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Cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif) is a virulence factor
secreted by Pseudomonas aeruginosa that reduces the quantity of CFTR in the apical membrane of human
airway epithelial cells. Initial sequence analysis suggested that Cif is an epoxide hydrolase (EH), but its
sequence violates two strictly conserved EH motifs and also is compatible with other o/f3 hydrolase family
members with diverse substrate specificities. To investigate the mechanistic basis of Cif activity, we have
determined its structure at 1.8-A resolution by X-ray crystallography. The catalytic triad consists of residues
Asp129, His297, and Glul53, which are conserved across the family of EHs. At other positions, sequence
deviations from canonical EH active-site motifs are stereochemically conservative. Furthermore, detailed
enzymatic analysis confirms that Cif catalyzes the hydrolysis of epoxide compounds, with specific activity
against both epibromohydrin and cis-stilbene oxide, but with a relatively narrow range of substrate selectivity.
Although closely related to two other classes of o/f3 hydrolase in both sequence and structure, Cif does not
exhibit activity as either a haloacetate dehalogenase or a haloalkane dehalogenase. A reassessment of the
structural and functional consequences of the H269A mutation suggests that Cif’s effect on host-cell CFTR

expression requires the hydrolysis of an extended endogenous epoxide substrate.

Pseudomonas aeruginosa is a Gram-negative bacterium that
acts as an opportunistic pathogen. In colonizing the urinary
tract, eye, and lung, as well as the surfaces of implanted med-
ical devices, it forms antibiotic-resistant biofilms (12). In nos-
ocomial infections, such as ventilator-associated pneumonia, P.
aeruginosa is the second most common bacterial agent, and it
represents the leading cause of death due to hospital-acquired
infection (1). Among patients with compromised pulmonary
function, P. aeruginosa frequently establishes persistent lung
infections, exacerbating outcomes in chronic obstructive pul-
monary disease (42) and cystic fibrosis (30). Overall, nearly
80% of patients with cystic fibrosis have a chronic P. aeruginosa
infection in the lung by age 18 (22). Preventing infection by
limiting exposure to the pathogen is difficult due to its ubiqui-
tous distribution in the environment (47). On the other hand,
the treatment of chronic lung infections is similarly challenging
due to the formation of antibiotic-resistant biofilms. As a re-
sult, there currently is no effective treatment to eradicate a
chronic P. aeruginosa infection from the lung once established
(15, 54).

P. aeruginosa secretes a multitude of virulence factors that
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assist the bacterium during the initial process of airway colo-
nization and biofilm formation (32), in some instances acting
directly on host cells. In particular, it was shown recently in a
coculture model that the presence of P. aeruginosa causes a
decrease in the quantity of cystic fibrosis transmembrane con-
ductance regulator (CFTR) at the apical membrane of human
airway epithelial cells (49). CFTR is the ion channel respon-
sible for chloride secretion into the airway surface liquid (ASL)
in the lung. The removal of CFTR from the cell surface leads
to reduced chloride efflux, ASL dehydration, and decreased
mucociliary clearance, thus facilitating the establishment of a
bridgehead for bacterial infection.

The downregulation of plasma membrane CFTR is medi-
ated by a single secreted protein, the CFTR inhibitory factor
(Cif), which is encoded at the PA14_26090 or cif locus (37) and
is delivered into the host cell by outer membrane vesicles (5).
The CFTR inhibitory effect also can be replicated by the ap-
plication of purified, recombinant Cif protein directly to the
apical surface of human airway epithelial cells. Within an hour
after treatment with Cif, the levels of CFTR in the apical
membrane are significantly reduced (37). While the mecha-
nism of Cif action is incompletely understood, Cif has been
shown to inhibit the recycling of CFTR to the apical membrane
following endocytic uptake (49). Additional work has shown
that Cif treatment causes a similar effect on some ABC trans-
porters while having no effect on others (56). The mechanism
by which Cif is able to generate this selectivity currently is
unknown.

Based on sequence comparisons, Cif was predicted to belong
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FIG. 1. Epoxide hydrolase activity. The EH class of enzymes is
responsible for the catalytic addition of a water molecule to an epoxide
ring, creating a vicinal diol.

to the /B hydrolase family (37), which contains several differ-
ent classes of enzymes with closely related sequences. Specif-
ically, Cif showed the greatest degree of sequence similarity to
the class of epoxide hydrolases (EHs), which catalyze the con-
version of epoxide moieties to vicinal diols (Fig. 1). The EHs
are conserved between bacteria and mammals and are used to
detoxify products of oxidative metabolism as well as xenobiotic
compounds. In mammals, they metabolize potent chemical
signal mediators (9). As a family, they also are of potential
biocatalytic interest (46). EHs have not previously been re-
ported as bacterial virulence factors, but Pseudomonas is adept
at exploiting a wide variety of biochemical strategies to subvert
host cell functions.

Preliminary mutagenesis experiments targeting Cif sug-
gested a link between EH activity and host cell effects, but
these studies relied on low-identity sequence alignments and
activity assays performed with an artificial EH substrate (37)
that also is susceptible to esterase activity (18). Sequence align-
ment of Cif with known EHs revealed substitutions in several
conserved EH motifs thought to be required for the formation
of the enzyme active site. Furthermore, sequence relationships
suggest that several haloacetate dehalogenases (HADs) previ-
ously had been misclassified as EHs, all of which cluster in the
EH subgroup that includes Cif (52). As a basis for a detailed
structure-function analysis of Cif, we have determined its crys-
tal structure and assayed its activity against a variety of candi-
date substrates for EHs and related «/B hydrolases both for
wild-type protein and for a mutation that abrogates Cif’s host
cell activity.

MATERIALS AND METHODS

Purification of Cif protein. Wild-type Cif (Cif-WT) and Cif-H269A proteins
possessing a C-terminal hexahistidine tag were encoded on plasmids pDPM73
and pDPM77 (37), respectively, under the control of a pBAD arabinose-induc-
ible promoter. Cif-WT and Cif-H269A proteins were expressed in Escherichia
coli and purified using immobilized metal affinity chromatography as previously
described (3). Residue numbering refers to the complete sequence, including the
N-terminal secretion signal. Inductively coupled plasma mass spectrometry of
purified Cif was performed at the Dartmouth Trace Element Analysis Core.

Selenomethionine-labeled Cif-WT was expressed from cells grown in
selenomethionine M9 minimal medium (0.6% Na,HPO,, 0.3% KH,PO,,
0.1% NH,4CI, 0.05% NaCl, 3 x 107%% CaCl,, 1.2 X 1072% MgSO,, 5 X
107°% thiamine, 1.5 X 1072% ampicillin, 0.2% [vol/vol] glycerol, 1 X 1072%
L-lysine, 1 X 1072 % L-phenylalanine, 1 X 1072% L-threonine, 5 X 1073%
L-isoleucine, 5 X 1073% L-leucine, 5 X 1073% vr-valine, 5 X 1073% L-
selenomethionine, 0.2% L-arabinose) for 140 h. Labeled Cif-WT was purified
as previously described (3). Selenomethionine incorporation was verified by
matrix-assisted laser desorption—ionization time-of-flight spectrometry on an
Applied Biosystems Voyager DE Pro System following desalting using Omix C18
pipette tips (Varian) and target preparation using sinapinic acid matrix (Sigma).

