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Micro-organisms play a vital role in many biological, medical and engineering phenomena.
Some recent research efforts have demonstrated the importance of biomechanics in under-
standing certain aspects of micro-organism behaviours such as locomotion and collective
motions of cells. In particular, spatio-temporal coherent structures found in a bacterial sus-
pension have been the focus of many research studies over the last few years. Recent studies
have shown that macroscopic properties of a suspension, such as rheology and diffusion, are
strongly affected by meso-scale flow structures generated by swimming microbes. Since the
meso-scale flow structures are strongly affected by the interactions between microbes, a
bottom-up strategy, i.e. from a cellular level to a continuum suspension level, represents the
natural approach to the study of a suspension of swimming microbes. In this paper, we
first provide a summary of existing biomechanical research on interactions between a pair
of swimming micro-organisms, as a two-body interaction is the simplest many-body inter-
action. We show that interactions between two nearby swimming micro-organisms are
described well by existing mathematical models. Then, collective motions formed by a
group of swimming micro-organisms are discussed. We show that some collective motions
of micro-organisms, such as coherent structures of bacterial suspensions, are satisfactorily
explained by fluid dynamics. Lastly, we discuss how macroscopic suspension properties are
changed by the microscopic characteristics of the cell suspension. The fundamental knowl-
edge we present will be useful in obtaining a better understanding of the behaviour of
micro-organisms.
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1. INTRODUCTION

Micro-organisms can be categorized into three major
groups: bacteria, archaea and eukaryotes (Ingraham &
Ingraham 2004). All bacteria and archaea prokaryotes
are unicellular, varying in length from roughly 0.1 to
10 mm. Eukaryotes may be unicellular or multicellular
and are typically much larger than prokaryotes.
Although there is no strict limitation on size, eukar-
yotes smaller than several hundred micrometres are
commonly considered to be micro-organisms. Micro-
organisms first appeared on Earth about 3.8 billion
years ago and are found almost everywhere. Since it is
estimated that there are approximately 5 � 1030 bac-
terial cells on Earth, micro-organisms constitute the
majority of terrestrial life in terms of both numbers
and biomass (Madigan et al. 2003).

Despite their tiny size, micro-organisms play a vital
role in a wide variety of phenomena. For example, mas-
sive plankton blooms are an integral part of the oceanic
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ecosystem. The dependency on these populations of
micro-organisms extends from the largest animals on
Earth (blue whales) to the smallest nocturnal grazers
that ascend from the depths of the oceans to feast on
phytoplankton descending from the sea surface at
night to increase their nutrient uptake. Algal cells in
the ocean incorporate carbon dioxide (CO2) from sea
water, and much of this carbon dioxide comes from
the atmosphere. Raven & Falkowski (1999) reported
that the oceans are among the largest natural carbon
sinks on Earth. Since CO2 in the atmosphere induces
global warming, the carbon cycle contributed by
micro-organisms affects the global climate. Bacterial
metabolites in the ocean break down not only carbon,
but also nitrogen, phosphorus and sulphur. Thus,
micro-organisms play an important role in global
material circulation.

In the food and chemical industries, micro-organisms
are used in the production of medicines and everyday
foods, including beer and cheese, as well as insecticides.
These products are made in bioreactors, in which
This journal is # 2009 The Royal Society
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control of mass transport and cell population is crucial
for achieving good quality. In industrial plants, micro-
organisms are often used to break down organic
materials. For instance, in sewage treatment plants,
micro-organisms are employed to reduce the biochemi-
cal oxygen demand of the sewage in order to protect
the aquatic environment (Madigan et al. 2003). In mar-
itime coastal regions, micro-organisms sometimes cause
toxic algal blooms, such as red tides (e.g. Anderson
1997; Schrope 2008), which attack fish farms and
oyster farms. Red tides can be formed from more than
200 kinds of phytoplankton and occasionally inflict
serious damage on the fishing industry.

The human body hosts hundreds of species of micro-
organisms (Madigan et al. 2003). The number of
micro-organisms in the human body is estimated to be
of the order of 1014, roughly double the number of
cells in the body. To cite one specific example, in the
intestines of a typical adult male, approximately 1 kg
of enterobacteria form a unique ecosystem, known as
bacterial flora. This system plays an important role in
the digestion and absorption of food and also in protect-
ing against infections. For instance, our bodies alone
cannot synthesize vitamin K; the synthesis is actually
carried out by the bacterial flora. Because of the
considerable influence that micro-organisms have on
human life, the study of their behaviour is an important
area of scientific research.

Although biology, ecology and chemistry have all
been used extensively to investigate various phenomena
pertaining to micro-organisms, biomechanics is also
important in understanding certain aspects of their
behaviour, such as locomotion and collective motions.
The locomotion mechanics of micro-organisms have
been reviewed by Brennen & Winet (1977) and Fauci &
Dillon (2006) and by E. Lauga and T. R. Powers
(2009, unpublished data). The swimming speeds of
micro-organisms range up to several hundred micro-
metres per second. The Reynolds number based on
the swimming speed and radius of the individual is
usually less than 1022. It can therefore be assumed
that the flow field around a micro-organism is a
Stokes flow and hence that the inertial force is negligible
compared with the viscous force. In the Stokes flow
regime, reciprocal motion cannot lead to any loco-
motion; this is known as Purcell’s scallop theorem
(Purcell 1977). In the case of ciliates, for instance, the
motion of each individual cilium follows an asymmetric
pattern, consisting of an effective stroke and a recovery
stroke, as illustrated in figure 1a. As a result of this
asymmetry, the cilium is able to generate a net thrust
on the cell body.

