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Abstract

Epitopes shared by the vaccinia and variola viruses underlie the protective effect of vaccinia
immunization against variola infection. We set out to identify a subset of cross-reactive epitopes
using bioinformatics and immunological methods. Putative T-cell epitopes were computationally
predicted from highly conserved open reading frames from seven complete vaccinia and variola
genomes using EpiMatrix. Over 100 epitopes bearing low human sequence homology were selected
and assessed in HLA binding assays and in T-cell antigenicity measurements using PBMCs isolated
from Dryvax-immunized subjects. Experimental validation of computational predictions illustrates
the potential for immunoinformatics methods to identify candidate immunogens for a new, safer
smallpox vaccine.
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1. Introduction

Over 200 years ago, Edward Jenner developed vaccination against variola virus using the
related poxvirus vaccinia, enabling a worldwide effort that culminated in the eradication of
smallpox 1979. In wake of the September 11, 2001 terror attacks, fears of deliberate
dissemination of variola in an unprotected world population prompted the United States
government to stockpile vaccine for the civilian population. Licensed smallpox vaccines, such
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as Dryvax (Wyeth) and WetVax (Aventis Pasteur) effectively protect against infection but are
contraindicated for about 20% of the US population because they are associated with a broad
range of adverse events. For example, dermal complications including vaccinia necrosum, a
progressive skin condition with case-fatality rates of 75% to 100% among persons with cellular
immunodeficiency, were observed during the global campaign to eradicate smallpox [1].
Eczema vaccinatum, a complication among eczema patients, was associated with case-fatality
rates of up to 10% overall and 30% to 40% in children younger than two years of age. Moreover,
inadvertent inoculation may result in wider spread when vaccinia is transferred from the
vaccination site to another location on the vaccinee or to another person [2]. As a result,
smallpox vaccination is contraindicated in persons who have eczema, active acute, chronic, or
exfoliative skin conditions that disrupt the epidermis, HIV/AIDS, autoimmune conditions,
cancer, radiation treatment, or immunodeficiencies.

We set out to design a safer smallpox vaccine that will provide protection to a greater proportion
of the US population. Because epitopes provide the minimal essential information needed to
trigger a protective immune response, epitope-driven vaccines represent a logical approach to
vaccine development that obviates the risks inherent in live vaccines. Our approach to
discovering T-cell epitopes is based on the advent of fully sequenced poxvirus genomes
coupled with the availability of immunoinformatics tools that can rapidly identify potentially
immunogenic and protective poxvirus sequences. In light of the well known fact that vaccinia
immunization protects against variola infection, our studies focused on the subset of epitopes
that are common to both poxvirus strains (Figure 1). Here, we report the results of the first
steps in the vaccine design process whereby computationally identified epitopes were validated
in vitro and ex vivo in order to select epitopes to be later tested as a prototype vaccine in a
human leukocyte antigen (HLA) transgenic mouse model.

2. Materials and Methods

2.1. Immunoinformatics

Seven complete poxvirus genomes were downloaded from GenBank: four vaccinia strains
(Tian Tian, Accession AF095689; Western Reserve, Accession AY243312; Copenhagen,
Accession M35027; Ankara, Accession U94848) and three variola (\Variola major, strain India
1967, Accession X69198; Variola major, strain Bangladesh 1975, Accession L22597; Variola
minor, strain Garcia 1966, Accession Y16780).

EpiMatrix, a matrix-based epitope mapping algorithm, was used to identify Class I and Il HLA
epitopes in vaccinia and variola open reading frame (ORF) sequences [3,4,5]. For Class |
epitope identification, 9-mer and 10-mer sequences were scored for potential binding to six
supertype Class I alleles (A*0101, A*0201, A*0301, A*2402, B*0702 and B*4403 alleles)
that cover >90% of humans in five major human population groups [6]. For Class Il epitope
identification, potential binding of 9-mer sequences was scored for eight archetypical Class Il
alleles (DRB1*0101, *0301, *0401, *0701, *1101, *1301 and *1501) that are expected to
cover over 95% of any given human population [7]. EpiMatrix raw scores were normalized
with respect to a score distribution derived from a very large set of randomly generated peptide
sequences. The resulting “Z” scores are normally distributed and directly comparable across
alleles. Any peptide scoring above 1.64 on the “Z” scale (approximately the top 5% of any
given peptide set) has a significant chance of binding to the MHC molecule for which it was
predicted. Peptides scoring above 2.32 on the scale (the top 1%) are extremely likely to bind;
most well known T-cell epitopes fall within this range of scores.

Vaccinia/variola ORF and epitope homology were evaluated using Conservatrix, a sequence
alignment algorithm that searches a dataset for matching segments. Criteria for conservation
significance were application dependent and are described in the Results section. Epitopes were
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evaluated for homology with human sequences using the BLAST algorithm [8]. Clusters with
no more than 7 matches per 9-mer frame were selected for further study.

For ORFs conserved across all vaccinia/variola strains, HLA Class Il epitopes were further
analyzed for clustering and among all other ORFs, extended immunogenic consensus
sequences (ICS) were developed. Regions of HLA Class Il epitope density were discovered
using ClustiMer, an algorithm that uses a statistical function to identify sequences which
contain more predicted epitopes than would be found by chance alone [9,10]. Clusters whose
sum of significant EpiMatrix Z-scores exceeded a value of 10 after subtracting the expected
sum of scores for a random sequence of equal length, were considered for further study. ICS
were built by EpiAssembler, an algorithm that maximizes epitope density in a 20-25 amino
acid stretch by assembling potentially immunogenic 9-mers to be identically positioned as they
are in their native protein sequences [11].