Crystallization of Cif. Cif protein crystals were obtained by vapor diffusion
against 400 pl of reservoir solution in a 4-pl hanging drop (5 mg/ml protein was
mixed in a 1:1 ratio with reservoir solution) at 291 K (3). For Cif-WT, the

J. BACTERIOL.

reservoir solution consisted of 14% (wt/vol) polyethylene glycol (PEG) 8000, 125
mM CaCl,, 100 mM Na acetate (pH 5). For selenomethionine Cif-WT, the
reservoir solution consisted of 20% (wt/vol) PEG 8000, 150 mM CaCl,, and 100
mM Na acetate (pH 5). For Cif-H269A, the reservoir solution consisted of 20%
(wt/vol) PEG 8000, 550 mM CaCl,, 100 mM Na acetate (pH 5).

Prior to data collection, crystals were soaked in a cryoprotectant consisting of the
reservoir solution supplemented with 20% (wt/vol) glycerol and then were flash
cooled in the nitrogen stream of an Oxford Cryostream 700 operating at 100 K.

Data collection, processing, structure refinement, and analysis. Oscillation
data for all crystals were collected at the X6A beamline of the National Syn-
chrotron Light Source at Brookhaven National Laboratory. For selenomethi-
onine Cif-WT, anomalous diffraction data were collected at the selenium ab-
sorption peak; E = 12.667 keV and \ = 0.9787 A. Diffraction data also were
collected at A = 0.9781 A and 0.9464 to 1.8-A resolution for Cif-WT and X =
0.9464 to 1.5-A resolution for Cif-H269A. All data sets were indexed, integrated,
and scaled with the XDS package (31), and the Ry, test set was selected in thin
shells for Cif-WT and at random for Cif-H269A using SFTOOLS from the CCP4
program suite (11). Phase determination by single-wavelength anomalous dif-
fraction (SAD), automated building of a preliminary structure (see Fig. S1 in the
supplemental material), automated molecular replacement searches against na-
tive data, and iterative rounds of structure refinement were carried out using
Phenix 1.3 (3). Manual adjustment of the model using WinCoot (21) was carried
out between rounds of automated refinement. Noncrystallographic symmetry
restraints were employed during initial rounds of refinement and were released
during the final rounds as refinement statistics converged. The selenomethionine
Cif-WT structure was used as a molecular replacement search object for the
initial phasing of the Cif-H269A data. To avoid potential phase bias from the WT
structure, composite iterative-build OMIT maps (50) were used to determine the
initial Cif-H269A model. Structure refinement proceeded as it did for the WT
structure. Root mean square deviation (rmsd) calculations (using C, atoms) and
structural alignments were carried out using DaliLite v.3 (28). Images of the
models were prepared using PyMOL (17). Pathways to the active site were
calculated using Caver (45), and the enclosed volume was determined using
Pocket-Finder (26). Coordinates and structure factors have been deposited in the
Protein Data Bank (PDB; entries 3KD2 and 3KDA for Cif-WT and Cif-H269A,
respectively).

Hydrodynamic analysis. Velocity sedimentation ultracentrifugation was car-
ried out with 8.4 uM Cif-WT and Cif-H269A (yielding an A,g, of 0.4 per cm) in
100 mM NaCl, 20 mM sodium phosphate (pH 7.4) as previously described (13).
Protein partial specific volume, buffer viscosity, and buffer density were deter-
mined using the program SEDNTERP (34), and data were analyzed using
SEDFITS7 (14).

Size-exclusion chromatography (SEC) was carried out with a Superdex 200
HR 10/30 column (GE Healthcare) calibrated with aldolase, ovalbumin, chymo-
trypsinogen A, and RNase A. The SEC buffer consisted of 100 mM NaCl and 20
mM sodium phosphate (pH 7.4).

Enzymology. Fluoroacetate dehalogenase activity was assayed by measuring
the production of glycolic acid using a protocol adapted from Wolff (53) and
Eegriwe (20). Briefly, 20 uM enzyme was incubated with 10 mM fluoroacetate
and 100 mM glycine (pH 9) for 30 min at 30°C in a final volume of 200 wl. Two
ml of 0.1% 2,7-dihydroxynaphthalene in concentrated H,SO, then was added,
and the solution was incubated at 100°C for 20 min. After the solution was cooled
on ice, its optical density was measured at 540 nm. A standard curve was
generated with a dilution series of glycolic acid and used to determine the
relationship between substrate hydrolysis and colorimetric readout. Similar tech-
niques were used to monitor the dehalogenation of chloro-, bromo-, and iodoac-
etate.

Haloacetate dehalogenase activity was determined at pH 8.2 using a phenol
red reporter assay according to Holloway et al. (27) with 2.3 uM Cif-WT and 10
mM 1,2-dichloroethane as the substrate.

The assay for epibromohydrin (EBH) hydrolysis was adapted from Cedrone et
al. (7). Briefly, 20 wM Cif was incubated with 10 mM epibromohydrin for 30 min
at 37°C in a total volume of 100 pl in 100 mM NaCl, 20 mM sodium phosphate
(pH 7.4). The reaction was stopped by the addition of 50 wl of 5 mM NalO, in
90% acetonitrile and incubated for 30 min at room temperature. Fifty pl of 6
mM epinephrine-HCI then was added, and the samples were spun for 5 min at
13,000 rpm in a table-top centrifuge to remove protein precipitate. One hundred
wl of supernatant from each sample then was added to a 96-well plate, and the
optical density was measured at 490 nm. A standard curve was generated using
3-bromopropane-1,2-diol.

4-Nitrophenyl-25,3S-epoxy-3 phenylpropyl carbonate (S-NEPC) hydrolysis
was measured based on a protocol described by Dietze et al. (18). Briefly,
samples were incubated for 1 h at 37°C in a 200-pl volume containing 100 pg
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TABLE 1. Data collection and refinement statistics

Measurement Cif-WT Cif-H269A Cif-WT SeMet
Data collection
Space group C2 c2 2
Unit cell duimensions
a, b, c (A) 168.2, 83.9, 89.0 168.0, 83.6, 88.9 168.3, 83.6, 89.0
o B,y () 90, 100.5, 90 90, 100.5, 90 90, 100.5, 90
Resolution® (A) 29.55-1.80 (1.87-1.80) 48.98-1.50 (1.53-1.50) 19.74-2.00 (2.15-2.00)
Rsyml’ (%) 7.4 (27.6) 6.3 (31.4) 13.6 (37.5)
I/oy 19.5 (5.2) 22.6 (5.3) 10.6 (4.4)
Completeness (%) 99.8 (99.9) 99.7 (99.8) 97.9 (97.5)
Phase determination
SigAno® 1.10 (0.86)
Figure of merit (Phaser) 0.41
Figure of merit (Resolve) 0.71
Molecular replacement
Rotation function search
Peak no. 2 1
Log-likelihood gain 3,560 4,470
Z score 75.9 24.6
Translation function search
Peak no. 1 1
Log-likelihood gain 6,793 7,647
Z score 63.9 72.9
Overall log-likelihood gain 11,262 12,556
Refinement
Total no. of reflections 112,388 192,673
Reflections in the test set 5,733 9,636
R0 /Riree’ 16.7/18.2 16.9/18.3
No. of atoms
Protein 9,436 9,561
Solvent 881 1,111
Ramachandran plot’ (%) 90.4/9.2/0.4/0 91.0/8.6/0.4/0
B, (A
Protein 14.4 13.4
Solvent 3 25.0 24.5
Bond length rmsd (A) 0.004 0.005
Bond angle rmsd (°) 0.825 1.066

“ Values in parentheses are for data in the highest-resolution shell.

b Ry = 3,2 [I(h) — L(h)|/2,2; 1;(h), where I(h) and I(h) values are the i-th and mean measurements of the intensity of reflection 4, respectively.

