify the types of basepairing (according to the Leontis/Westhof classification) or
base stacking interactions between given nucleotides, to screen out candidates lacking these
interactions. The user can specify upper (or lower) limits on the differences between nucleotide
numbers to find (or exclude) motifs consisting of segments of sequential nucleotides. This
makes searches for local motifs confined to hairpin or internal loops very fast. In addition, the
user can choose to screen candidates using identity constraints (nucleotide masks) that
implement abbreviations corresponding to each possible subset of the four nucleotides. Thus
one can search with the sequence mask GNRA, where N = {ACGU} and R = {AG}. A complete
list of these symbols is found at http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html#300.
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Finally, one can specify what pairs of bases are to be allowed so that, for instance, only
candidates with a GC or CG pair are kept.

In fact, if desired, one can use FR3D to search using only symbolic constraints, without the
3D coordinates of a query motif, by specifying the pairwise relations between its nucleotides
and any sequence continuity or identity constraints. For example, one can search for Watson–
Crick helices of a given length by specifying that candidate motifs consist of two equal length
sequence segments forming complementary cis Watson–Crick basepairs in an anti-parallel
sense with each base stacked on its immediate neighbors in the sequence. As another example,
one can use symbolic search to find all motifs in which a cis Watson–Crick basepair stacks on
a trans Hoogsteen/Sugar Edge (sheared) basepair.

3.3 Preparatory analysis
The FR3D program suite includes routines that read and analyze RNA 3D structure files. The
results of the preparatory analysis for each structure file are automatically saved and used by
subsequent modules that execute motif searches. The analysis routines read the locations of
the heavy atoms of the base and backbone of each nucleotide, ignoring hydrogen atoms, if
present. For each base, the Cartesian coordinates of its atoms are reduced to two descriptive
geometric quantities: the geometric center of the base, which is the unweighted average of the
positions of the heavy base atoms, and a 3 × 3 rotation matrix giving the orientation of the base
in 3D space relative to a reference orientation.

The rotation matrix is obtained as follows. Reference bases are centered at the origin of a 3D
coordinate system, lying in the xy plane with the glycosidic bond parallel to the y axis and the
Watson–Crick edge at the upper right. Their atom locations are taken from quantum mechanical
calculations by [19] that give optimized geometries for each of the RNA bases. In Fig. 1, the
reference bases are shown with the hydrogen atoms (to aid in visualization) and with their
geometric centers at the origin. For each nucleotide in the 3D structure, we find the translation
vector and rotation matrix which optimally and rigidly move the heavy base atoms of the
corresponding reference base onto the observed locations of the base atoms of the nucleotide,
according to the least-squares criterion and technique of [22], as detailed in Appendix A, with
comments on how to improve its numerical stability. The fitting error is typically very small.
In this way, each base in the experimental structure is replaced by an optimized standard
geometry with hydrogen atoms.

Next, pairs of nucleotides in the structure file that are close enough to interact are identified
and their interactions, if any, are classified. Basepairs are classified according to the geometric
categories introduced by Leontis and Westhof [32]. We illustrate by describing the
classification of AA basepairs. First, we shift and rotate the pair so that the A with lower
nucleotide number lies in the xy plane with its glycosidic atom at the origin, as shown in Fig.
2. The second A of each pair is represented by its glycosidic nitrogen, shown for each A as a
dot in Fig. 2, and by two additional parameters which describe its orientation, shown in Fig.
3. First, mapping the reference A from Fig. 1 onto the second A gives a sense of the relative
orientation of the second A; the unit vector in the positive z direction in the reference frame
becomes a normal vector for the second A. We consider the vertical component of this normal
vector; as Fig. 3 shows, the normal vector is usually nearly straight up or straight down. Second,
we consider the angle of rotation to rotate the reference A to align with the second A; if the
normal vector of the second A points downward, we first flip the reference A about the y axis,
then rotate. The resulting angle of rotation is displayed in Fig. 3.

The dots in Fig. 2 and Fig. 3 represent 65 AA basepairs from the PDB files 1s72 (Haloarcula
marismortui (H.m.) 50S ribosomal subunit) and 1j5e (Thermus thermophilus 30S ribosomal
subunit) colored according to the 12 basepairing categories of [30]. To be classified into a
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certain category, the glycosidic nitrogen of the second A must fall inside the specified box in
Fig. 2 and the normal vector and angle of rotation must fall inside the corresponding box in
Fig. 3. Note that, while boxes 11 and 12 overlap in Fig. 2, they are quite distinct in Fig. 3, so
the classification regions, in fact, do not overlap. Categories 11 and 12 are interactions between
the Sugar edges of the A’s; but there is a 180 degree flip that distinguishes them. Note that
categories 3 and 7 do not occur for AA basepairs. Additional parameters that are used but not
shown are the z component of the glycosidic nitrogen of the second A and a parameter that
measures the degree to which the interacting edges of the two A’s tilt toward each other or fail
to meet. Finally, once a preliminary classification is made, we check the lengths and angles of
hydrogen bonds that should be present. Hydrogen bond lengths greater than 4 Ångstroms, or
bond angles less than 110 degrees together with interacting edges which fail to meet, are cause
for disclassification. Hydrogen bonds involving the H2’ sugar atom are not checked because
we generally do not know the location of this atom. If the pair fails to fall into any category,
we place the second A at the origin and reclassify. In this way, the classification system is
symmetric in the order in which the bases are encountered. For asymmetric pairs, we always
place the purine at the origin; for AG pairs, we place the A at the origin.

Base stacking is treated in a similar way. We name the two faces of each base according to
their orientation in a regular helix; the side that faces the 3′ end is called the 3′ face, while the
other face is called the 5′ face. In Fig. 1, the 3′ face is shown. Two nucleotides are said to be
stacked on one another if they lie in roughly parallel planes, with their geometric centers
roughly 3 to 4.5 Ångstroms from one another, and with non-zero overlap when the convex hull
of each base is projected vertically onto the convex hull of the other. We name the possible
base stacking interactions according to which faces of the two nucleotides are interacting. For
instance, in a regular helix, both strands have “35” stacking, while cross-strand stacking is
typically “55 stacking”. We write, for example, A1 - G2 s35 to indicate that A1 and G2 are
stacked on one another with the A using its 3′ face and the G using its 5′ face. We could just
as well write G2 - A1 s53.

We note two points of contrast with other basepair classification schemes. First, we do not use
the axis system of [2,40], which includes parameters such as buckle, propeller twist, opening,
shear, stretch, and stagger. Second, our classifications are absolute, rather than indicating a
continuum of degrees of agreement with one category or another [13]. Nonetheless, we obtain
lists of basepairs very similar to those obtained with BPViewer and reported on the NDB
website: (http://ndbserver.rutgers.edu/services/BPviewer/index.html). Initial classifications
were done by expert visual analysis, and cutoffs were set quite strictly, to insure a low false
positive rate. Classifications are periodically revised as new 3D structures become available.
FR3D can be used to view diagrams such as those in Fig. 2 and Fig. 3.