2.2. Peptide Synthesis

Peptides were manufactured using 9-fluoronylmethoxycarbonyl (Fmoc) chemistry by SynPep
(Dublin, CA) and by New England Peptide (Gardner, MA). Peptides were purified to >80%

as ascertained by analytical reversed phase HPLC. Peptide mass was confirmed by MALDI-
TOF mass spectrometry.

2.3. HLA Binding Assays

2.3.1. Class | Assay—Class | A2 and B7 peptides were assayed for HLA binding using a
quantitative “sandwich” ELISA, as described previously [12]. HLA class | A2 or B7 molecules
were incubated at a concentration of ~2 nM together with 25 nM human B2 microglobulin
(B2m) and an increasing concentration of test peptides at 18°C for 48 h. HLA molecules were
then captured on a 96-well plate coated with the pan-specific anti-human MHC class | mouse
monoclonal antibody W6/32, and HLA-peptide complexes incubated with horseradish
peroxidase-conjugated anti-human p2m conformational-specific polyclonal detection
antibody (Dako P0174) and signal enhancer (Dako Envision). Plates were developed by
colorimetric reaction and absorbances measured at 450 nm using a Victor2 Multilabel ELISA
reader. Based on a standard curve, absorbance measurements were converted to the
concentration of HLA—peptide complexes using a standard curve, and plotted against the
concentration of test peptide used in the assay. The concentration of peptide required to half-
saturate the HLA was determined. At the limiting HLA concentration used, the half-saturation
value approximates the equilibrium dissociation constant value (Kp).

2.3.2. Class Il Assay—Class Il HLA binding assays were performed as previously described
[13]. Briefly, in 96-well plates, non-biotinylated test peptide at 100 pM competed for binding
to purified DR1 (50 nM) against biotinylated influenza hemagglutinin 306-318 standard
peptide (0.1 uM) for 24 hours at 37°C. DR1 molecules were then captured on ELISA plates
using pan anti-Class Il antibodies (L243, anti-HLA-DR), developed by addition of streptavidin-
europium and read on a time-resolved fluorescence (TRF) plate reader. Percent inhibition of
biotinylated peptide binding was calculated. Peptides that inhibited competitor by >50% were
considered DRB1*0101 binders.

2.4. Human PBMC T Cell Assay

2.4.1. Study Subjects—Twenty-two healthy adults, ages 18 to 29 years and vaccinated with
Dryvax, were recruited for blood draws at the Saint Louis University Center for Vaccine

Development. Donors were vaccinated between two and three years before blood draws. Donor
HLA types (Class | and I) were determined using One Lambda Micro SSPTM High Resolution
HLA class | and 11 Kits at the Hartford Hospital Transplant Immunology Laboratory. Human
subject studies were performed in accordance with NIH regulations and with the approval of
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the Independent Review Consulting (EpiVax) and Saint Louis University institutional review
boards.

2.4.2. PBMC Isolation and Culture—PBMCs were isolated from whole blood by
centrifugation over a Ficoll cushion. PBMCs were seeded in 12-well tissue culture plates at
10x108 cells/well and stimulated with pools of Class | or Class Il peptides in RPMI
supplemented with 10% human AB serum, L-glutamine, gentamicin (Invitrogen), at 37°C
under a 5% CO, atmosphere. 10 U/mL IL-2 and 20 ng/mL IL-7 (R&D Systems) were added
to each of the wells. Cells were fed every 2 days by half media replacement containing the
same concentration of cytokines. Seven to twenty days post-stimulation, PBMCs were
collected and washed in preparation for antigen re-stimulation to measure cytokine secretion
measurements by enzyme-linked immunospot (ELISpot) assay.

2.4.3. ELISpot Assay—Interferon-gamma ELISpot assays were performed using kits
purchased from Mabtech and performed according to the manufacturer's specifications.
Individual target peptides were added at 10 pg/mL to triplicate wells containing 250,000
PBMCs (in RPMI1640 with 10% human AB serum) and incubated for twenty to forty-eight
hours at 37°C under a 5% CO, atmosphere. Triplicate wells were plated with
phytohemagglutinin (PHA; 10 ug/mL) and CEF peptide pool (2 pg/mL) as positive controls
and six wells with no peptide were used for background determination. Results were recorded
by ZelINet Consulting, Inc. using a Zeiss high resolution automated ELISpot reader system
and companion KS ELISpot software. In general, responses are considered positive if the
number of spots is at least two times background and greater than 20 spots per one million
cells over background (1 response over background per 50,000 PBMCs). Results are recorded
as the average number of spots over background and adjusted to spots per one million cells
seeded.

3.1. In silico epitope mapping

3.1.1. Class | HLA—1,472 open reading frames from 4 vaccinia and 3 variola virus genomes
were computationally screened for conserved Class | MHC epitopes using EpiMatrix (see
Methods for details). First, each protein sequence was parsed into 9-mer and 10-mer sequences,
each overlapping the next by 8 or 9 amino acids, respectively, for a total of 369,394 9-mers
and 367,922 10-mers. Using Conservatrix to discover unique, identical peptides conserved
across all vaccinia and variola strains, we narrowed down the Class | smallpox immunome to
27,158 9-mers and 26,287 10-mers. Each of these peptides was then scored for Class | HLA
motif matches to the A*0101, A*0201, A*0301, A*2402, B*0702 and B*4403 alleles. More
than 1000 EpiMatrix hits (Z-score > 1.64; top 5% of scores) per allele were discovered (data
not shown). The top 100 hits for each allele were subject to a BLAST search against the human
genome to exclude epitopes that may be recognized as self (with a cutoff of no more than 7
identities in a 9-mer sequence), and the top 40 A2 and 20 B7 peptides in a list of ascending
human homology were selected for experimental validation (Figures 2 and 3).