¢ SigAno = <(|F(+) — F(—)|/o,)>.

“Ryork = 2 [Fong(h) = Feae()|/Zy, Fobs(h), he {working set}.
“Reree = S [Fons(t) = Feate(M/Z Fons(), he {test set}.

/ Core/allowed/generously allowed/disallowed.

protein, 500 mM NaCl, 20 mM Tris (pH 8.5), 100 wM S-NEPC, and 1% (vol/vol)
dimethyl sulfoxide. The assay was carried out in a 96-well plate, and the optical
density was measured at 405 nm in 1-min intervals. A standard curve was
generated using 4-nitrophenol.

The assays for hydrolysis of trans-stilbene oxide (TSO), cis-stilbene oxide (CSO),
trans-1,3-diphenylpropene oxide (TDPPO), and juvenile hormone (JH3) were car-
ried out using radiolabeled substrates according to Gill et al. (23), with the enzyme
reaction carried out at 37°C for 1 h in a 100-pl volume containing 1 pM Cif, 25 mM
sodium phosphate (pH 7.4), 50 uM radiolabeled epoxide substrate, and 1% (vol/vol)
dimethyl sulfoxide. Unhydrolyzed epoxides were removed from the reaction by
organic extraction, and residual radioactivity was determined.

Biochemical determination of apical membrane CFTR. The determination of
apical membrane CFTR abundance was performed using CFBE4lo™ cells stably
transduced with WT-CFTR (CFBE-WT) (4) and domain-selective cell surface
biotinylation using EZ-LinkTM Sulfo-NHS-LC-Biotin (Pierce), as described pre-
viously in detail (37, 41, 48).

RESULTS AND DISCUSSION

Cif has an «/p hydrolase fold. Initial structure determina-
tion was performed using 2.0-A resolution SAD data (35) from

a crystal of selenomethionine-labeled Cif (Table 1; also see
Fig. S1 in the supplemental material). To determine the struc-
ture of the native protein, the preliminary selenomethionine
structure was used as a search model for molecular replace-
ment calculations using 1.8-A resolution diffraction data from
a crystal of unlabeled Cif-WT (Table 1). As expected based on
Matthews volume calculations, the crystals exhibit noncrystal-
lographic symmetry, with four copies of the protein in the
asymmetric unit, corresponding to a solvent content of 46%.
Following structure refinement, in all four chains electron den-
sity is visible beginning at Ala25, the first residue of the mature,
secreted protein. Electron density is not observed for the C-
terminal hexahistidine tag or the preceding two residues, and
these residues are omitted from the model. The final model of
Cif-WT contains 1,172 residues in four chains and shows ex-
cellent agreement with the diffraction data (Table 1) and the
final refined electron density map of the unlabeled protein
(Fig. 2A).
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FIG. 2. Crystal structure of Cif. (A) 2F,-F. map of the final refined electron density of Cif-WT, contoured to 1o; the HGFG motif (residues
61 to 64) is colored green. A density mask with a 1.8-A radius has been applied to prevent the display of electron density from neighboring residues.
(B) Ribbon diagram depicting the superposition of ArEH and Cif-WT by DaliLite v.3 (28). The Cif core domain is colored in gray, and the cap
domain is in yellow; ArEH is colored with a green core and a blue cap domain.

In addition to the protein and water moieties, the electron
density map contains five prominent difference peaks not ac-
counted for by the model. The shape, electrostatic environ-
ment, and coordination geometry of the peaks are suggestive
of elemental ion-binding sites for two cations and three anions.
However, inductively coupled plasma mass spectrometry of
purified Cif failed to reveal significant levels of any candidate
cation constitutively bound to the protein. It therefore is most
likely that the sites are occupied by weakly bound calcium and
chloride ions derived from the crystallization buffer. However,
given the tentative nature of this assignment, we have not
included ions in the model.

Overall, the Cif structure consists of two domains, one that
is largely « helical and one that has a mixed «/B structure.
Initial sequence alignments suggested that Cif is a member of
the «/B hydrolase family (37). To test this hypothesis at the
structural level, we performed a distance matrix alignment (28)
of Cif with proteins of known structure. The closest structures
all are o/B hydrolases and include the EH from Agrobacterium
radiobacter AD1 (ArEH; PDB entry 1IEHY) (43). Despite
sharing only 21.7% sequence identity, these two structures
align with a Z score of 32.4 and a C,, rmsd of 1.9 A (Fig. 2B and
3), which is consistent with a close agreement between their
tertiary structures. Like ArEH, Cif can be divided into two
domains: a core and a cap (Fig. 2B). The core domain of Cif
exhibits the archetypal fold of the /B hydrolase family (6, 44):
a B-sheet containing seven parallel strands and one antiparallel
strand is sandwiched between « helices and spans residues 25
to 154 and 243 to 319. The cap domain consists of residues 155
to 242 and forms a lid-like structure attached to one end of the
o/B hydrolase core domain. The amino-terminal boundary be-
tween the domains is located in a region of undefined electron
density in ArEH, corresponding to residues that are missing in
the model. In contrast, this region is well defined in the struc-
ture of Cif and contains helix o5 (Fig. 3), which we have
assigned to the cap domain due to its surface localization and
proximity to the dimer interface.

Like ArEH, Cif forms homodimers in the crystal lattice via

the cap domain. There are small but measurable differences
between the two Cif molecules of the homodimer, occurring
mainly in the cap domain at the dimer interface. The two core
domains align with a 0.2 A rmsd, while the cap domains align
with a 0.4 A rmsd, giving an overall rmsd of 0.3 A. These
differences likely are due to the distinct environments created
by lattice packing within the crystal. The two dimers in the
asymmetric unit are related by noncrystallographic symmetry
and align with a 0.6 A rmsd. The dimerization interface en-
compasses an average surface area of 1,365 A2 on each mono-
mer. Dimerization is a feature commonly seen in the crystal
structures of bacterial /B hydrolases (29, 43, 57).

To test whether Cif forms a homodimer in solution, we
performed hydrodynamic analyses. First, we performed veloc-
ity sedimentation experiments. Cif-WT sedimented as a single
species at 4.3S = 0.1S (Fig. 4A). We next performed analytical
SEC (Fig. 4B). Cif-WT eluted in a single peak. When cali-
brated relative to standard proteins, the elution volume of Cif
corresponds to a Stokes’ radius (R,) of 3.2 nm and, together
with the sedimentation coefficient, yields a shape-independent
relative molecular mass (M,) estimate of 60 kDa. Since the
calculated M, of a Cif monomer is 34 kDa, these data support
the hypothesis that Cif-WT forms a homodimer in solution.