Implementation details, such as the treatment of modified bases, NMR files, multiple chains,
and numbering systems, are addressed in the FR3D documentation.

3.4 Definition of geometric discrepancy D
In this section we describe in detail how we define the geometric discrepancy D between query
and candidate motifs of three or more nucleotides. (The discrepancy for motifs comprising
only two nucleotides requires separate treatment and is discussed at the end of this section.)
We chose this measure to identify and rank candidate motifs similar to a query motif because
it is easy to calculate and provides excellent discrimination, as will be shown in Sect. 4.

First, we translate and rotate the candidate motif onto the query motif. For nucleotide i of the
query motif, i = 1,…, m, let the vector bi be the geometric center of the heavy base atoms, as
in Fig. 1. For example, four bases belonging to the 23S rRNA kink-turn in Helix 7 (Kt-7) are
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shown in Fig. 4a with the geometric centers marked by black dots. We take this as the query
motif.

For the candidate bases, denote the geometric centers by ci, i = 1,…, m. We seek the translation
vector t and 3 × 3 rotation matrix R which are optimal in the sense that they minimize the
squared error,

(1)

The minimal value L is called the fitting error. The weights wi, i = 1,…, m, allow us to fit key
bases in a motif more closely than other bases, if desired. We assume that the weights are
strictly positive and sum to m. It was shown by [22] how to choose t and R to achieve the
minimum in Eq. (1). The procedure is briefly explained in Appendix A. See also [15], Sect.
12.4.1. Fig. 4b shows a candidate motif fitted optimally onto the kink-turn in Fig. 4a. The fitting
error, L, is the RMS sum of the distances between corresponding base centers, shown as black
dots.

The second contribution to the geometric discrepancy is due to differences in orientation
between the corresponding bases of the candidate and the query motifs. Consider base i of each
motif. Denote by Mi the rotation matrix taking a base in standard orientation to the orientation
of base i in the query motif, and by Ni the rotation matrix for base i of the candidate motif
before it is rotated onto the query motif. Once the candidate is rotated onto the query motif by
the rotation matrix R, the rotation matrix  tells how to rotate base i of the candidate
onto base i of the query motif. As the two bases need not be the same, we use standard
orientations for all four bases; as in Fig. 1. Denote by αi the angle of rotation for the rotation
matrix , in radians. This is a number between 0 and π. We define the orientation
error A by

(2)

The weights vi are nominally 1, but they can be changed to adjust the sensitivity of the search
to the orientations of particular bases. Also, they can be raised or lowered as a group to alter
the relative weight given to the orientation error compared to the fitting error. In Fig. 4b, one
can see that after the base centers are fitted the orientations of corresponding bases are not the
same, and some bases happen to be more closely aligned than others. Note that we do not
minimize the orientation error, we just measure it using (2).

The geometric discrepancy D is defined by combining the fitting and orientation errors:

(3)

Dividing by m allows us to interpret D as the discrepancy per nucleotide, so it has the same
meaning for small and large motifs. The units for L are typically Ångstroms. We can think of
A as having units of Ångstroms as well, for the number viαi is the arc-length, in Ångstroms,
traveled by an atom located vi Ångstroms from the axis of rotation when base i of the candidate
is rotated to align with base i of the query motif. Increasing vi increases the distance from the
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axis of rotation, and so raises the importance of angle αi in the discrepancy. Thus, combining
the fitting error L and the orientation error A into the discrepancy D gives the discrepancy per
nucleotide, measured in Ångstroms. We find that typical values of D for a good match to the
query motif are in the range 0.2 to 0.6 Ångstroms per nucleotide. When the candidate is identical
to the query motif, the discrepancy is, of course, zero, and excellent matches have discrepancy
between 0 and 0.2.

It is noteworthy that the numerical value of the geometric discrepancy D is not changed by
reversing the roles of the query and the candidate motifs. A proof of the symmetry property
for D is provided in Appendix B.

If the query and candidate motifs had the same bases, one could fit the entire candidate motif
onto the query motif and use the RMS deviation between atoms to measure the discrepancy
between the two motifs. Such a discrepancy measure would have similar qualitative features
to our geometric discrepancy. The discrepancy we define has the advantage that it can be used
to compare motifs which are not composed of the same bases.

Finally, we note that motifs consisting of only two nucleotides (m = 2) must be evaluated in a
different way because, while the candidate can be rotated onto the query motif (so that the
candidate base centers lie on the line through the query motif base centers), there is no obvious
additional criterion to remove all ambiguity (the candidate can still be rotated freely about the
line). Instead, we define the discrepancy between the candidate and the query motif following
[13]. First, we rigidly translate and rotate the candidate motif so that its base 1 aligns with base
1 of the query motif. This leaves a distance ℓ1 between the centers of the second bases, and an
angle θ1 required to rotate base 2 of the candidate to align with base 2 of the query motif.
Second, to make the discrepancy symmetric, we move the candidate again so that its second
base aligns with the second base of the query motif, then calculate the distance ℓ2 and angle
θ2 between the first nucleotides. The discrepancy is defined for the special case of two-base
motifs by

(4)

The discrepancy for two nucleotide motifs as defined in (4) is also symmetric with respect to
the identification of the query and candidate motif and with respect to the order in which the
nucleotides are numbered. We may interpret D to have units of Ångstroms, as explained above.
The prefactor 1/4 averages the two contributions to the discrepancy and divides by the number
of bases, so again we may interpret D as the discrepancy per nucleotide, in Ångstroms. The
prefactor  is for convenience; as defined in Eq. (4) the discrepancy for m = 2 then satisfies
inequality (9) below.

3.5 Geometric screening criterion for rapid searching
Given a query motif consisting of m nucleotides and an RNA 3D structure file of n nucleotides,
there are nominally n(n − 1)(n − 2) … (n − m + 1), or roughly nm, candidate motifs. This number
is typically so large that it is impossible to examine all candidates in order to rank them
according to their geometric discrepancy with the query motif. Therefore, we set a cutoff
discrepancy D0 and seek candidates whose discrepancy with respect to the query motif is below
D0. The key to rapid searching is to eliminate as many candidates with D > D0 as possible
using minimal computation. In this section, we describe the geometric screening criterion for
eliminating candidates on the basis of the distances between base centers. The screening
algorithm we describe in Sect 3.7 uses this screening method. It runs quickly and is guaranteed
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to find all candidates whose geometric discrepancy is below D0. Moreover, it can easily be
adapted to generic RMSD (root-mean-square deviation) searches.

For candidate and query motifs to be geometrically similar, the distances between base centers
in the candidate must be roughly the same as the corresponding distances in the query motif.
For the query motif, we compute an m × m matrix QD for which QD(i, j) is the Euclidean
distance between the geometric centers of query motif bases i and j. That is, QD = [‖bi − bj‖],
where bi is defined above. This matrix is symmetric and equal to zero on the diagonal. For the
four nucleotides of the kink-turn in Helix 7 (Kt-7) of H.m. 23S rRNA shown in Fig. 4a, the
QD matrix is:

(5)

We have indicated outside the matrix the corresponding nucleotide numbers of four conserved
nucleotides used to define the motif. The six distances we consider are shown in blue in Fig.
5.