3.1.2. Class Il HLA—Two strategies to identify conserved and immunogenic Class II MHC
epitopes were pursued to maximize the likelihood of discovering protective vaccine
immunogens. First, an ORF-by-ORF sequence comparison was performed with the
Copenhagen vaccinia strain selected as the standard for alignment because it contains the most
ORFs of all the strains under consideration. 107 of the 262 ORFs in Vaccinia Copenhagen had
matching ORFs in all six alternate strains with at least 80% identity within the first 200 amino
acids. These ORFs in Vaccinia Copenhagen were computationally screened using EpiMatrix
and ClustiMer to identify epitope dense regions containing sequences predicted to bind
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multiple Class 1l HLA alleles (DRB1*0101, *0301, *0401, *0701, *1101, *1301 and *1501).
272 epitope clusters were identified, each bearing at least 90% sequence identity across all
seven strains and a cluster score of 15 or above. The sequences were then analyzed by the
BLAST algorithm for human homology. Epitope clusters were ranked first by lowest human
homology with no more than 7 matches in a 9-mer frame accepted, and then by cluster score.
The top 24 epitope clusters were selected for in vitro confirmation (Figure 4). In addition, a
25t cluster was selected for maximal potential immunogenicity, regardless of human
homology.

In a second, separate computational screen, ORFs excluded from the investigation above were
analyzed using Conservatrix to find identical 9-mers in at least six strains, where minimally
three were vaccinia-derived and two variola. 5,781 peptides were discovered, each then scored
for binding affinity to a panel of 8 HLA Class Il alleles (see above) using EpiMatrix. 786 unique
9-mers were EpiMatrix hits and subsequently input into the EpiAssembler algorithm to identify
sets of overlapping, conserved and promiscuous epitopes, termed immunogenic consensus
sequence” (ICS) T helper epitopes. 74 ICS with cluster scores greater than 15 were identified
and analyzed for human homology using BLAST. Epitope clusters were ranked first by lowest
human homology, as above, and then by cluster score. The top 25 ICS were selected for in
vitro validation (Figure 4).

3.2. In vitro validation of computational predictions

3.2.1. Class | HLA binding assay—EpiMatrix-predicted epitopes were assessed for their
HLA binding potential in binding assays using soluble HLA. Affinities of HLA*A2 and *B7
epitope peptides for their respective HLA were assessed. We found that 100% of the 40 selected
A2 epitopes identified by EpiMatrix bound A2 (Figures 2 and 5). 31 bound with very high
affinity (1-5 nM Kp), 4 with high affinity (6-25 nM Kp) and 5 at moderate affinity (26-500
nM Kp). Of 20 B7 peptides assayed, 14 (70%) bound B7, 2 with very high affinity, 2 with high
affinity, and 10 with moderate affinity (Figures 3 and 5).

3.2.2. Class Il HLA binding assay—Class Il epitopes, at a peptide concentration of 100
uM, were screened for binding HLA DRB1*0101 in a competition binding assay using soluble
HLA. Percent inhibition of competitor peptide was used to estimate test peptide affinity. 21 of
50 peptides bound with high affinity (75%-100% inhibition), 2 peptides with moderate
(50%-75% inhibition) and 5 peptides with weak affinity (30%-50%). In total, 28/50 (56%) of
peptides tested bound DR1, as expected of a set of sequences that were predicted to cover a
HLA diverse population, not only DRB1*0101 carriers.

3.3. Ex vivo validation of computational predictions

We validated EpiMatrix-predicted epitopes in measurements of antigen-specific T-cell
responses in 22 human subjects, ages 18-29 years old, who received Dryvax 2 to 3 years before
blood draw. PBMCs were stimulated with pools of smallpox epitopes for 7-20 days and re-
stimulated with individual epitopes and epitope pools in an IFNy ELISpot assay for 20-48
hours. Response frequency among subjects ranged from 10 to 100% for individual Class Il
epitopes. Responses were observed to 41 of 50 (82%) Class Il epitopes, with an average of
36% positive responses per subject (Figure 6 and Figure 7, top). All subjects exhibited a robust
response to pooled Class Il peptides. Responses plotted according to gene expression
temporality [14,15] reveal no preponderance of T-cell reactivity in a single group of antigens.

For Class | epitopes, antigenicity was detected for 17 of 40 (43%) HLA-A*0201 (Figure 7,
bottom left) and 5 of 20 (25%) B*0702 epitopes (Figure 7, bottom right). Per subject, responses
to A2 epitopes averaged 7% and to B7 epitopes 10%.
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4. Discussion

Using immunoinformatics methods, we scanned vaccinia- and variola-conserved sequences
for HLA Class I and Class 11 epitopes and then validated the predictions in HLA binding assays
and in humans vaccinated with Dryvax. Our approach to epitope prediction was to discover
the intersection of vaccinia and variola genome sequences that give rise to CD8 and CD4 T
cell-mediated protection against variola as conferred by vaccination with vaccinia. CD8
responses play an important role in containing orthopoxvirus infections and may be a critical
correlate of protection after re-exposure [16,17]. CD4 responses are critical for robust CD8 T
cell proliferation and function and for their differentiation into memory cells in vaccinia
infection [18,19]. Moreover, CD4 responses provide required help to B cells to produce
antibodies that are necessary and sufficient to protect against orthopoxvirus challenge [20].
Hence, we set out to discover potential HLA Class | and Class |1 variola/vaccinia protective
determinants using computational methods as a high throughput method for scanning large
orthopoxvirus genomes without bias to time of expression or protein function.