Cif is an epoxide hydrolase. Within the o/B hydrolase family,
there are three enzyme classes that utilize an aspartic acid as
the nucleophile in the catalytic mechanism (10, 52). These are
the EHs, the HADs, and the haloalkane dehalogenases
(HLDs). While there are many known physiologically relevant
epoxides, most notably in the arachidonic acid pathway (39),
EHs traditionally have been characterized by the use of small,
artificial substrates. This is due primarily to compound avail-
ability and the existence of standardized assays (40). Cif pre-
viously has been shown to catalyze epibromohydrin (EBH) by
an indirect assay (see Fig. S2 in the supplemental material)
(36). After the enzymatic reaction in which Cif is allowed to
hydrolyze EBH to form 3-bromo-1,2-propanediol, the protein
is denatured with acetonitrile to stop the reaction and the
oxidizing agent sodium periodate is added. The periodate does
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FIG. 3. Sequence and structural similarity to ArEH. The sequences of Cif and ArEH were aligned, and the secondary structure was determined
using DaliLite v.3 (28). Residues 138 to 148, which are shown in lowercase letters, are absent from the crystal structure of ArEH (PDB ID 1EHY)
and were aligned using ClustalW (51). Arrows indicate 8 strands, and the relative orientation within a sheet is indicated by the direction of the
arrow. The cap domain of each protein is underlined. The secondary structure elements of ArEH are named according to Nardini et al. (43).
Amino acids are colored as follows: small side chains are orange (Gly and Ala), Pro is brown, Cys is maroon, polar side chains are gray (Ser, Thr,
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Met, and Val), and aromatic side chains are cyan (Phe, Tyr, and Trp). Symbols: £, HGFG motif; *, active-site residues, including His177; f, residue

His269 of Cif.

not react with the epoxide. However, it oxidizes the vicinal diol,
cleaving it to produce two aldehyde compounds, and is con-
sumed in the process. Residual periodate is reduced by the
addition of epinephrine, forming the colored compound adre-
nochrome, which is detected via A 44, measurements (see Fig.
S2 in the supplemental material). We measured a specific
activity of EBH hydrolysis of 0.25 U/mg (1 U = 1 pmol sub-
strate hydrolyzed per minute) for Cif-WT. Since the structural
evidence was consistent with the presence of potentially mod-
ulatory divalent cations, we performed the EBH hydrolysis

assay in the presence of a panel of divalent cations to test their
influence on Cif enzymatic activity. No significant effect was
observed (see Fig. S3 in the supplemental material).

Given the central role of an oxidizing agent in the indirect
assay for EBH epoxide hydrolysis and Cif’s homology to
HLDs, it was formally possible that Cif was catalyzing the
debromination of EBH, and that the debromination product
glycidol was producing the signal detected by the adreno-
chrome assay. To evaluate this possibility, we added glycidol
directly to the adrenochrome assay. It produced no discernible
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FIG. 4. Cif forms a homodimer in solution. (A) The sedimentation
coefficient concentration distribution ¢(S) was determined for Cif us-
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indicate the elution volumes of standard proteins used to calibrate the
R, of Cif. Void volume (V}), 8.90 ml; aldolase (ald), 13.04 ml; ovalbu-
min (ova), 15.72 ml; chymotrypsinogen A (chy), 17.54 ml; RNase A
(RNa), 18.54 ml; and total volume (), 21.93 ml.

signal (see Fig. S4 in the supplemental material), confirming
that the specific activity detected reflects EBH hydrolysis. This
clearly establishes Cif as a bona fide EH.

However, EBH is not a standard substrate used in the char-
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acterization of mammalian EHs. Microsomal or soluble EHs
are demarcated by their cellular localization and can be further
differentiated based on their preference to catalyze the hydro-
lysis of cis- or trans-stilbene oxide, respectively (25). To char-
acterize the enzymatic activity of Cif further, we tested its
action against these compounds. While Cif did not have mea-
surable hydrolytic activity against TSO, it did catalyze the hy-
drolysis of CSO with a specific activity of 0.003 = 0.001 U/mg
(Fig. 5A). While this specific activity is low, there is a robust
difference at the level of raw signal between reactions with and
without Cif (P = 0.00016; n = 3). Thus, based on comparison
to a limited number of mammalian species, Cif appears to be
an EH with a substrate selectivity for cis- versus trans-stilbene
oxide that is more similar to microsomal than soluble EH
(mEH and sEH, respectively).

To characterize Cif’s substrate selectivity further, we assayed
enzyme activity with two additional epoxide compounds, TDPPO
and JH3, both classically used as EH substrates. Typically, an
mEH will have lower but significant activity against TDPPO.
JH3 is a substrate for a subclass of mEHs known as the juvenile
hormone epoxide hydrolases (16). We were not able to detect
hydrolytic activity against either TDPPO or JH3 for Cif. Inter-
estingly, mouse sEH had roughly 100-fold greater activity for
CSO than Cif, even though it is not considered an ideal sub-
strate. Considering Cif’s poor activity against CSO, the lack of
measurable activity against TSO, TDPPO, or JH3, and strong
enzyme activity against EBH, we conclude that Cif is an EH
with novel substrate selectivity.

One possible explanation for Cif’s apparent reduction in
specific activity and narrow substrate selectivity involves the
access pathway to the active site. Both human and mouse sEH
have an open tunnel through the protein with the active site in
the middle (9). This configuration has two openings to the
solvent from the active site, allowing the substrate and product
to enter and exit from different sites. In contrast, the putative
substrate access pathway of Cif to the active site begins at the
edge of the dimer interface and has only one outlet to the
solvent (Fig. 5B), forming a dead-end cavity with an enclosed
volume of 347 A% As a consequence, the product of the en-
zymatic reaction is predicted to exit from the active-site pocket

FIG. 5. Substrate selectivity of Cif. (A) Buffer-subtracted hydrolysis of 50 uM radiolabeled canonical epoxide hydrolase substrates by 1 uM
Cif-WT. Cif exhibited significant hydrolytic activity only for CSO. (B) Ribbon diagram of the Cif homodimer, as seen down the 2-fold axis. The
side chains of active-site residues Asp129, Glul153, His177, Try239, and His297 and the HGFG motif ribbon are shown in blue. The calculated

tunnel from the solvent to Asp129 for each monomer is shown in red.
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FIG. 6. Cif active site. (A) Ribbon diagram of Cif-WT. The cap domain, consisting of residues 155 to 242, is colored yellow, and the core is
in gray. The side chains of active-site residues are modeled as sticks, and the main chain of the HGFG motif is shown with the carbons colored
light blue. (B) A detailed view of the active site. Hydrogen bonds are shown as dotted lines and the main chain as a C, trace. The carboxylate of
Glul53 participates in three hydrogen bonds. One is accepted from His297 and two from the protein backbone via the amide nitrogens of Gly266
and Met272. Asp129 is positioned by hydrogen bonds donated from the amide nitrogens of neighboring residue Ile130 and of Phe63 of the HGFG
motif. W1 is coordinated by hydrogen bonds to Tyr239 and His177. W2 donates hydrogen bonds to the carbonyl oxygen of Phe63 and the imidazole

of His297.

before fresh substrate can enter, potentially limiting the sub-
strate turnover rate. The substrate specificity of an enzyme is
determined largely by the residues lining the active site and
pathway to the active site. It has been demonstrated for other
bacterial «/B hydrolases that the mutation of surface residues
at the active-site tunnel entrance can alter substrate selectivity
(8). By completely blocking access from one side of the active
site, Cif may be restricting the majority of traditional epoxide
substrates from being hydrolyzed. It also is possible that a
conformational change in the cap domain regulates access to
the active site.