Consider a candidate motif and its corresponding matrix CD of distances, CD = [‖ci − cj‖]. The
candidate from the 23S rRNA shown in red in Fig. 4 and Fig. 5 has discrepancy 0.54967 from
the query motif. Its matrix CD is given by

(6)

When the candidate matches the query motif exactly, the matrices CD and QD are identical.
The more the candidate differs from the query motif, the more CD and QD differ. We measure
the differences between the matrices by subtracting them and squaring each component, to
obtain a matrix Q of squared distance differences:

(7)

For the kink-turn and candidate in Fig. 5, Q is:

(8)

In this case all of the entries are fairly small because the candidate matches the query motif
fairly well.

The entries of Q are not involved in the definition of the geometric discrepancy, nor are they
as precise a geometric measure of the shape of a motif as the fitting error. However, they can
be computed quickly because they depend only on pairwise distances. Moreover, in Appendix
C we derive inequality (9) which relates the entries of Q to the discrepancy D:
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(9)

In inequality (9), I is a subset of {1, 2,…, m} with two or more elements, meaning that we use
only certain nucleotides in the sum, and wi, i = 1,…, m are the weights used in the definition
of the discrepancy.

Inequality (9) says that the larger the entries of Q, the larger the discrepancy between the
candidate and the query motif. We use this observation to screen out candidates. Using the
cutoff discrepancy D0, if the squared distance differences in Q are so large that

(10)

then D > D0 and we may reject the candidate. We call this the subset screening criterion. In
particular, when I has just two elements, i and j, and Qij is so large that

(11)

then we may reject the candidate on the basis of this pairwise criterion alone. We call this the
pairwise screening criterion. In a candidate with m nucleotides, there are m(m − 1)/2 pairwise
distances that can be checked and used for screening. Screening using pairwise distances alone
typically reduces the number of candidates from the astronomical nm to a few hundred thousand
or less. The same screening technique could be used in other settings in which RMS deviation
alone (represented here by L) is used for the discrepancy.

3.6 Data structures for screening
Well-chosen data structures allow for fast pairwise and subset screening while using minimal
memory space. Suppose we wish to search for the query motif in an RNA 3D structure file
with n nucleotides. For each p, q = 1,…, n, let Cpq be the Euclidean distance between the
geometric centers of nucleotides p and q in the structure. Then C is an n × n matrix of distances.
For each pair 1 ≤ i, j ≤ m of nucleotides in the query motif, we construct an n × n matrix S(ij)

as follows:

(12)

Entry (p, q) of S(ij) tells how closely the distance between bases p and q in the structure matches
the distance between bases i and j in the query motif. It plays the same role as wiwj Qij in (11).
The entries of S(ij) are generally greater than zero, but S(ij)(p, q) = 0 when the distances are
exactly the same, which happens when the query motif itself belongs to the structure file being
searched. For technical reasons that will become clear below, we replace 0 entries by a suitably
small number such as 10−10. Thus, S(ij) has strictly positive entries.
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Note from (11) that if , then the pair (p, q) fails to meet the pairwise
screening criterion for query motif nucleotides (i, j). This is the case for the vast majority of
entries in S(ij). To save storage space and help with screening, we replace these entries of
S(ij) with zeros:

(13)

We also replace the diagonal entries of S(ij) with zeros to preclude a nucleotide being paired
with itself. From a programming standpoint, the matrices S(ij) are sparse; they are
overwhelmingly filled with zeros. From a constructive perspective, those (p, q) pairs for which
S(ij)(p, q) > 0 are nucleotide pairs which match query motif nucleotides (i, j) closely enough
that they cannot be rejected on the basis of inequality (11). We say that these pairs satisfy the
pairwise constraint.

3.7 Building lists of partial candidates and the screening algorithm
In this section we describe how to construct a relatively short yet inclusive list of m-nucleotide
candidate motifs from an RNA structure file. The full geometric discrepancy with the m-
nucleotide query motif need only be calculated for these candidates, since these are the only
candidates whose discrepancy may be below D0.

We systematically build up the list of candidates, starting with 2-nucleotide partial candidates
which match the first two nucleotides of the query motif, then 3-nucleotide partial candidates
which match the first three, and so on, until we have a list of m-nucleotide candidates. When
building k-nucleotide partial candidates, we retain only those partial candidates which cannot
be rejected on the basis of the pairwise screening criterion (11) for 1 ≤ i < j ≤ k. Thus, we retain
partial candidates whose k(k − 1)/2 pairwise distances between bases are close enough to the
corresponding distances in the query motif. We say that the partial candidates satisfy the
pairwise constraints. Next, we apply the subset screening criterion, Eq. (10), to reject some of
these k-nucleotide partial candidates. The ones that remain are said to satisfy the subset
screening constraint. Then we build k + 1-nucleotide partial candidates in the same way, and
continue until we have candidates with m nucleotides. This procedure retains many candidates
with D > D0, but not so many that it is unwieldy, see Sect. 5. Once we have a list of m-nucleotide
candidates, we compute the discrepancy of each with the query motif using Eq. (3) and rank
them.

Here are the details. The screening algorithm starts with nucleotides 1 and 2 of the query motif.
From S(12) we obtain a list of (p, q) pairs for which S(12) (p, q) > 0, and so (p, q) satisfy the
pairwise constraint for (1, 2). If m > 2, for each (p, q) pair, we find all possible third nucleotides
r for which two additional constraints are met:

(14)

This results in a list of (p, q, r) triples from the RNA 3D structure file which satisfy all pairwise
constraints for query motif nucleotides (1, 2, 3). Now we reject some of these partial candidates
by applying the subset screening criterion (10) with I = {1, 2, 3}; we reject (p, q, r) triples for
which
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(15)

because we can be certain that any m-nucleotide candidate for which (p, q, r) correspond to (1,
2, 3) will have discrepancy greater than D0.

Generally, if (p1,…, pk) is a partial candidate for query motif nucleotides (1,…, k) and m > k,
we retain the larger partial candidate (p1,…, pk, q) for (1, 2,…, k, k + 1) provided that

(16)

so that all pairwise constraints between the k existing nucleotides and the one new nucleotide
are met. We then use the subset screening criterion; we reject those candidates for which:

(17)

Here S* is the corresponding sum for (p1,…, pk). Thus, when adding the next nucleotide, k
pairwise constraints must be checked, and k additional terms must be summed to apply the
subset screening criterion.

One could apply the subset screening criterion to every subset of {1, 2,…, k + 1}, but this would
be impractical. It works well enough to apply subset screening for subsets of the form {1, 2,
…, j}, j ≤ k + 1. Some candidates with large discrepancies will survive the screening process,
but not so many that it is worth imposing additional subset screens during this procedure.

In Fig. 6, we illustrate how the candidate in Fig. 4b is found. First, nucleotides A247, G249,
and C260 satisfy the three pairwise constraints on their three mutual pairwise distances (shown
in red) to become a partial candidate matching A80, G81, C93. Then, one additional nucleotide
is added. In this case, we find that the distances to G264 (shown in black) satisfy three additional
pairwise constraints as well as the subset screening constraint, and so A247-G249-C260-G264
becomes a full candidate for the query motif A80-G81-C93-G97.