4.1. CD4+ T-cell epitopes

We identified 50 HLA Class Il epitopes conserved in vaccinia and variola genomes. Half were
predicted with a requirement that all epitopes be conserved in all genomes analyzed and the
other half with the more relaxed requirement that sequences be conserved in at least 3 vaccinia
and 2 variola genomes only out of a total of seven genomes analyzed. We discovered that >80%
of the epitopes were antigenic, with multiple responses observed in all Dryvax vaccinees tested,
illustrating the effectiveness of a predictive approach. Unexpectedly, we found that, with the
exception of the Tian Tian strain, the ICS sequences were more highly conserved, contained
more EpiMatrix hits and produced greater numbers of spot forming cells in interferon-gamma
ELISpot assays than the sequences derived from the more traditional alignment based-
approach. Higher ELISpot numbers may be attributed to the relatively higher concentration of
high scoring 9-mers in the ICS epitopes, to greater sequence conservation or to both factors.

In two related studies, Koelle and co-workers used a non-predictive, experimental screen to
identify CD4+ T cell-antigenic open reading frames and/or protein fragments in the vaccinia
proteome [21,22]. As in those studies, we observed a broad CD4+ T cell response to vaccinia
antigens expressed both early and late in infection, with a majority of the responses to proteins
expressed at the early stage. Because the predictive approach triages sequences for ex vivo
validation, only 29 open reading frames are represented by the selected Class Il promiscuous
epitopes in this study. Among these 29, 23 (79%) were observed by Koelle and co-workers to
be antigenic. Considering that the predictive approach significantly limits the part of an open
reading frame that is used to measure antigenicity, this finding illustrates the advantage
immunoinformatics provides for rapidly identifying antigenic open reading frames and
focusing in on a segment that is immunoreactive. Notably, only one of these open reading
frames (L4R) is recognized by 100% of subjects in the non-predictive study, whereas here, 3
of 16 subjects (19%) responded to 4020 _I1_L4R. While the predictive method is useful for
selecting immunogenic proteins, it is important to note that a single epitope from a highly
immunogenic protein will not necessarily be recognized by all individuals tested. Differences
in the frequency of recognition of a single epitope versus the large protein sequences evaluated
by Koelle and co-workers are possibly due to the limited number of L4R epitope sequences
assayed in the present study, the limited number of subjects in the studies (5 in [21], 12 in
[22], 16 here), the HLA types of the subjects, or differences in the methods used for measuring
antigenicity (proliferation vs. ELISpot).
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4.2. CD8+ T-cell epitopes

We selected 40 A2 and 20 B7 supertype epitopes conserved in the vaccinia and variola genomes
using immune-informatics methods and evaluated them for T cell reactivity ex vivo. Of the 60
epitopes tested, 17 A2 epitopes and 5 B7 epitopes elicited IFN-gamma responses in ex vivo
ELISpot; thus, one in three predicted sequences was confirmed. Only one of these 22 Class |
restricted antigenic epitopes, 5019 _A2_I8R, has been reported beforehand [23]. This is
especially noteworthy as several published reports identify A2 vaccinia epitopes [23,24,25,
26]. Particularly, Sette and co-workers performed an extensive study of HLA Class I restricted
vaccinia responses using immuno-informatics methods [24]. Starting with a list of
approximately 2000 A2 and B7 supertype epitopes, 14 A2 and 5 B7 epitopes were found to be
antigenic in Dryvax vaccinees, a ratio of roughly one in 100. None of these epitopes are
identical to the sequences reported here, although two are found in common open reading
frames (E2L, A2; J6R, B7). In a study similar in design, Kazura and co-workers reported 6
new A2 epitopes reactive in persons vaccinated against smallpox. Two are common to protein
antigens reported here (G1L, I8R) and one is identical in sequence, as mentioned above. Factors
that may have contributed to a lack of concordance between these studies include the different
epitope prediction tools used by each group and the limited numbers of subjects sampled.
Nevertheless, like the previously published studies, the breadth of vaccinia-induced immune
response is shown here by ex vivo responses for epitopes derived from 18 different open reading
frames. In addition, we note that the number of epitopes recognized in this study is far fewer
than we observed in previous epitope mapping studies of HIV using EpiMatrix [27]. This may
be a natural outcome of the larger size of the genome, compared to the genome of HIV, which
gives rise to more complex CD8+ T-cell epitope hierarchies [28]. Alternatively, class | epitopes
may not be as critical for protection from poxviruses as previously believed. We plan to
evaluate the relative contributions of class | and class |1 epitopes to protection from vaccinia
in a challenge study.

4.3. Future studies

The broader goal of this study is to identify epitopes for incorporation into a new smallpox
vaccine that is safer than previously licensed smallpox vaccines. The use of epitopes overcomes
potential safety concerns associated with vaccinating with live vaccinia virus. In addition,
multiple epitopes derived from more than one antigen can be packaged into a relatively small
delivery vehicle. Furthermore, epitope-based vaccines appear to be capable of inducing more
potent responses than whole protein vaccines [29], and they sidestep the propensity for the
immune system to focus on a single immunodominant epitope by simultaneously targeting
multiple dominant and subdominant epitopes [30,31]. This latter feature is particularly
significant because of the great breadth of the antiviral response [21,22,32]. It should be noted
that the field of immuno-informatics is new, and few epitope-driven vaccines for infectious
pathogens have reached the stage of efficacy trials in humans, although several have been
shown to be effective in animal models.

Insummary, we are in the process of developing an epitope-based vaccine based on intersecting
sets of epitopes derived from the variola and the vaccinia genomes; this article describes our
progress along the pathway to that goal. We believe that our immunoinformatics-driven
smallpox vaccine development approach may have several advantages over other approaches:
(1) rapidity (the mapping of epitopes and confirmation using human PBMC was accomplished
in less than 18 months); (2) safety (the entire protein is not used, thus the recipient is not exposed
to live vaccinia virus, which may be associated with side effects); and (3) broad
immunogenicity (delivery of multiple epitopes, derived from multiple proteins, recognized in
the context of many different MHC). We also believe that the methods described here, which
will lead to the development of a multi-epitope smallpox vaccine, may be a step in the right
direction for the development of a range of safer, more effective biodefense vaccines.
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Figure 1.