Cif exhibits novel stereochemical features for an epoxide
hydrolase. The structural alignment of Cif with ArEH high-
lights residues conserved between Cif and the EH family (Fig.
3). In agreement with conserved EH sequences (38), Cif has a
catalytic triad consisting of residues Aspl29, His297, and
Glul53 (Fig. 6). Thus, for the Cif protein, it appears that
Asp129 serves as the nucleophile responsible for the initial
attack on a carbon of the substrate epoxide ring, generating a
covalently linked enzyme-substrate complex (2). His297, acti-
vated by hydrogen bonding to Glul53, positions and activates
an adjacent water molecule (W2 in Fig. 6B) to hydrolyze the
enzyme-substrate ester linkage, releasing the diol product.

Cif diverges from canonical EH sequence motifs at key ac-
cessory residues in the active site surrounding the catalytic
triad. Conventionally, EHs have two tyrosine residues posi-
tioned above the nucleophile to assist in the initial attack step
(38), and a recent phylogenetic analysis showed that all exper-
imentally confirmed EHs utilize two tyrosines during epoxide
ring opening (52). These generate an oxyanion hole for initial
attack and facilitate the opening of the epoxide ring (55).
Sequence alignment reveals that Cif has only one of these Tyr
residues. While Tyr239 is positioned in a conserved location,
the structural alignment reveals that His177 replaces the sec-
ond Tyr in the active site (Fig. 3). The His side chain at this
position is capable of donating a hydrogen bond to stabilize the
oxyanion hole. Together with Tyr239, His177 coordinates a
water molecule (W1 in Fig. 6B) that occupies the likely posi-

tion of a substrate epoxide oxygen based on its proximity to
Asp129. Thus, it appears that the His substitution, although
unprecedented among EHs, is compatible with the observed
EH activity of Cif.

The second divergence from consensus motifs is in the stan-
dard HGxP motif (33), where x is any residue and the P is a
cis-Pro. Cif has a Gly replacing the cis-Pro, creating a novel
HGFG sequence at residues 61 to 64 (Fig. 3). The primary role
of the HGxP motif is to position the backbone nitrogen of the
variable residue x to act as a hydrogen bond donor for the
nucleophile. In Cif, Phe63 occupies the corresponding posi-
tion, and the amide nitrogen is oriented to hydrogen bond with
Aspl129 (Fig. 6B). The key role of the cis-Pro at the fourth
position of this motif is to generate a sharp turn in the protein
backbone. Gly64 has enough flexibility that it can accommo-
date a similar turn (Fig. 2A), preserving the essential stereo-
chemical characteristics of the active site. As a result, despite
sequence divergence from canonical EH motifs, the overall
structure of the Cif active site is consistent with EH function
and, thus, with the enzymology described above. Correspond-
ing noncanonical sequences also are observed in proteins of
related bacterial species and therefore may be characteristic
for distinct subsets of the epoxide hydrolase family (see Fig. S5
in the supplemental material).

Assessing alternative Cif dehalogenase activity. While con-
firming the predicted similarity between ArEH and Cif, our
distance matrix alignment also revealed that the most closely
related known structure was actually that of the fluoroacetate
dehalogenase from Burkholderia sp. strain FA1 (FAc-DEX
FA1), with a Z score of 35.7 and an rmsd of 1.9 A. FAc-DEX
FALl is an «/B hydrolase that defluorinates fluoroacetate to
form glycolic acid (29), thus detoxifying this compound, which
can form a potent aconitase inhibitor if ingested (24). As a
family, the HADs are closely related in sequence to the EHs
and also utilize an aspartic acid side chain for initial nucleo-
philic attack (52). Like ArEH, FAc-DEX FALI has a catalytic
triad that aligns with that of Cif. Moreover, the noncanonical
His177 residue of Cif is shared with FAc-DEX FA1l. How-
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ever, HADs are characterized by an arginine-rich motif
(DRXXRXXXR, where D is the nucleophile) (52) that is not
found in Cif. Cif also differs from the FAc-DEX FA1 sequence
at four positions that are specific to the FAc-DEX reaction
mechanism (Argl05, Argl08, Trp150, and Tyr212) (29).

Despite these motif mismatches, we experimentally investi-
gated the possibility that Cif exhibits HAD activity. We tested
Cif for the ability to dehalogenate fluoroacetate, chloroacetate,
bromoacetate, and iodoacetate. In all cases, we found the sig-
nal from the Cif-containing sample to be indiscernible from the
negative protein control across pH 5 to 9, from 1 to 10 mM
substrate, or in the presence or absence of 1 mM MgSO,,
which stimulates the enzymatic activity of the FAc-DEX from
Pseudomonas fluorescens DSM 8341 (19 and data not shown).
Using the substrate fluoroacetate, we determined the specific
activity of Cif to be 0.0003 = 0.0001 U/mg, while FAc-DEX
FA1 was determined to have a specific activity (at the assay
endpoint, not at V) of 0.22 = 0.04 U/mg (see Fig. S6 in the
supplemental material). There was no statistically significant
difference between samples incubated with and without Cif at
the level of raw assay signal (P = 0.27; n = 3). In contrast, the
FAc-DEX FAl sample gave a statistically significant signal
(P = 0.0015; n = 3). We therefore conclude that Cif does not
exhibit HAD activity under the conditions tested, which is
consistent with the absence of the active-site motifs identified
by the FAc-DEX FAL structure (29).

The third group of «/B hydrolases utilizing Asp as the nu-
cleophile is the HLD class. Although the HLDs share the Cif
catalytic triad, they also differ at key positions. The variable
residue of the HGxP motif is an aromatic residue in the EHs,
and Cif has a Phe at this position. In contrast, HLDs have a
polar or charged residue at this position (10). Furthermore, Cif
utilizes Tyr and His residues when opening the epoxide ring of
a substrate, while HLDs utilize an Asn or Trp in the dehalo-
genation reaction (10, 52). Nevertheless, we attempted to mea-
sure HLD activity for Cif using the substrate 1,2-dichloroeth-
ane. As was seen with assays for HAD activity, the signal was
indistinguishable from that of the non-Cif protein control (data
not shown). Thus, given the peripheral sequence mismatches
and the lack of detectable HLD activity, the possibility that Cif
is an HLD was not investigated further.

The structure of Cif-WT reveals the location of residue
His269. Based on initial sequence alignment, His269 had been
predicted as the catalytic triad His (37). In apparent agreement
with this prediction, the mutation of His269 to Ala previously
was reported to abrogate both Cif’s effect on airway epithelial
cells and the ability to hydrolyze the colorimetric substrate
S-NEPC (18, 37). However, the crystal structure of Cif re-
vealed that His297 occupies the position of the charge-relay
side chain in the Cif catalytic triad. Moreover, His269 is posi-
tioned in the middle of a stretch of five Gly residues and is on
the surface rather than buried in the active site (Fig. 7A). Its
contribution to Cif’s catalytic activity therefore was not imme-
diately obvious.