From a graph-theoretic perspective, the n nucleotides in the structure file can be thought of as
vertices, and for each i, j pair with 1 ≤ i < j ≤ m, the non-zero entries of S(ij) can be thought of
as edges between those vertices. This makes for m(m − 1)/2 different edge sets on the same
vertices, one for each distinct pair of nucleotides in the query motif. Full m-nucleotide
candidates correspond to a set of m numbered vertices in which vertices i and j are connected
by an edge from edge set S(ij). In Sect. 3.10, we will see that symbolic constraints on a pair are
imposed by removing edges from the corresponding edge set.

3.8 Exhaustive screening guarantee
Because a candidate whose discrepancy with the query motif is less than or equal to the cutoff
discrepancy D0 will satisfy all pairwise constraints and all subset constraints, it will always be
retained in lists of partial candidates and will never be screened out. Thus, the list of candidates
returned by the algorithm is guaranteed to include every candidate whose discrepancy with
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the query motif is less than the user-specified D0. In practice, the list also contains candidates
whose discrepancy with the query motif exceeds D0, which is expected since the fitting error
has not yet been completely calculated, and the orientation error has not been considered at
all.

3.9 Implementation of the screening algorithm in FR3D
The order in which the nucleotides of the query motif are specified (i.e., which nucleotide is
called number 1, number 2, etc.) affects the running time of the screening algorithm. After we
compute the matrices S(ij), we permute the nucleotides so that S(12) is the matrix with the
smallest number of non-zero entries. We permute the remaining nucleotides to minimize the
number of non-zero entries in S34, and so on. This appears to be the optimal ordering of the
nucleotides, and results in greatly improved runtimes over other orderings. Thus, the order in
which the user lists the nucleotides in the query motif does not affect the runtime or the results
obtained.

When building partial candidates, we add two nucleotides simultaneously at each step until
zero or one nucleotide remains to be added. This reduces the number of times we must loop
through the list of partial candidates. If the partial candidate has k nucleotides, each new
nucleotide must satisfy k pairwise screening constraints, plus the pairwise constraint between
the two new nucleotides, for a total of 2k + 1 pairwise constraints. We apply the subset screening
criterion only once, after both nucleotides have been added.

The subset screening criterion (10) can be relaxed by setting a second, larger cutoff D1. This
retains some interesting candidates whose discrepancy is between D0 and D1, but does not
increase the number of candidates nearly as much as it would if D0 were increased to D1,
because the pairwise screens reduce the length of the list of candidates much more effectively.
In this way, FR3D can be used to quickly generate candidates with discrepancies up to D1, but
without a guarantee of finding every candidate with discrepancy between D0 and D1.

After a list of m-nucleotide candidates has been produced, the discrepancy from the query motif
is calculated for each candidate motif, and the candidates are sorted by discrepancy. In practice,
once the fitting error, L, has been calculated, it may be clear that the discrepancy will exceed
D0 (or the larger cutoff D1 mentioned above), in which case the candidate can be rejected,
saving the time of calculating the orientation errors. Similarly, after each of the first m − 1
orientation errors is computed, we check to see if the candidate can be rejected without
computing the remaining orientation errors. Only a small fraction of the candidates retained
by the screening process actually have discrepancy below D0. This is because the inequality
(9) is rather weak, although very useful.

Finally, the larger the query motif, the more likely FR3D is to obtain redundant candidate
motifs with discrepancies below D0 but differing from one another by just one or two
nucleotides. For example, in a candidate motif having a cis WC/WC basepair, replacing one
of the paired bases by a base stacked on it results in a candidate with only somewhat larger
discrepancy. If desired, FR3D can exclude redundant versions of candidate motifs, keeping
only those with the lowest discrepancies.

3.10 Screening with interaction, identity, and continuity constraints
Symbolic search criteria specifying base–base interactions, base identity, or chain continuity
constraints can be imposed in addition to the geometric shape of the motif and usually greatly
reduce the search time. Alternatively, purely symbolic searches can be carried out. For
example, one may wish to find all examples of A–G trans Hoogsteen/Sugar Edge basepairs
stacked on G–A trans Sugar Edge/Hoogsteen pairs separated by no more than two additional
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nucleotides in each chain. Examples of purely geometric, purely symbolic, and mixed searches
will be provided in Sect. 4.

3.10.1 Pairwise interaction constraints—Many motifs have characteristic pairwise
interactions. In a regular helix, for example, all the basepairs are cis WC/WC and are
constrained by sequence to be A/U, U/A, G/C, C/G, G/U or G/U. In addition, there are stacking
interactions between successive nucleotides in each strand. For each pair of nucleotides in the
query motif, the user may specify one or more desired interaction categories, using the 12
geometric basepairing categories from [30] and three additional stacking categories. Basepair
and stacking classification is done automatically when an RNA 3D structure file is first read
by FR3D as described above. Only candidate motifs whose nucleotides engage in the specified
interaction will be retained.

The interaction constraint between i and j is implemented in FR3D by setting certain entries
of S(ij) equal to 0, so that all but the specified nucleotide pairs are excluded by the pairwise
screening constraint. We set to zero those entries S(ij) (p, q) for which nucleotides (p, q) are
not classified to engage in one of the specified interactions for nucleotides corresponding to
i and j. This is a fast operation which dramatically reduces the number of non-zero entries in
S(ij) and the number of partial or full candidates which are retained at every step of the process.

3.10.2 Base identity and nucleotide masks—In some motifs, only certain nucleotides
occur in certain positions. For instance, many hairpin loops match the pattern “GNRA” - G in
the first position, any nucleotide in the second (denoted N), A or G in the third (denoted R),
and A in the last. We use the standard conventions for nucleotide masks. In addition, the user
may specify that only certain pairs of letters are allowed for particular pairs of nucleotides in
the candidate motif; for instance, the user may specify that nucleotides 1 and 4 of a motif match
the pattern ‘CG’ or ‘GC’.

We implement the nucleotide mask by setting the appropriate entries of S(ij) equal to 0. For
instance, if entry i of the nucleotide mask is “C”, then for each j and q, we set S(ij)(p, q) = 0
whenever nucleotide p is not a C. This sets row p of S(ij) equal to 0 all at once, and significantly
reduces the number of non-zero entries in S(ij). Similarly, if the user specifies certain allowed
patterns for nucleotides i and j, we set S(ij)(p, q) = 0 for nucleotides p and q which do not match
an allowed pattern.

3.10.3 Sequence continuity constraints—In some motifs, such as regular helices,
certain nucleotides are expected or required to be adjacent in the nucleotide sequence. In other
cases, a variable number of unpaired (“bulged”) nucleotides occur between two target
nucleotides of the query motif. The corresponding candidate nucleotides should at least be
nearly adjacent in the nucleotide sequence. With composite motifs, however, base-paired or -
stacked nucleotides may be separated by one or more looped out bases, entire helices or even
entire domains. Some motifs of interest may even contain nucleotides from two different
molecules.