In silico approach to identification of smallpox vaccine candidates. Immunoinformatics tools
identify potential T-cell epitopes from large viral genome datasets, such as variola and the
related vaccine strain vaccinia. Here, informatics methods were used to delineate the
intersection of vaccinia and variola immunogenic epitope sets, which contain sequences that
provide T cell-mediated protection against variola. Conserved sequences among 3 variola and
4 vaccinia genomes were assessed for immunogenic potential using the T-cell epitope mapping
algorithm EpiMatrix. We selected 110 epitopes for vaccine design, of which 50 were
promiscuous Class Il HLA epitopes, 40 were Class | HLA A2 and 20 were Class | B7. 60%
of the epitopes were derived from regulatory factors, 24% from hypothetical and unknown
proteins and16% from structural proteins.
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5001_A2_A16L Late YLGPRVCWL 547201 49061.1 96467.1 48138.1 60868.1 34010.1 894151 4.2 3
5002_A2_A46R Early GLFDFVNFV 547591 49099.1 96538.1 48177.1 60901.1 34057.1 894511 4.1 1
5003_A2_F10L Late ALNDFDFSQV 546341 489751 96420.1 48026.1 60782.1 33901.1 89328.1 3.9 1
5004_A2_D6R Early KLLKMVTSV ~ 54696.1 49037.1 96515.1 481051 60844.1 33975.1 89390.1 3.8 1
5005_A2_A9L Late KLRPNSFWFV 547131 49054.1 96461.1 48128.1 60861.1 34000.1 89407.1 3.8 2
5006_A2_F10L Late KLLSHFYPAV  54634.1 48975.1 96420.1 48026.1 60782.1 33901.1 89328.1 3.8 1
5007_A2_E6R Late YLVSNFPQHV  54647.1 48988.1 96487.1 48044.1 60795.1 33918.1 893411 3.7 2
5008_A2_A14L Late LMIGNYFSGV  54718.1 49059.1 96465.1 48136.1 60866.1 34008.1 894121 3.7 2
5009_A2_D11L Late KLGGLCSYIV ~ 54701.1 490421 96451.1 48110.1 60849.1 33981.1 89395.1 3.7 1
5010_A2_A32L Late NLLKMPFRMV ~ 54739.1 49080.1 96476.1 48158.1 60887.1 34037.1 894341 3.7 1M
5011_A2_A32L Late YIWPNHINFV ~ 54739.1 49080.1 96476.1 48158.1 60887.1 34037.1 894341 3.7 1
5012_A2_A12L Late AMDGQIVQAV  54716.1 490571 96463.1 481341 60864.1 34006.1 89410.1 3.7 2
5013_A2_E8R NK SLYKGPIPV ~ 54649.1 48990.1 96489.1 48047.1 60797.1 33920.1 89343.1 3.6 1
5014_A2_E5R Early ALLLYMFPNL  54646.1 48987.1 96486.1 480421 60794.1 33916.1 89340.1 3.6 28
5015_A2_A23R Early SLDHTVFPSL 547271 49068.1 96525.1 48147.1 60875.1 34019.1 894221 3.6 1
5016_A2_I2L Late KLYAAIFGV ~ 54656.1 48997.1 96434.1 48057.1 60804.1 33930.1 89350.1 3.6 1
5017_A2_H6R Early & Late  FLYNFWTNV ~ 54689.1 49030.1 96509.1 48093.1 60837.1 33965.1 89383.1 3.6 7
5018_A2_E6R Late YLDGQLARL 546471 48988.1 96487.1 48044.1 60795.1 33918.1 893411 3.5 1
5019_A2_I8R Early & Late  KLLLWFNYL  54662.1 49003.1 96491.1 48064.1 60810.1 33937.1 8935.1 3.5 117
5020_A2_E2L Early YLPKVLYNNV 546431 48984.1 96427.1 48039.1 60791.1 339121 893371 35 1
5021_A2_I1L Late RLYDYFTRV ~ 54655.1 48996.1 96433.1 48056.1 60803.1 33929.1 89349.1 3.5 1
5022_A2_A31R Early SLNRTIVTKV ~ 54738.1 49079.1 96527.1 481571 60886.1 34036.1 89433.1 3.5 109
5023_A2_HAL Late NLYDLFFNTL  54687.1 49028.1 96448.1 48091.1 60835.1 33963.1 89381.1 3.5 10
5024_A2_J3R Early ILNPVASSL  54680.1 49021.1 96504.1 48083.1 60828.1 33954.1 893741 3.5 3
5025_A2_F13L Late YIASFCCNPL ~ 54637.1 48978.1 96422.1 48031.1 60785.1 33905.1 89331.1 3.5 1
5026_A2_A3L Late VMGSAVHSPV  54707.1 49048.1 96457.1 481181 60855.1 33991.1 894011 3.4 4
5027_A2_E2L Early YLSSWTPWV  54643.1 48984.1 96427.1 48039.1 60791.1 339121 89337.1 34 1
5028_A2_G1L Late VMTPSPFYTV  54663.1 49004.1 96440.1 48065.1 60811.1 33938.1 893571 3.4 1
5029_A2_G5R Early YLAKLTALV ~ 54667.1 49008.1 96493.1 48069.1 60815.1 33942.1 89361.1 3.4 1
5030_A2_G1L Late YLYETYHLI 54663.1 49004.1 96440.1 48065.1 60811.1 33938.1 893571 3.4 1
5031_A2_A32L Late ILLCQTYRHV ~ 54739.1 49080.1 96476.1 48158.1 60887.1 34037.1 894341 3.3 16
5032_A2_I7L Late NLLCHIYSL ~ 54661.1 49002.1 96439.1 48063.1 60809.1 33936.1 89355.1 3.3 1
5033_A2_A21L Late RLNKNFICV ~ 54725.1 49066.1 96470.1 481421 60872.1 34014.1 894191 3.3 2
5034_A2_I8R Early & Late ILKSLGFKV ~ 54662.1 49003.1 96491.1 48064.1 60810.1 33937.1 89356.1 3.3 69
5035_A2_H3L Late FLTGTFVTA  54686.1 49027.1 96447.1 48090.1 60834.1 33961.1 89380.1 3.3 1
5036_A2_J6R Early YLYQPCDLL  54683.1 49024.1 96506.1 48086.1 60831.1 33957.1 893771 3.3 1
5037_A2_J1R Late KLFNKVPIV 546781 49019.1 96502.1 48081.1 60826.1 33952.1 893721 3.3 3
5038_A2_D10R Late FLDPNSGNGL 54700.1 49041.1 96518.1 48109.1 60848.1 33980.1 8939%4.1 3.3 1
5039_A2_A38L NK IMVSEHFSL ~ 547471 49088.1 96477.1 48168.1 60893.1 34047.1 894411 3.3 1
5040_A2_A24R Early FTFSNVCESV 547281 49069.1 96526.1 48148.1 60876.1 34020.1 894231 3.3 1