Propulsion by cilia and flagella may be classified into
three major groups: ciliary propulsion, eukaryotic fla-
gellar propulsion and prokaryotic flagellar propulsion.
Cilia and eukaryotic flagella have essentially the same
structure, and there is no clear distinction between
them. Roughly speaking, eukaryotic flagella are typi-
cally long compared with the cell body, and the
number of flagella per cell is small. On the other
hand, cilia are typically short compared with the cell
body, and the number of cilia per cell is large. A ciliate
swims by synchronizing ciliary motions with slight
J. R. Soc. Interface (2009)
phase differences, thus generating metachronal waves,
as shown in figure 1b. A eukaryotic flagellate swims
by propagating a planar wave or a helical wave along
the flagella normally from the base to the tip (Fauci &
Dillon 2006). Eukaryotic and prokaryotic flagella are
evolutionarily unrelated structures. Prokaryotic flagella
are placed outside the cytoplasmic membrane and basi-
cally resemble corkscrews. When a flagellum is rotated
relative to the cell body, using a basal motor, a helical
wave propagates towards the tip, and the cell is able
to propel itself.

In analysing the locomotion of micro-organisms,
force and torque conditions are important. Although
micro-organisms might be slightly denser than water,
the sedimentation velocity for typical aquatic micro-
organisms is usually much less than their swimming
speed. Thus, one may assume that micro-organisms
have neutral buoyancy, provided that the sedimen-
tation effect is negligible. The centre of buoyancy of a
micro-organism may not coincide with its geometric
centre; this is referred to as bottom heaviness. For
simplicity, let a cell be a sphere with radius a, and the
distance between the centre of gravity and the geometric
centre be h, as shown in figure 2. Then, there is an
additional torque of L ¼ ð4=3Þpa3rhe ^ g, where r is
the density, e is the orientation vector and g is the grav-
itational acceleration vector. This feature provides a
micro-organism with a self-righting mechanism, causing
it to move in a preferred direction, even if it is tempor-
arily advected or rotated in another direction by the
flow (Kessler 1985, 1986; Pedley & Kessler 1987).
Brownian motion is not usually taken into account
because micro-organisms are typically too large for
Brownian effects to be significant. However, it should
be noted that micro-organisms often appear to reorient
themselves randomly while swimming, such as tumbling
of bacteria, in a manner that may be analogous to a
Brownian motion (Pedley & Kessler 1992; Hill &
Hader 1997; Berg 2003; Vladimirov et al. 2004).

Recently, a lot of researchers have studied the
suspension biomechanics of swimming microbes. In
particular, spatio-temporal coherent structures, as
illustrated in figure 3, that are found in a bacterial sus-
pension have been investigated intensely in the last few
years. It has been observed experimentally that the dif-
fusion of particles and chemical substances in such a
suspension are considerably enhanced by these coherent
structures and are sometimes of the order of a thousand
times greater than Brownian diffusion (Wu & Libchaber
2000). Since collective motions may be biologically and
evolutionarily favourable, it is important to determine
whether they are formed passively owing to hydro-
dynamic forces or actively owing to biological
communication. Recent research has shown that collec-
tive motions can be formed passively because of
hydrodynamic forces (Ishikawa & Pedley 2008), and
hence that biomechanics and biophysics playan important
part in the behaviour of micro-organisms.

In this paper, we review recent studies on the sus-
pension biomechanics of swimming microbes. The
macroscopic properties of a suspension, such as rheolo-
gical and diffusion properties, are strongly affected by
meso-scale flow structures generated by the swimming



metachronal wave(b)

effective stroke

2

6

5
4 3

8

(a)