FR3D allows the user to specify sequence continuity constraints in the following way. For
each pair of nucleotides in the query motif, the user may set upper and/or lower limits on the
difference between nucleotide numbers of the corresponding nucleotides in the candidate.
Candidates whose corresponding nucleotide numbers have larger or smaller gaps than what is
allowed will be rejected without further computation. Note that, because nucleotide numbers
can be non-numeric and different chains may use the same nucleotide numbers, the constraint
is, in fact, implemented using the position of each nucleotide in the RNA 3D structure file.
Thus, nucleotides from separate chains whose nucleotide numbers happen to be very close to
one another will not automatically pass this screen.
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The sequence continuity constraint is implemented as follows. Suppose that, for query motif
nucleotides i and j, the sequence continuity constraint limits candidates to a maximum
difference of d. Then we set S(ij)(p, q) to 0 unless |p − q| ≤ d. This sets all entries of S(ij) to 0
except those sufficiently close to the main diagonal, again dramatically reducing the number
of non-zero entries.

3.10.4 Symbolic searching using interaction constraints, nucleotide masks, and
sequential constraints—Sometimes it is desired to search for motifs based only on the
desired base-pairing and base-stacking pattern, with the possible addition of a nucleotide mask
or sequential continuity constraint, but without a query motif or discrepancy ranking. This is
useful when one wants to determine whether a particular sub-motif exists, for example, to find
all motifs having basepairs of type A stacked on basepairs of type B. As mentioned above,
imposing these kinds of constraints dramatically reduces the number of non-zero entries in
S(ij), and so it is plausible that, following the procedure described above for building candidate
motifs, but only imposing the pairwise constraint S(ij)(p, q) > 0, one may be able to reduce the
list of conceivable candidates down to a reasonable number to examine by hand.

Recall the definition (12) of S(ij) and its subsequent modification. A non-zero entry in S(ij)(p,
q) meant that nucleotides p and q have the right mutual distance to be able to correspond to
query motif nucleotides i and j. With no query motif, this needs modification. One could
reasonably make all off-diagonal entries of S(ij) be non-zero. But even with a reasonable number
of symbolic constraints, the search could return enormous numbers of candidates. We are
helped by the following observation: if we are able to give an upper limit on the center to center
distances in a candidate motif (we use 30 Ångstroms as the default), then we may set to zero
all entries S(ij)(p, q) for which the center to center distance between nucleotides p and q exceeds
this upper limit. Once again, then, S(ij) will be sparse, and will be made more sparse by the
symbolic constraints. We may use the screening algorithm described above to build up partial
and full candidates, although we do not impose the subset screening constraint, nor do we
compute a discrepancy between candidates and a query motif. Thus, we are unable to sort the
resulting candidate list according to similarity to a query motif. It is worth noting that if the
set of constraints admits symmetries, a permutation of the nucleotides in a candidate motif may
also satisfy the constraints. For example, if A1 C2 G8 U9 is a canonical helix (with AU and
CG pairs), then so are U9 G8 C2 A1, C2 A1 U9 G8, and G8 U9 A1 C2, giving four ways that
these nucleotides would match a canonical helix. To keep such permutations together, the
candidate list is sorted first by the RNA 3D structure file the candidate came from, then by the
sum of nucleotide numbers.

4 Motif search examples
We illustrate the capabilities of FR3D by presenting the results of searches for known motifs
in the 50S ribosomal subunit of Haloarcula marismortui, PDB file 1s72, since we have a
comprehensive catalog of known motifs [31,34]. Searches were performed using core
nucleotides for each motif. Extruded unpaired bases were omitted from the query motifs since
these nucleotides are less conserved among similar motifs and can generally assume a number
of different orientations. The symbols used in the annotated 2D figures follow the Leontis/
Westhof basepair nomenclature and classification [32].

4.1 Sarcin/Ricin search
The complete sarcin/ricin motif has nine nucleotides, which make five non-canonical basepairs.
There are twelve motifs in the H.m. 50S ribosomal subunit that contain at least five core
nucleotides of the motif and eight instances of the complete motif. We describe three geometric
and one symbolic search for the motif. The geometric searches were conducted using the parent
sarcin/ricin motif from Domain VI of 23S rRNA to construct query motifs, with discrepancy
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cutoff D0 set to 0.5. For the first search we used a five-nucleotide submotif as the query motif.
These five nucleotides are highlighted in yellow in Fig. 7a. No symbolic constraints were used
and redundant candidates were excluded, as described in Sect. 3.9. The FR3D code for the
search is:

Model.Filename  =’1s72’;
Model.NTList    ={’2694’ ’2701’ ’2693’ ’2702’ ’2692’};
Model.ChainList ={’0’ ’0’ ’0’ ’0’ ’0’};   % all in the 23S
Model.DiscCutoff=0.5;

All other options are set by default, including D1 = D0. The search took 58.6 s. The thirteen
best scoring motifs found by FR3D are listed by increasing discrepancy in Table 1. The twelve
best scoring candidates correspond exactly to the twelve motifs containing the five core
nucleotides of the full sarcin/ricin motif, including composite versions of the motif. The bona
fide sarcin/ricin motifs, shown in yellow, have the lowest discrepancy scores (below 0.30).
From the 12th candidate to the 13th, there is a considerable jump in discrepancy. The 13th
candidate, while closely related, is not a bona fide sarcin/ricin motif, nor are any of the
candidates further down the list (not shown). We examined candidate 13 to understand the
degree to which it differs from the query motif. Its annotated secondary structure is shown in
yellow in Fig. 7c. Three additional nucleotides are also shown. This candidate shares two
basepairs of the type found in the sarcin/ricin motif, but G1543, which corresponds to G2692
in the query motif, is shifted slightly downward and pairs with A1642 instead of forming a
cis Sugar Edge/Hoogsteen basepair with U1544.

To illustrate the purely symbolic search capabilities of FR3D we repeated the search for the
5-nucleotide core sarcin/ricin motif using only interaction and sequential continuity
constraints, and no query motif. Using the same ordering of nucleotides as in the previous
search, we specify the relationships between these five bases in FR3D as follows:

Query.Edges{1,2}   = ’tHS’;
Query.Edges{3,5}   = ’cHS’;
Query.Edges{3,4}   = ’tWH’;
Query.MaxDiff(5,3) = 2;
Query.MaxDiff(3,1) = 2;
Query.MaxDiff(4,2) = 2;

The Edges{1,2} field specifies that nucleotides 1 and 2 in the candidate should form a trans
Hoogsteen/Sugar edge pair. Similarly for the other two edge specifications. The MaxDiff field
specifies that, in order to be accepted as a candidate, the difference between the first and third,
third and fifth, and second and fourth nucleotide numbers must be no greater than 2. The search
took 6.6 s and returned the first 12 candidates listed in Table 1, with no others.