Figure 2.
Characteristics of selected A2 peptides. The peptide IDs and amino acid sequences are shown
followed by their gene expression temporality. Here, “early and late” refers to early and late
post-replication phase expression. The accession numbers for the corresponding ORFs within
3 variola and 4 vaccinia genomes are listed. In addition, the EpiMatrix A2 Z-score and Kp

(nM) are presented.
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5109_B7_I8R
5110_B7_I8R
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5112_B7_D11L
5113_B7_D11L
5114_B7_A10L
5115_B7_A26L
5116_B7_J6R
5117_B7_A7L
5118_B7_L2R
5119_B7_02L
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Late
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Late
Early
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Early
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Figure 3.

Amino Acid
Sequence

FPRSMLSIF

IPRTNIVFSV
SPITNTPNTL
RPPSFYKPL

TPICGGKIKL

IPRLLRTFL
RPNSFWFWV
LPPHPSIVKV
LPRIALVRL
SPISLRYGSI
TPSPFYTVM
RPGSLQHQSL
TPPERRYVNV
LPRVVGGKTV
SPMYLWENV
RPNSTFTNKL
FPKQTIQTPI
CPAILRPLI
CPFCRNALDI
TPNTLGHII

Genome Y16780:
ORF Prefix: CAB

54676.1
54675.1
54696.1
547281

54598.1

54650.1
54713.1
54696.1
54662.1
54662.1
54663.1
54701.1
54701.1
54714 .1
54733.1
54683.1
547111
546741
54654 1
54696.1

Genome: X69198
ORF prefix: CAA

49017 1
49016.1
490371
49069.1

48944 1

48991.1
49054 .1
49037 .1
49003.1
49003.1
49004.1
490421
49042.1
49055.1
49074 1
49024 1
49052.1
49015.1
48995.1
490371

Genome: U94848
ORF prefix: AAB

96500.1
96444.1
96515.1
96526.1

96402.1

96430.1
96461.1
96515.1
96491.1
96491.1
96440.1
96451.1
96451.1
96462.1
96471.1
96506.1
96460.1
96499.1
96432.1
96515.1

Genome: M35027
ORF prefix: AAA

48079.1
48078.1
48105.1
48148.1

47986.1

48049.1
48128.1
48105.1
48064.1
48064.1
48065.1
48110.1
48110.1
481291
48151.1
48086.1
481241
480771
48055.1
48105.1

Genome: L22579
ORF Prefix: AAA

60824.1
60823.1
60844.1
60876.1

60750.1

60798.1
60861.1
60844.1
60810.1
60810.1
60811.1
60849.1
60849.1
60862.1
60881.1
60831.1
60859.1
60822.1
60802.1
60844.1

Genome:
AF095689

OREF prefix: AAF
Genome:

33951.1
33950.1
33975.1
34020.1
33858.1
34092.1
339221
34000.1
33975.1
339371
33937.1
33938.1
33981.1
33981.1
34001.1
34031.1
33957.1
33997.1
339491
33928.1
339751

Page 12

AY243312
OREF prefix: AAO

89370.1
89369.1
89390.1
89423.1
89289.1
89488.1
89344 1
894071
89390.1
89356.1
89356.1
89357.1
89395.1
89395.1
89408.1
89428.1
893771
89405.1
89368.1
89348.1
89390.1