To validate the reported loss of enzymatic activity of Cif-
H269A (37), we tested both WT and mutant Cif for the hy-
drolysis of S-NEPC. While coincubation with either Cif-WT or
Cif-H269A generated a colorimetric signal, the specific activ-
ities of both were indistinguishable from that of a negative
control (see Fig. S7 in the supplemental material). In all cases,
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S-NEPC hydrolysis correlated with the total amount of protein
in solution. It therefore seems likely that the signal generated
is caused by the inherent instability of the compound during
the extended incubation required to obtain a measurable color
change (15-fold longer than that used for sEH) (18). If Cif is
able to hydrolyze S-NEPC at all, it does so at a rate slower than
that of autolysis.

To assess the enzymatic activity of Cif-H269A, we deter-
mined its ability to hydrolyze EBH (Fig. 7B). Consistently with
the structural data, we found no significant difference between
the hydrolytic activities of Cif-WT and those of Cif-H269A,
with Cif-H269A yielding a specific activity of 0.26 U/mg com-
pared to 0.25 U/mg for the wild-type enzyme. Additionally, we
compared Cif-WT and -H269A activity on CSO, a more tra-
ditional substrate for assessing mammalian EH activity (Fig.
7C). Once again, we found no difference in the enzymatic
activity between Cif-WT and Cif-H269A; both yielded a spe-
cific activity of 0.005 = 0.001 U/mg for this experiment. Based
on the similar specific activities observed for all substrates
tested, we conclude that the H269A mutation does not affect
the immediate vicinity of the catalytic triad, although it may
have a modest impact on the kinetics of hydrolysis that is not
detectable with our assays. Unfortunately, we were unable to
purify mutants targeting the catalytic histidine at position 297
(H297A and H297N; data not shown), most likely because the
active site is located at the core interface with the cap domain
and therefore is structurally sensitive.

Based on the evidence that Cif-H269A has EH activity sim-
ilar to that of Cif-WT for small, xenobiotic substrates, we
decided to reevaluate the ability of Cif-H269A to reduce the
apical membrane abundance of CFTR (37). Using aliquots of
Cif-H269A that had been confirmed to hydrolyze EBH, we
tested CFTR inhibitory activity in triplicate. This allowed us to
rule out potential variation in specific activity between different
preparations of purified protein. In agreement with previous
reports (37), we found that the H269A mutation abrogates the
ability of Cif to reduce the levels of CFTR at the apical mem-
brane of airway epithelial cells (Fig. 7D) despite its retention
of EH activity. Taken together, our data clearly demonstrate
that the Cif hydrolase activity detected by small, artificial sub-
strates is not by itself sufficient to account for the CFTR in-
hibitory effect.

One possible cause of the loss of CFTR inhibitory activity is
if the H269A mutation alters the protein structure away from
the catalytic site and thus affects Cif trafficking, localization, or
protein interactions. To address this issue, we crystallized and
determined the structure of Cif-H269A at 1.5-A resolution.
Molecular replacement was used to obtain phase information
from the initial Cif-WT selenomethionine model. The starting
model of Cif-H269A was determined by a composite omit
strategy (50) to avoid potential model bias. Standard molecular
refinement yielded excellent agreement with the diffraction
data (Table 1). An alignment of the refined structures of
Cif-WT and Cif-H269A (Fig. 7A) gave a Z score of 55.6 and a
C, rmsd value of 0.08 A, which is less than the maximum-
likelihood coordinate error estimates for each structure of 0.19
and 0.16 A, respectively. We conclude that even at high strin-
gency, there is no measurable conformational difference be-
tween the WT and H269A crystal structures.

Like Cif-WT, Cif-H269A crystallizes as a homodimer. How-
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FIG. 7. Reassessment of Cif-H269A EH and CFTR inhibitory activity. (A) C, traces for Cif-WT (green) and Cif-H269A (blue) are shown
following superposition, which yielded an rmsd of 0.08 A. The side chains of residue 269 for both structures are shown in red. (B) Hydrolysis of
10 mM EBH by 20 pM Cif-WT or Cif-H269A. (C) Hydrolysis of radiolabeled CSO (50 uM) by Cif-WT and Cif-H269A (1 uM). (D) Cif-WT
decreases the apical membrane abundance of CFTR, while the H269A mutation abrogates this effect. Fifty pg of either Cif-WT or Cif-H269A was
added to the apical surface of CFBE WT-CFTR cells and incubated for 60 min, followed by Western blot analysis to determine the apical
membrane abundance of CFTR. Samples are scaled in comparison to the buffer control, which was normalized to 100%.

ever, to test the possibility that the H269A mutation could alter
the affinity of Cif dimerization in solution, we repeated the
hydrodynamic analyses that were performed for Cif-WT. As
seen for Cif-WT, the sedimentation coefficient of the H269A
mutant also was 4.3S £ 0.2S, and the protein eluted at the
same volume during analytical SEC. Thus, there is no evidence
that the mutation affects Cif homodimerization.

These data confirm that Cif-WT and Cif-H269A exhibit the
same tertiary and quaternary conformations, and that signifi-
cant structural changes therefore are not responsible for the
effects of this mutation. One limitation of our enzymatic stud-
ies is that our test substrates are, at most, 6 A long. As a result,
they effectively probe only the portion of the substrate-binding
site closest to the catalytic triad. Longer substrates would fill
the narrow access tunnel (Fig. 5B) and emerge near His269 at
the dimer interface, roughly 14 A from Asp129 of the catalytic
triad (Fig. 7A). Cif-H269A therefore could act as a K, mutant,
affecting interactions with extended candidate endogenous
substrates such as epoxides found in physiological pathways.

Conclusion. The goal of this study was to determine the
structure of Cif and characterize its enzymatic activity in order
to understand the basis of its action as a CFTR inhibitory
virulence factor. We demonstrate here that Cif has bona fide
EH activity, despite deviations from otherwise strictly con-
served EH motifs. In accordance with these findings, the crys-
tal structure of Cif confirmed that the observed mutations are
stereochemically conservative. In contrast, and in agreement
with the absence of essential HAD or HLD catalytic motifs, we
were unable to detect HAD or HLD activity against standard
substrates. Taken together, these data suggest that epoxides
are the primary catalytic target of Cif, which is thus the first
validated bacterial EH known to interact directly with mam-
malian cells. The observations that Cif is expressed in bacteria
from the lungs of CF patients and is preferentially expressed by
nonmucoid strains of P. aeruginosa (37) suggest that Cif is a
virulence factor that plays an important role in the early col-
onization of the lung.

This work lays the foundation for a detailed biochemical
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dissection of the mechanism of Cif’s effect on CFTR plasma
membrane abundance. In particular, the active-site stereo-
chemistry of the structure presented here can be used to guide
the selection of candidate endogenous substrates. In parallel, it
will help us to develop novel active-site mutations to probe the
coupling between the EH and CFTR inhibitory activities
of Cif.

ACKNOWLEDGMENTS

Funding support was provided by the NIH (R01-DK075309 to D.R.M.,
RO1-ES002710 and R01-ES013933 to B.D.H., R01-HL074175 to B.A.S.,
and a training grant predoctoral fellowship from T32-AI007519 to
C.D.B.) and the Cystic Fibrosis Foundation (MADDENOSGO to D.R.M.
and STANTO97R0 Research Development Program pilot funds to
G.A.0.).