Next we provide examples of mixed geometric and symbolic searches for efficiently searching
with larger query motifs. First, we used seven nucleotides from the sarcin/ricin motif to form
the query motif. These nucleotides are shown in yellow in Fig. 8a. For this search the cutoffs
were set as D0 = 0.5 and D1 = 0.5. We imposed one basepair interaction constraint
corresponding to the U2693/A2702—trans Watson–Crick/Hoogsteen basepair in the query
motif, but no basepair mask or sequential continuity constraint. For illustration purposes, we
did not exclude redundant motifs. This search took 5.7 s.
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All eleven motifs (shown in yellow in Table 2) which contain these seven nucleotides of the
query motif were found and assigned the lowest discrepancy scores, including the composite
motif shown in Fig. 8b. The last candidate in the list, shown in Fig. 8c, is a duplicate of the 7th
motif in the list with a change of one nucleotide (C478 rather than A477). This type of
redundancy occurs often in searches and has only a somewhat higher discrepancy (0.4098 vs.
0.2216), since all but one of the seven nucleotides are properly oriented. This candidate is
excluded when we carry out a non-redundant search by setting the program parameter
Query.ExcludeRedundant to 1.

Finally, we carried out a geometric search using all nine nucleotides of the sarcin/ricin motif,
shown in yellow in Fig. 9a. As in the previous search, the cutoffs D0 and D1 were set to 0.5
and one basepair constraint was imposed (U2693/A2702 - trans Watson–Crick/Hoogsteen).
Redundant motifs were excluded. This search took 58.7 s. As shown in Table 3, the eight
complete sarcin motifs that occur in the H.m. 50S subunit are the highest scoring motifs
obtained by this search. To obtain additional candidates, we raised the discrepancy cutoff D0
to 0.7, which took 2.63 hours to run. The ninth candidate obtained has a score almost double
that of the eighth motif. It is one of the partial sarcin motifs having seven nucleotides and
lacking the fifth non-Watson–Crick basepair of the full motif, as shown in the annotated
structure in Fig. 9c. U462 and C478 do not form a basepair.

4.2 Kink-turn search
Next, we illustrate the use of different basepairs to define the query motif, by performing two
six-nucleotide searches using the Kink-turn motif Kt-7 of H.m. as the query motif. The cutoffs
D0 and D1 were set to 0.7, one basepair constraint was imposed (A80/G97 - trans Hoogsteen/
Sugar Edge), and redundant candidates were excluded. The six query nucleotides for the first
search are shown in yellow in Fig. 10a. These six nucleotides take part in four basepairing
interactions at the heart of the kink turn.

This search took 14.3 s, and the results are shown in Table 4. The eight known kink-turns were
found by this search; these are shown in yellow in Table 4. The candidate shown in blue in
Table 4 is a new kink-turn, which is located within a three-way junction in Domain V. This
new kink-turn is annotated and shown in Fig. 10b. It is notable that the search picks up other
candidates which have exactly the same set of interactions that exist in kink-turns but which
comprise tertiary contacts between structural elements distant in the secondary structure.

In a second kink-turn search, we used different query nucleotides, namely, the closing Watson–
Crick basepairs on either end of the kink-turn, together with one characteristic basepair within
the kink-turn. These nucleotides are shown in yellow in Fig. 10c. The cutoffs D0 and D1 were
set to 0.9, one basepair constraint was imposed (A80/G97 - trans Hoogsteen/Sugar Edge), and
redundant candidates were excluded. This search strategy focuses on the overall 3D shape of
the kink-turn rather than the specific interactions which form the kink-turn. This search took
154 s. The results are shown in Table 5. All known kink-turns were found, but a higher
discrepancy was required, due to the greater size of the query motif and the inherent flexibility
of the kink-turn motif.

4.3 GNRA search
We illustrate how the geometric and symbolic search capabilities of FR3D can be used to
understand and characterize an RNA motif by reviewing a search process for GNRA hairpins.

We refer to the hairpin loop annotated in panel (a) of Fig. 11. First, we used bases 804, 805,
808, and 809 as the query motif and constrained candidate motifs to have the same two
basepairing interactions. This search returned some hairpins and some internal loops. To
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exclude the internal loops, we imposed a sequential continuity constraint to limit the difference
in nucleotide numbers corresponding to 805 and 808 to at most 4. Some GNRA hairpins were
missing from the list however, due to the fact that they do not have the trans Hoogsteen/Sugar
edge interaction, or, in one case, the cis Waston–Crick basepair. We removed the tHS basepair
constraint, weakened the cWW constraint, added a fifth nucleotide (A807) to the query motif,
and used a large discrepancy cutoff to find as many GNRA hairpins as possible. We found that
all of the known GNRA hairpins have “35” stacking interactions between the nucleotides
corresponding to A804–G805 and to A807–A808. The final search parameters were as follows:

Query.NTList         = {’804’ ’805’ ’807’ ’808’ ’809’};
Query.ChainList      = {’0’ ’0’ ’0’ ’0’ ’0’};
Query.Edges{1,5}     = ’cWW bif’;
Query.Edges{1,2}     = ’s35’;
Query.Edges{3,4}     = ’s35’;
Query.DiscCutoff     = 0.8;
Query.MaxDiff(1,5)   = 6;
Query.MaxDiff(2,4)   = 4;
Query.ExcludeOverlap = 1;

The three interaction constraints are illustrated with boxes in panel (a) of Fig. 11. The key bif
refers to the bifurcated category in [30], which is close to the cis Waston–Crick category. The
two MaxDiff constraints exclude internal loops and force the hairpin to close below the
basepairs illustrated in Fig. 11, rather than above. The search took 3.0 s. The results of the
search are shown in Table 6; all known GNRA loops from 5S and 23S H.m. were found
(highlighted in yellow) [27], and only one additional motif appeared in the list. This indicates
that the search parameters accurately and succinctly describe what characterizes GNRA motifs.
The one related hairpin is shown in panel (c) of Fig. 11. It has the features of the GNRA motif
and should be found by our search parameters, however, it also contains a U-turn after G1595.

5 Performance characteristics
The running time and memory requirements of FR3D depend strongly on the size and nature
of the query motif, the number of symbolic constraints, the characteristics of the RNA 3D
structure file being searched, and the discrepancy cutoffs D0 and D1. The theoretical worst-
case operation count for evaluating each conceivable candidate motif is O(nm) as n → ∞, where
n is the number of nucleotides in the file being searched and m is the number of nucleotides in
the query motif. The worst-case count with FR3D is somewhat better; there are at most n2

pairs satisfying S(12) > 0, and for each of these, we check n third and fourth nucleotides, and
for each four-nucleotide partial candidate, we check n fifth and sixth nucleotides, and so on,
leaving an operation count of order O(n2+⌊(m−1)/2⌋). Fortunately, because of the screening
algorithm and symbolic constraints in FR3D, in practice there are far fewer partial candidates
than the theoretical worst case. Thus, actual peformance on a range of common tasks is more
relevant than theoretical worst-case estimates.