Characteristics of selected B7 peptides. The peptide IDs and amino acid sequences are shown
followed by their gene expression temporality. Here, “early and late” refers to early and late
post-replication phase expression. The accession numbers for the corresponding ORFs within
3 variola and 4 vaccinia genomes are listed. In addition, the EpiMatrix HLA B7 Z-score and
Kp (nM) are shown.
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4000_II_D11L GTNIWYSNSNRLMSINR Late 547011 490421 964511 481101 60849.1 33981.1 89395.1 15.1 24 90
4001_I_D6R KKLLYLKFKTKETNRIYSI Early 54696.1 49037.1 965151 481051 608441 33975.1 89390.1 219 2.2 46
4002_I_B1IR LDAVIRANNNRLPKRS Early 54770.1 49110.1 965451 481941 60910.1 34067.1 89462.1 18.4 38 7
4003_II_E2L PEKLYLFKPRTVAPLDLIST Early 54643.1 489841 96427.1 480391 607911 33912.1 893371 16.7 36 94
4004_II_A24R ICDFVTDFRRRKRMGFFGN Early 547281 490691 96526.1 481481 60876.1 34020.1 89423.1 16.4 0.0 0
4005_I_A8R GAVINQMVNTVLITVYEKLQLVIE Early 547121 490531 96520.1 481271 60860.1 33999.1 89406.1 17.5 42 86
4006_I1_15L MQSLKFNRAVTIFKYIGLFIYIP Late 54659.1 49000.1 96437.1 480611 60807.1 33934.1 89353.1 18.8 28 18
4007_I_D5R DTAVYRRKTTLRVWGTRKNPNCDT Early 54695.1 490361 96514.1 481021 60843.1 339721 89389.1 19.6 41 30
4008_I|_E6R DADVLNRHAITMYDKILSYIY Late 546471 489881 96487.1 480441 607951 33918.1 89341.1 16.9 0.0 83
4009_II_D12L IDTMRIYCSLFKNVRLLKCVSDSWL Early 54702.1 490431 964521 481131 60850.1 33985.1 89396.1 19.2 18 14
4010_II_E8R IYNILFWFKNTQFDITKH NK 54649.1 489901 96489.1 480471 60797.1 33920.1 89343.1 17.6 21 *
4011_II_I12L WGWYWLIIFFIVLILLLLIYLYLK VW Late 54656.1 48997.1 964341 480571 608041 33930.1 89350.1 40.1 11.0 96
4012_1I_B15R LTEYIYWSSYAYRNRQCAGQLYS Early 547841 491231 965541 482121 609221 34084.1 89475.1 18.1 36 96
4013_II_A20R LKELLSLYKSLRFSDSAAIEKY Early 547241 490651 965231 481431 608731 34015.1 89420.1 16.3 40 0
4014_1I_A23R NQPWIKTISKRMRVDIINHSIVT Early 547271 490681 96525.1 481471 608751 34019.1 894221 18.4 21 53
4015_11_L3L LVRSRKAVGFPLLKAAKRISHGSM Late 54675.1 490161 964441 480781 608231 33950.1 89369.1 19.0 44 54
4016_II_H1L MDKKSLYKYLLLRSTGDMHKA Early & Late 54684.1 490251 96446.1 480831 608321 33959.1 89378.1 25.1 6.0 91
4017_II_A24R GVFYRPLHF QYVSYSNFILHRL Early 54728.1 490691 96526.1 481481 60876.1 34020.1 89423.1 16.8 43 98
4018_II_L3L GEMFVRSQSSTIIV Late 546751 49016.1 964441 480781 608231 33950.1 89369.1 2.4 46 91
4019_1I_J3R KLPYQGQLKLLLGELFFLSKL Early & Late  54680.1 490211 965041 480831 608281 33954.1 89374.1 18.1 44 0
4020_II_L4R LSIFNVPRTMSKYELELI Late 54676.1 49017.1 96500.1 48079.1 608241 339511 89370.1 15.7 56 0
4021_1I_A18R VSEVVSNMRKMIESKRPLYITLH Early 547221 49063.1 965221 481401 608701 340121 894171 19.1 18 2
4022_1_J3R FYNLGMIIKWMLID GRHHDPIL Early 54680.1 49021.1 96504.1 48083.1 608281 339541 893741 16.3 20 0
4023_II_A7L GDDIVRLRTTSDIIQFVN Late 547111 49052.1 96460.1 481241 60859.1 33997.1 89405.1 17.4 17 6
4024_1I_L2R R%;T_bzg:‘#g\aﬂmi Early 546741 49015.1 96499.1 480771 608221 339491 89368.1 54.5 5.8 45
4026_1_J6R YKYFIDLGLLMRMERKLSDKI Early 54683.1 49024.1 96506.1 48086.1 608311 33957.1 89377.1 28.9429 5.87 7
4027_1_J6R TGSQYYFSMLVARSQSTDIVC Early 54683.1 490241 96506.1 48086.1 608311 33957.1 893771 26.7694 7.16 97
4028_II_C10L PVTEDDYKFLSRLVLYAKSQS 54598.1 489441 964021 479861 60750.1 gig:g gzigi}
Early 26.2054 34 0
4029_1_J6R NDVDSNFWAMRHLSLAGLLS Early 54683.1 49024.1 96506.1 48086.1 608311 339571 893771 25626 6.05 45
4030_1I_A32L NLLKMPFRMVLTGGSGSGKTI Late 547391 49080.1 96476.1 481581 60887.1 340371 894341 25.553 5.55 *
4031_II_A4L EIGLKSQESYYQRQLREQLARD Early &Late 54708.1 49049.1 964581 481201 608561 339941 894021 25.1661 4.66 17
4032_II_N2L VSILNKYKPVYSYVLYENVLY Early 54617.1 48958.1 964081 480021 607651 notfound 89308.1 23.3434 29 100
4033_II_D10R NKFFEVIFFVGRISLTSDQIl Late 54700.1 49041.1 96518.1 48109.1 608481 33980.1 893941 23.019 1.69 0
4034_1I_D10R SSIISQIKYNRRLAKSIICE Late 54700.1 49041.1 965181 48109.1 608481 339791 893941 229169 2.17 5
4035_1_I8R EFLHNYILYANKFNLTLPEDL Early &Late 54662.1 49003.1 96491.1 480641 608101 339371 89356.1 22.6904 3.71 29
4036_1_J6R ASNQVKFYFNKRLNQLTRIRQ Early 54683.1 49024.1 96506.1 48086.1 60831.1 33957.1 893771 20.7991 1.87 0
4037_I_J6R AGYKVNPTELMYILGTYGQQR Early 54683.1 49024.1 96506.1 480861 608311 339571 89377.1 19.7261 43 88
4038_1I_F12L YETIEILRNYLRLYIILARNE Early 54636.1 48977.1 964211 48029.1 607841 notfound 89330.1 19.5805 3.63 98
4039_II_G6R SIIFINY TMSLTSHLNPSIEK Early &Late 54669.1 49010.1 964951 48070.1 608171 notfound 89363.1 18.3891 4.16 94
4040_11_A26L KFKTLNIYMITNVGQYILYIV Late 54733.1 490741 964711 481511 608811 34031.1 894281 18.2497 7.53 91
4041_11_B18R GYTALHYYYLCLAHVYKPGEC Early 54789.1 49128.1 96556.1 482171 609251 340891 894781 17.3236 4.94 25
4042_11_J6R GSIQDEIVAAYSLFRIQDLCL Early 54683.1 49024.1 96506.1 48086.1 608311 33957.1 893771 17.0822 3.66 0
4043_I_G6R GYLSAKVYMLENIQVMKIAAD Early &Late 54669.1 49010.1 964951 480701 608171 notfound 89363.1 16.8695 6.61 *
4044_1I_D4R DKFFIQLKQPLRNKRVCVCGI Early 546941 490351 965131 48100.1 608421 notfound 89388.1 16.1557 2.3 95
4045_1I_G8R VFYRGAENIVFNLPVSKVKSC NK 546711 490121 96496.1 480741 608191 notfound 893651 16.0997 2.14 97
4046_11_F15L PFHFQQPQFQYLLPGFVLTCI Early 54639.1 48980.1 964241 480341 607871 notfound 893331 15.9793 6.89 95
4047_1_J6R KNNMIRSYVARRKDQTARSV Early 54683.1 490241 96506.1 48086.1 60831.1 notfound 89377.1 15.9253 2 0
4048_I_J6R SVNKFKFGAASTLKRATFGDN Early 54683.1 49024.1 96506.1 48086.1 608311 339571 893771 15.8127 4.77 99
4049_11_A44L SYDMFNLLLMKPLGIEQGSRI Early 547551 49096.1 96479.1 481751 60899.1 340551 894491 15.6538 6.86 94
4050_I1_I8R SLPRIALVRLHSNTILKSLGF Early &Late 54662.1 49003.1 96491.1 480641 608101 339371 89356.1 15.5166 4.62 96
Figure 4.