We thank Nobuyoshi Esaki and Tatsuo Kurihara for their generous
gift of purified FAc-DEX FALl protein, Brian Jackson of the Dart-
mouth Trace Element Analysis Core for inductively coupled plasma
mass spectrometry analysis, Daniel P. MacEachran and Gordon W.
Gribble for helpful discussions and advice, and Vivian Stojanoff and
Jean Jakoncic at NSLS/Brookhaven for assistance with data collection
and processing.

REFERENCES

. American Thoracic Society and Infectious Diseases Society of America.
2005. Guidelines for the management of adults with hospital-acquired, ven-
tilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit.
Care Med. 171:388-416.

. Arand, M., A. Cronin, M. Adamska, and F. Oesch. 2005. Epoxide hydrolases:
structure, function, mechanism, and assay. Methods Enzymol. 400:569-588.

. Bahl, C. D., D. P. MacEachran, G. A. O’Toole, and D. R. Madden. 2010.
Purification, crystallization and preliminary X-ray diffraction analysis of Cif,
a virulence factor secreted by Pseudomonas aeruginosa. Acta Crystallogr.
F66:26-28.

. Bebok, Z., J. F. Collawn, J. Wakefield, W. Parker, Y. Li, K. Varga, E. J.
Sorscher, and J. P. Clancy. 2005. Failure of cAMP agonists to activate
rescued AF508 CFTR in CFBE41o™ airway epithelial monolayers. J. Physiol.
569:601-615.

. Bomberger, J. M., D. P. Maceachran, B. A. Coutermarsh, S. Ye, G. A.
O’Toole, and B. A. Stanton. 2009. Long-distance delivery of bacterial viru-
lence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS
Pathog. 5:¢1000382.

. Carr, P. D., and D. L. Ollis. 2009. Alpha/beta hydrolase fold: an update.
Protein Peptide Lett. 16:1137-1148.

. Cedrone, F., T. Bhatnagar, and J. C. Baratti. 2005. Colorimetric assays for
quantitative analysis and screening of epoxide hydrolase activity. Biotechnol.
Lett. 27:1921-1927.

. Chaloupkova, R., J. Sykorova, Z. Prokop, A. Jesenska, M. Monincova, M.
Pavlova, M. Tsuda, Y. Nagata, and J. Damborsky. 2003. Modification of
activity and specificity of haloalkane dehalogenase from Sphingomonas
paucimobilis UT26 by engineering of its entrance tunnel. J. Biol. Chem.
278:52622-52628.

9. Chiamvimonvat, N., C. M. Ho, H. J. Tsai, and B. D. Hammock. 2007. The
soluble epoxide hydrolase as a pharmaceutical target for hypertension.
J. Cardiovasc. Pharmacol. 50:225-237.

10. Chovancova, E., J. Kosinski, J. M. Bujnicki, and J. Damborsky. 2007. Phy-
logenetic analysis of haloalkane dehalogenases. Proteins 67:305-316.

11. Collaborative Computational Project, Number 4. 1994. The CCP4 suite:
programs for protein crystallography. Acta Crystallogr. D 50:760-763.

12. Costerton, J. W., P. S. Stewart, and E. P. Greenberg. 1999. Bacterial biofilms:
a common cause of persistent infections. Science 284:1318-1322.

13. Cushing, P. R,, A. Fellows, D. Villone, P. Boisguerin, and D. R. Madden.
2008. The relative binding affinities of PDZ partners for CFTR: a biochem-
ical basis for efficient endocytic recycling. Biochemistry 47:10084-10098.

14. Dam, J., and P. Schuck. 2004. Calculating sedimentation coefficient distri-
butions by direct modeling of sedimentation velocity concentration profiles.
Methods Enzymol. 384:185-212.

15. Davies, J. C., and D. Bilton. 2009. Bugs, biofilms, and resistance in cystic
fibrosis. Respir. Care 54:628-640.

16. Debernard, S., C. Morisseau, T. F. Severson, L. Feng, H. Wojtasek, G. D.
Prestwich, and B. D. Hammock. 1998. Expression and characterization of the
recombinant juvenile hormone epoxide hydrolase (JHEH) from Manduca
sexta. Insect Biochem. Mol. Biol. 28:409-419.

17. DeLano, W. L. 2008. The PyMOL molecular graphics system. DeLano Sci-
entific LLC, Palo Alto, CA.

18. Dietze, E. C., E. Kuwano, and B. D. Hammock. 1994. Spectrophotometric

substrates for cytosolic epoxide hydrolase. Anal. Biochem. 216:176-187.

—_

8]

w

I~

W

=2

~

oo

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

J. BACTERIOL.

Donnelly, C., and C. D. Murphy. 2009. Purification and properties of flu-
oroacetate dehalogenase from Pseudomonas fluorescens DSM 8341. Biotech-
nol. Lett. 31:245-250.

Eegriwe, E. 1932. Reaktionen und Reagenzien zum Nachweis organischer
Verbindungen 1. Fresenius Zeitschrift Analytische Chemie 89:121-125.
Emsley, P., and K. Cowtan. 2004. Coot: model-building tools for molecular
graphics. Acta Crystallogr. D 60:2126-2132.

Geller, D. E. 2009. Aerosol antibiotics in cystic fibrosis. Respir. Care 54:658—
670.

Gill, S. S., K. Ota, and B. D. Hammock. 1983. Radiometric assays for
mammalian epoxide hydrolases and glutathione S-transferase. Anal. Bio-
chem. 131:273-282.

Gribble, G. W. 1973. Fluoroacetate toxicity. J. Chem. Educ. 50:460-462.
Hammock, B. D., D. H. Storms, and D. F. Grant. 1997. Epoxide hydrolases,
p. 283-305. In F. P. Guengerich (ed.), Comprehensive toxicology, vol. 3.
Pergamon, Oxford, United Kingdom.

Hendlich, M., F. Rippmann, and G. Barnickel. 1997. LIGSITE: automatic
and efficient detection of potential small molecule-binding sites in proteins.
J. Mol. Graph Model 15:359-389.

Holloway, P., J. T. Trevors, and H. Lee. 1998. A colorimetric assay for
detecting haloalkane dehalogenase activity. J. Microbiol. Methods 32:31-36.
Holm, L., S. Kaariainen, P. Rosenstrom, and A. Schenkel. 2008. Searching
protein structure databases with DaliLite v. 3. Bioinformatics 24:2780-2781.
Jitsumori, K., R. Omi, T. Kurihara, A. Kurata, H. Mihara, I. Miyahara, K.
Hirotsu, and N. Esaki. 2009. X-Ray crystallographic and mutational studies
of fluoroacetate dehalogenase from Burkholderia sp. strain FA1. J. Bacteriol.
191:2630-2637.

Jones, A. M. 2005. Eradication therapy for early Pseudomonas aeruginosa
infection in CF: many questions still unanswered. Eur. Respir. J. 26:373-375.
Kabsch, W. 1993. Automatic processing of rotation diffraction data from
crystals of initially unknown symmetry and cell constants. J. Appl. Crystal-
logr. 26:795-800.

Kadurugamuwa, J. L., and T. J. Beveridge. 1995. Virulence factors are
released from Pseudomonas aeruginosa in association with membrane vesi-
cles during normal growth and exposure to gentamicin: a novel mechanism
of enzyme secretion. J. Bacteriol. 177:3998-4008.

Lacourciere, G. M., and R. N. Armstrong. 1994. Microsomal and soluble
epoxide hydrolases are members of the same family of C-X bond hydrolase
enzymes. Chem. Res. Toxicol. 7:121-124.