We illustrate the performance of FR3D on some benchmark examples, beginning with the five-
nucleotide sarcin/ricin motif search. We consider five variants of the search for the query motif.
In every case, we exclude redundant candidates. The first search is a purely geometric search
for the query motif shown in Fig. 7a. The second search is identical to the first except that
sequential constraints are imposed so that the nucleotide numbers corresponding to G2692-
U2693-A2694 differ by at most 2, and that the nucleotide numbers corresponding to G2701-
A2702 differ by at most 2. The text of the search is:
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Model.Filename         = ’1s72’;
Model.NTList           = {’2694’ ’2701’ ’2693’ ’2702’ ’2692’};
Model.ChainList        = {’0’ ’0’ ’0’ ’0’ ’0’};   % all in the 23S
Model.MaxDiff{1,3}     = 2;
Model.MaxDiff{2,4}     = 2;
Model.MaxDiff{3,5}     = 2;
Model.ExcludeRedundant = 1;

(We do not list the discrepancy cutoff, since that will be varied.) For the third search we add
one basepair constraint, that the nucleotides corresponding to A2694-G2701 form a trans
Hoogsteen/Sugar Edge pair. This adds the line Model.Edges{1,2} = ’tHS’; to the query
definition script above. For the fourth search, we impose a second basepair constraint, that the
nucleotides corresponding to U2693-A2702 form a trans Watson–Crick/Hoogsteen pair and
for the fifth search we impose a third basepair constraint, that the nucleotides corresponding
to U2693-G2692 form a cis Hoogsteen/Sugar Edge pair. We ran the five searches over a range
of values for D0 ranging from 0.02 to 1.0. We display the running time versus D0 in Fig. 12.
The purely geometric search has the longest run time, and each of the others ran faster according
to the number of additional constraints imposed. In all cases, larger values of the cutoff
discrepancy D0 required longer run times. This is partly because vastly more candidates survive
the screening process and must have their discrepancies computed. Even so, once the
candidates are sorted by discrepancy and redundant candidates are eliminated, the total number
of remaining candidates is fairly similar in the five cases, until large discrepancies of the order
of 0.8 are used; see Fig. 13.

Next, we illustrate the effect of motif size on search time. We ran five versions of the sarcin/
ricin motif, using, respectively, the first 5, 6, 7, 8, and 9 nucleotides of the 9-nucleotide sarcin/
ricin search in Table 3. In every case, we imposed two interaction constraints, that the
nucleotides corresponding to A2694–G2701 form a trans Hoogsteen/Sugar Edge pair and that
those corresponding to U2693/A2702 form a trans Watson–Crick/Hoogsteen basepair. Total
search times for a range of cutoff discrepancies are shown in Fig. 14. Clearly, larger query
motifs require longer search times. Longer search times directly reflect the number of
candidates which survive the screening process. Even so, the final number of candidates is not
so large. Figure 15 shows the number of candidates that are produced by the screening process,
the number which have discrepancy below the cutoff discrepancy, and, of these, the number
of non-redundant candidates for the 9 nucleotide search. The number which survive the
screening process is many times larger than the number which have discrepancy below the
cutoff discrepancy; this is because the screening process only uses an approximation of the
fitting error and totally neglects the orientation error. These are considered for the first time
when the full discrepancy is computed. Finally, the number of non-redundant candidates is
considerably smaller, and increases only slowly as the cutoff discrepancy is increased. The
situation is similar with the other searches profiled in this section. Thus, increasing the cutoff
discrepancy D0 greatly increases the total search time, but does not greatly increase the number
of non-redundant candidate motifs.

6 Conclusions
The geometric discrepancy that we define is sufficiently simple to calculate and to approximate,
which makes possible efficient and exhaustive screening for recurrent motifs, local and
composite, in RNA 3D structures. It captures the essential features of the motifs we tested, as
indicated by its success in finding all structurally similar sarcin/ricin and kink-turn motifs in
the 3D structure of the H.m. 50S ribosomal subunit. Moreover, this measure is highly
discriminating as shown by the lack of high scoring false positive motifs obtained in these
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searches. Finally, the discrepancy measure shows promise for clustering and classifying
structurally related motifs.

The program FR3D can screen candidates according to basepair interactions, sequential
continuity constraints, and nucleotide masks. If desired, non-geometric symbolic searches can
be conducted, using only such constraints. FR3D has been optimized to run fast, and in the
tradeoff between search time and number of non-redundant candidates found, shorter searches
with lower discrepancies typically produce nearly the same candidate lists as much longer
searches with higher discrepancy.
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Appendix A: Least-squares fitting
In this appendix, we review the solution of [22] to the problem of finding a vector t and rotation
matrix R which minimize the least squares error

(18)

from rigidly translating and rotating vectors c1,…, cm onto vectors b1,…, bm. The constants
w1,…, wm are strictly positive. We also indicate a variation on their solution which is more
numerically stable. See also [15], Sect. 12.4.1.

Fix a rotation matrix R and differentiate E(R, t) with respect to the components of t. Setting
the derivatives equal to zero immediately leads to the unique solution

(19)

This is easier to understand if we express t* as t* = c̄ − R−1 b̄, where

(20)

are the weighted centers of mass of the two sets of vectors. Substituting this optimal value of
t into the error E leaves
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(21)

Thus, the first step amounts to centering each set of vectors at the origin.

Squaring out the vector norm in (21) using the dot product and the fact that ‖Ra‖ = ‖a‖ leads

to an equivalent optimization for R: maximize . As explained in
[22], one maximizes this sum in the following way. Define a matrix M by

(22)

and find the eigenvalues λ1, λ2, λ3 and mutually orthogonal unit eigenvectors u1, u2, u3 of
MT M. Because MT M is symmetric and positive semi-definite, we may assume that λ1 ≥ λ2 ≥
λ3 ≥ 0. The optimal rotation matrix R is an orthogonal matrix with determinant 1 for which

M = RS, where . In [22], R is found by inverting S, using the formula

(23)

Unfortunately, this solution is numerically unstable when λ3 is close to zero, and undefined
when λ3 = 0. These cases occur, respectively, when the vectors bi lie near or on a single plane.
But this is exactly the situation with base atoms in RNA, which is our first application of least
squares fitting.

Our variation of the procedure is the following. Because M satisfies M = RS, we have

(24)

for i = 1, 2, 3 by orthonormality. If the vectors bi, i = 1,…, m do not all lie on the same line,
and if the same is true of ci, i = 1,…, m, then λ1 and λ2 will be non-zero and we may write

(25)

Knowing how R rotates the two mutually perpendicular vectors u1 and u2 will suffice to
determine R. Let z be a unit vector which is perpendicular to both Mu1 and Mu2. Define R* by
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(26)

One readily sees that  for i = 1, 2, and that R*u3 = z. Because Mu1 is orthogonal
to Mu2, R* maps mutually orthogonal vectors to mutually orthogonal vectors. Moreover, one
readily checks that R*ui has length 1 for i = 1, 2, 3. As such, the determinant of R* will be +1
or −1. If the determinant is −1, we replace z by −z; this will change the determinant to +1, but
all other properties will still be satisfied.