Characteristics of selected Class Il peptides. The peptide IDs and amino acid sequences are
shown followed by their gene expression temporality. Here “early and late” refers to early and
late post-replication phase expression. The accession numbers for the corresponding ORFs
within 3 variola and 4 vaccinia genomes are listed. The top 25 epitopes were discovered in the

first Class 11 epitope screen and the bottom 25 in the second (see Results). In addition, the

EpiMatrix Class Il cluster score, the cluster sum of DRB1*0101 scores and % inhibition of
competitor peptide binding to DRB1*0101 at 100 uM epitope peptide are shown. Asterisks

refer to peptides that were not assayed for binding.
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Figure 5.

In vitro validation of computationally identified epitopes. Predicted epitopes were assayed for
binding to individual HLA alleles, A2, B7 and DRB1*0101. The percent of predicted epitopes
that bound these alleles is shown. Class Il epitopes were selected for predicted binding to
multiple HLA alleles (see Methods), not solely to DRB1*0101.

Vaccine. Author manuscript; available in PMC 2010 October 30.



1duasnue Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Moise et al.

Page 15

100%

. w
% 0% Percent patients respoending 2,500 %
:H_ O Average of significant Responses 5.,.
¢ 0% o
£ 2,000 £
S 70% [e] T
= L]
5 so% )
» o o 1,500 @
o] (=]
= 50% £
= g
D 40 o o ©
c o] le] o 1,000 ﬂu-}
E.l_' 30% (o] g_
ele} o o] 2
o 2% o lo} o o o fole) o] fo) Ot
g o o o} o g
Q o] O ©
S 10% (o] o OO 5
o o OO o z

o | olg 0 oooo 9O 0
EEESSEZEENEEEEEEYEESTYEETTE EEEIEET X285 aradr Y8 FuF
82 ZIE,%ZIE,ZIZIE,EIE Zuzlaljf.?.:uﬁﬁgﬁlﬁlﬁbfu:n 8925220 g% 5\%3;.5;:;’_‘\ % Eel
:,gélzlg;l.agla:l:l:&I:I:I;\;laél::‘.‘: :I:Ij.m\;.g,l ;;,5\__!“1'8';\ =|8==:=‘;IE'=;£|2\ e
89959e8998 T oievap2gpBeds €885 %s gvizeasget i3

“ RN J O L J o\ s
Early Early and Late Late. NK  Controls
expression expression expression

Figure 6.

Ex vivo validation of computationally identified Class Il HLA epitopes. Predicted epitopes
were assayed for T cell reactivity by IFN-y ELISpot assay using PBMCs isolated from Dryvax-
vaccinated donors. Epitopes are grouped according to their timing of expression as parts of
whole proteins in the poxvirus life cycle. The “early and late” designation refers to early and
post-replication late expression. The percentage of subjects who responded to individual
epitopes in descending order (bars) and the average spot forming cells per million PBMCs for
each epitope (circles) are illustrated.
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Figure 7.
IFN-y ELISpot responses to predicted Class | and Class |1 epitopes in Dryvax vaccinated human
subjects. The numbers of spot forming cells (over background) per million PBMCs that secrete
IFN-y in response to individual and pooled Class | and Class Il epitopes, as well as PHA and
CEF are presented. For simplicity, non-significant results are denoted by n/s and missing data
are omitted (not tested, NT). Significant results are highlighted in black. An ELISpot response
was considered positive if two criteria were met: (1) spot-forming cells per million PBMC
were at least 20 over background; (2) spot-forming cells (SFC) per million PBMC were at least
two-fold over background. Column headers: human subject ID code, average responses and
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percent of subjects responding. Row labels: peptide ID. Epitopes are grouped according to their
timing of expression as parts of whole proteins in the poxvirus life cycle.
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