Laue, T. M., B. D. Shah, T. M. Ridgeway, and S. L. Pelletier. 1992. Com-
puter-aided interpretation of analytical sedimentation data for proteins, p.
90-125. In S. E. Harding, A. J. Rowe, and J. C. Horton (ed.), Analytical
ultracentrifugation in biochemistry and polymer sciences. Royal Society for
Chemistry, Cambridge, United Kingdom.

Leonard, G. A., G. Sainz, M. M. de Backer, and S. McSweeney. 2005.
Automatic structure determination based on the single-wavelength anoma-
lous diffraction technique away from an absorption edge. Acta Crystallogr. D
61:388-396.

MacEachran, D. P., B. A. Stanton, and G. A. O’Toole. 2008. Cif is negatively
regulated by the TetR family repressor CifR. Infect. Immun. 76:3197-3206.
MacEachran, D. P., S. Ye, J. M. Bomberger, D. A. Hogan, A. Swiatecka-Urban,
B. A. Stanton, and G. A. O’Toole. 2007. The Pseudomonas aeruginosa secreted
protein PA2934 decreases apical membrane expression of the cystic fibrosis
transmembrane conductance regulator. Infect. Immun. 75:3902-3912.
Morisseau, C., and B. D. Hammock. 2005. Epoxide hydrolases: mechanisms,
inhibitor designs, and biological roles. Annu. Rev. Pharmacol. Toxicol. 45:
311-333.

Morisseau, C., and B. D. Hammock. 2008. Gerry Brooks and epoxide hy-
drolases: four decades to a pharmaceutical. Pest Manag. Sci. 64:594-609.
Morisseau, C., and B. D. Hammock. 2007. Measurement of soluble epoxide
hydrolase (sEH) activity. Curr. Protoc. Toxicol. 33:4.23.1-4.23.18.

Moyer, B. D., J. Loffing, E. M. Schwiebert, D. Loffing-Cueni, P. A. Halpin,
K. H. Karlson, I. I. Ismailov, W. B. Guggino, G. M. Langford, and B. A.
Stanton. 1998. Membrane trafficking of the cystic fibrosis gene product,
cystic fibrosis transmembrane conductance regulator, tagged with green flu-
orescent protein in Madin-Darby canine kidney cells. J. Biol. Chem. 273:
21759-21768.

Murphy, T. F., A. L. Brauer, K. Eschberger, P. Lobbins, L. Grove, X. Cai,
and S. Sethi. 2008. Pseudomonas aeruginosa in chronic obstructive pulmo-
nary disease. Am. J. Respir. Crit. Care Med. 177:853-860.

Nardini, M., I. S. Ridder, H. J. Rozeboom, K. H. Kalk, R. Rink, D. B.
Janssen, and B. W. Dijkstra. 1999. The x-ray structure of epoxide hydrolase
from Agrobacterium radiobacter AD1. An enzyme to detoxify harmful ep-
oxides. J. Biol. Chem. 274:14579-14586.

Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, S. M. Franken, M.
Harel, S. J. Remington, I. Silman, J. Schrag, J. L. Sussman, K. H. G.
Verschueren, and A. Goldman. 1992. The «/B hydrolase fold. Protein Eng.
5:197-211.

Petrek, M., M. Otyepka, P. Banas, P. Kosinova, J. Koca, and J. Damborsky.
2006. CAVER: a new tool to explore routes from protein clefts, pockets and
cavities. BMC Bioinformatics 7:316.



VoL. 192, 2010

46.

47.

48.

49.

50.

51

Qian, Z., C. J. Fields, Y. Yu, and S. Lutz. 2007. Recent progress in engi-
neering «/B hydrolase-fold family members. Biotechnol. J. 2:192-200.
Stover, C. K., X. Q. Pham, A. L. Erwin, S. D. Mizoguchi, P. Warrener, M. J.
Hickey, F. S. Brinkman, W. O. Hufnagle, D. J. Kowalik, M. Lagrou, R. L.
Garber, L. Goltry, E. Tolentino, S. Westbrock-Wadman, Y. Yuan, L. L.
Brody, S. N. Coulter, K. R. Folger, A. Kas, K. Larbig, R. Lim, K. Smith,
D. Spencer, G. K. Wong, Z. Wu, 1. T. Paulsen, J. Reizer, M. H. Saier, R. E.
Hancock, S. Lory, and M. V. Olson. 2000. Complete genome sequence of
Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959—
964.

Swiatecka-Urban, A., M. Duhaime, B. Coutermarsh, K. H. Karlson, J. Col-
lawn, M. Milewski, G. R. Cutting, W. B. Guggino, G. Langford, and B. A.
Stanton. 2002. PDZ domain interaction controls the endocytic recycling of
the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem.
277:40099-40105.

Swiatecka-Urban, A., S. Moreau-Marquis, D. P. Maceachran, J. P. Connolly,
C. R. Stanton, J. R. Su, R. Barnaby, G. A. O’Toole, and B. A. Stanton. 2006.
Pseudomonas aeruginosa inhibits endocytic recycling of CFTR in polarized
human airway epithelial cells. Am. J. Physiol. Cell Physiol. 290:C862-C872.
Terwilliger, T. C., R. W. Grosse-Kunstleve, P. V. Afonine, N. W. Moriarty,
P. D. Adams, R. J. Read, P. H. Zwart, and L. W. Hung. 2008. Iterative-build
OMIT maps: map improvement by iterative model building and refinement
without model bias. Acta Crystallogr D. 64:515-524.

Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W:

STRUCTURE OF AN EPOXIDE HYDROLASE VIRULENCE FACTOR

52.

53.

54.

55.

56.

57.

1795

improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Res. 22:4673-4680.

van Loo, B., J. Kingma, M. Arand, M. G. Wubbolts, and D. B. Janssen. 2006.
Diversity and biocatalytic potential of epoxide hydrolases identified by ge-
nome analysis. Appl. Environ. Microbiol. 72:2905-2917.

Wolff, W. 1893. Ueber ein dinaphtoxanthen (methylendinaphtylenoxyd).
Berichte Deutschen Chemischen Gesellschaft 26:83-86.

Wood, D. M., and A. R. Smyth. 2006. Antibiotic strategies for eradicating
Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database
Syst. Rev. 2006:CD004197.

Yamada, T., C. Morisseau, J. E. Maxwell, M. A. Argiriadi, D. W. Christian-
son, and B. D. Hammock. 2000. Biochemical evidence for the involvement of
tyrosine in epoxide activation during the catalytic cycle of epoxide hydrolase.
J. Biol. Chem. 275:23082-23088.

Ye, S., D. P. MacEachran, J. W. Hamilton, G. A. O’Toole, and B. A. Stanton.
2008. Chemotoxicity of doxorubicin and surface expression of P-glycoprotein
(MDR1) is regulated by the Pseudomonas aeruginosa toxin Cif. Am. J.
Physiol. Cell Physiol. 295:C807-C818.

Zou, J., B. M. Hallberg, T. Bergfors, F. Oesch, M. Arand, S. L. Mowbray, and
T. A. Jones. 2000. Structure of Aspergillus niger epoxide hydrolase at 1.8 A
resolution: implications for the structure and function of the mammalian
microsomal class of epoxide hydrolases. Structure 8:111-122.