Appendix B: Proof of symmetry of geometric discrepancy
Here we show that the geometric discrepancy, as defined in (3), is symmetric, i.e. the same
value of D is obtained for motifs of three or more nucleotides when the sense of query and
candidate motif is switched. We use some results from Appendix A.

The fitting error obtained by aligning the query motif to the candidate motif is given by:

(27)

instead of Eq. (1). Here Q is a rotation matrix and s is the shift vector. As in Appendix A, the
optimal shift vector s* would be given by s* = b̄ − Q−1 c̄. Substituting this in (27) gives

(28)

However, because Q is a rotation matrix, ‖Qa‖ = ‖a‖ = ‖Q−1 a‖ for all vectors a, and we soon
see that the minimum is attained precisely when Q = R−1, where R is the optimal rotation matrix
from Eq. (1). Thus, the fitting error L is the same as before.

For the orientation error, the matrix  rotates base i of the query motif onto base i of
the candidate. The angle of rotation βi may be calculated by

(29)

where we have used the identities Tr(AT) = Tr(A) and Tr(AB) = Tr(BA) and the fact that the
transpose of a rotation matrix is equal to its inverse. Thus, the orientation error is unchanged,
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and the geometric discrepancy is the same whether we align the candidate to the query motif
or the query motif to the candidate.

Appendix C: Derivation of inequality (9)
Here we derive the inequality (9) relating the discrepancy D to the distance differences in the
matrix Q defined in (7). Suppose there are m nucleotides. Let I be a subset of {1, 2,…, m}
having two or more elements. We will give a lower bound on D in terms of a sum of the entries
of Q over I × I. From the definition (3) of the discrepancy D, we see that D2 ≥ L2/m2. Using
the optimal rotation matrix R for rotating the candidate onto the query motif and using the
optimal translation vector t = c̄ − R−1 b̄, we have from Eq. (1),

(30)

where we have denoted  and . We have bounded the fitting error L in terms
of the fitting error of a subset of nucleotides.

To make the connection between the right side of (30) and the squared distance difference
matrix Q, we introduce an intermediate sum and manipulate it two ways. On the one hand, we
have:

(31)

using the “reverse triangle inequality” ‖u − v‖ ≥ |‖u‖ − ‖v‖| and the fact that ‖Ra‖ = ‖a‖ because
R is a rotation matrix. On the other hand, using the facts that ‖u‖2 = u·u, , and

, we have,

(32)

Combining (30), (31), and (32) gives the inequality
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(33)

from which (9) follows by the fact that D ≥ L/m. Because L is the weighted RMSD between
the optimal fit of the ci and the bi, (33) could be used to screen candidates in RMSD searches.
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Fig. 1.
Reference bases. The geometric center of each base, marked by a black dot, is used as the origin
of its local coordinate system. For each base, the 3′ face is shown. Hydrogen atoms are marked
with gray lines. The axes are marked in Ångstroms

Sarver et al. Page 28

J Math Biol. Author manuscript; available in PMC 2010 March 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Relative location in 65 AA basepairs extracted from PDB files 1s72 and 1j5e by the
classification module. Each pair is rigidly translated and rotated so that the first A coincides
with the A at the origin; the glycosidic nitrogen of the second A is shown as a colored dot.
Each of the basepairing categories is colored with a different color. Boxes indicate cutoffs for
each category. The axes are marked in Ångstroms
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Fig. 3.
Relative orientation of 65 AA basepairs from PDB files 1s72 and 1j5e. The normal vector
indicates whether the two A’s share the same or opposite orientation in the plane of the pair.
The angle of rotation (in degrees) is measured after the bases have been given the correct
orientation. Boxes indicate cutoffs for each category
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Fig. 4.
a Query motif, part of the kink-turn in Helix 7 of H. marismortui 23S rRNA (Kt-7, PDB file
1s72). The geometric center of each base is marked by a black dot. b Query motif (blue) with
candidate motif (red) superimposed. The candidate motif is from Helix 15 of the same molecule
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Fig. 5.
Base centers and joining line segments for four bases belonging to the query motif from Fig.
4 (in blue) superposed on those of a candidate motif (in red). The geometric centers of the
bases are indicated by dots
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Fig. 6.
Adding a fourth nucleotide, G264, to a three-nucleotide partial candidate, A247-G249-C260,
in the screening algorithm. The black lines indicate the new pair distances checked by the
pairwise screening criterion
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Fig. 7.
Annotated secondary structures of query motif from PDB file 1s72 for sarcin/ricin geometric
search (a) with one bona fide candidate motif (b) and the highest scoring related motif (c).
Yellow letters indicate the bases of the query motif used for the geometric search reported in
Table 1 and the corresponding bases of the candidate motifs
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Fig. 8.
Annotated secondary structures of query motif (a) and two candidate motifs for the seven-base
sarcin/ricin motif search reported in Table 2. Yellow letters indicate the bases of the query motif
used for the geometric search and the corresponding bases of the candidate motifs. The bold
red box shows the constrained basepair. Candidate motifs obtained by the search include a
bona fide composite sarcin/ricin motif (b) and a redundant motif (c) in which base A2703 in
the query motif is mismatched to base C478 in the candidate motif. The higher-scoring version
of this candidate, in which A477 is matched with A2703, had discrepancy 0.2161
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Fig. 9.
Annotated secondary structure of nine-nucleotide sarcin/Ricin query motif (a) reported in
Table 3 with one bona fide composite candidate motif (b) and the highest-scoring related motif,
which differs from the query motif only at nucleotides U2690 and C2704 (c). The bold red
box shows the constrained basepair
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Fig. 10.
Query motif for kink-turn search reported in Table 4 (a) and new composite kink-turn motif
identified by this search (b). Query motif for kink-turn search reported in Table 5 (c), and a
composite kink-turn obtained by this search (d). The bold red box shows the constrained
basepair
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Fig. 11.
Query motif used for GNRA searche (a), GNRA motif with a bulged nucleotide which was
correctly identified (b), related hairpin which is intermediate between GNRA and a T-loop
(c). The bold red box shows the constrained basepair, and the green boxes indicate stacking
constraints
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Fig. 12.
Total search time for five geometric searches as a function of discrepancy cutoff. The search
labeled GEOM is purely geometric. Other searches are identical to the previous search with
the exception of one added constraint as indicated: SEQ sequential constraint; 1 BP one basepair
constraint; 2 BP two basepair constraints; 3 BP three basepair constraints. The PDB file 1s72
was searched. Note the logarithmic scale on the vertical axis
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Fig. 13.
Number of distinct candidates satisfying the discrepancy limit for the five searches in Fig. 12.
The PDB file 1s72 was searched
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Fig. 14.
Search times for sarcin/ricin query motifs with 5, 6, 7, 8, and 9 nucleotides, as a function of
discrepancy cutoff value. The PDB file 1s72 was a mixed geometric and symbolic search with
two basepair interaction constraints
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Fig. 15.
Number of candidates remaining after screening (S), after the discrepancy calculation (D), and
after redundant candidates were removed (R), as a function of discrepancy cutoff value. The
query motif was the nine-nucleotide sarcin/ricin motif and PDB file 1s72 was searched
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