7
1

Figure 1. Schematic of the motion of an individual cilium and
the collective motion of cilia. (a) Effective stroke of an individ-
ual cilium. The numbers in the figure indicate the order of the
ciliary motion. The effective stroke is defined from 1 to 3.
(b) Metachronal wave generated by cilia (reproduced images
from Blake & Sleigh 1974).
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Figure 2. A sketch of the arrangement of a bottom-heavy cell.
Gravity acts in the g-direction, while the spherical cell has
orientation vector e, radius a and its centre of mass distance
h from its geometric centre. The torque L is exerted on the
cell body.
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microbes. Thus, in order to understand the macroscopic
suspension properties, we need to improve our
understanding of the meso-scale structures. Since the
meso-scale flow structures are strongly affected by the
interactions between microbes, a bottom-up strategy,
i.e. from a cellular level to a continuum suspension
level, represents the natural approach to the study
of a suspension of swimming microbes. In §2, we provide
a summary of existing biomechanical research on inter-
actions between a pair of swimming micro-organisms.
Since a two-body interaction is the simplest many-
body interaction, we will consider it before proceeding
to more general cases. Note, however, that some collec-
tive motions are the result of many-body interactions
and are difficult to explain by simply exploiting the
results of pairwise interactions. In §3, the collective
motions formed by a group of swimming micro-organ-
isms are discussed, including the coherent structures
formed by bacteria. Since a thorough review paper on
bioconvection has been recently published (Hill &
Pedley 2005), the details of this topic are omitted
here. In the last two sections, the macroscopic proper-
ties of a suspension of micro-organisms are considered.
A fine review paper by Pedley & Kessler (1992)
describes continuum models for a suspension of micro-
organisms, but most of the models presented in that
paper are only applicable to dilute suspensions in
which cell-to-cell interactions are neglected. Recent
research has revealed that the suspension properties
are considerably influenced by the collective motions
of micro-organisms. This research topic has also been
investigated intensely in the last few years. In this
paper, the focus is on the effect of cell-to-cell inter-
actions on macroscopic properties. Rheological and
diffusion properties in a suspension of micro-organisms
are discussed in §§4 and 5, respectively. Section 6
provides a brief summary of conclusions.
J. R. Soc. Interface (2009)
2. INTERACTIONS BETWEEN A PAIR OF
SWIMMING MICRO-ORGANISMS

Before examining the many-body interactions of micro-
organisms, it may be important to first have an
understanding of two-cell interactions, although some
collective motions, such as coherent structures in a bac-
terial bath, cannot be interpreted solely in terms of
two-body interactions. When two micro-organisms are
far apart in a dilute suspension, the translational velocity
of cell A may be approximated by the summation of two
velocities: the translational velocity of cell A when it is
alone, i.e. no effect of cell B; and the disturbance velocity
at the centre of cell A generated by cell B in the far field.
A similar observation can be made for the rotational vel-
ocity. For simplicity, let cells A and B be spherical with
radius a and swim in a fluid otherwise at rest. In the
Stokes flow regime, the disturbance velocity u at position
x generated by cell B can be expressed by the integration
of the traction force f exerted on the surface of cell B
(Kim & Karrila 1992; Pozrikidis 1992):

uiðxÞ ¼ �
1

8pm

ð
A

Jijðx� yÞfiðyÞ dAy; ð2:1Þ

where m is the viscosity and A is the surface area of cell B.
J is the Oseen tensor defined by

JijðrÞ ¼
dij

r
þ rirj

r3 ; ð2:2Þ

where r ¼ jrj and dij is the Kronecker delta. The integral
representation for the velocity field can be viewed as a
restatement of the governing equation of Stokes flow
from a three-dimensional partial differential equation to
a two-dimensional integral equation for traction forces
over the boundary of the fluid domain. By taking the
Taylor series of J, the right-hand side of equation (2.1)
can be expanded in moments about the centre of cell B
(Durlofsky et al. 1987; Brady & Bossis 1988):

uiðxÞ ¼
1

8pm
1þ a2

6
r2

� �
JijFj þ RijLj

�

þ 1þ a2

10
r2

� �
KijkS jk þrkrlJijQklj þ � � �

�
;

ð2:3Þ

where F, L, S and Q are the force (monopole), torque
(antisymmetric dipole), stresslet (symmetric dipole; cf.



Figure 3. Coherent structures observed in a suspension of
bacterium B. subtilis. A sessile drop is viewed from below,
through the bottom of a Petri dish, and the horizontal white
line near the top is the air–water–plastic contact line. The
central fuzziness is due to collective motion that was not com-
pletely captured at the frame rate of 1/30 s. White scale bar,
35 mm (reprinted with permission from Dombrowski et al.
2004). Copyright (2004) by the American Physical Society.
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Figure 4. Schematic of the stresslet exerted on the fluid for
two types of cells, and the far-field velocity field relative to
the swimming velocities of the cells. The arrows within the
cells’ bodies show the bodies’ direction of ‘forward’ locomotion
and also the force by the cell bodies on the fluid. The external
arrows show the associated forces by the flagella on the fluid.
(a) Thrust generated in front of the body (puller). Typical of
the algae Chlamydomonas, the return stroke, with somewhat
folded flagella, reverses the arrows. The cell body then
moves backward. The return stroke results in less motion
than the forward stroke; the net motion over one complete
cycle is forward. (b) Thrust generated behind the body
(pusher).
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Batchelor 1970) and the irreducible quadrupole of the
traction force of cell B, respectively. The propagators
are given as follows:

Rij ¼ 1lkj
1
4 ðrkJil �rlJikÞ

and
Kijk ¼ 1

2 ðrkJij þrjJikÞ;

9=
; ð2:4Þ

where 1 is the unit alternating isotropic tensor. Equation
(2.3) indicates that the disturbance flowgenerated byhigh
multipoles decays rapidly as r. If cell B is force free, the dis-
turbance flow generated by the stresslet term decays as r2,
and the additional translational velocity of cell A caused
by cell B also decays as r2. The additional rotational
velocity of cell A, however, decays as r3. Thus, in the
far-field hydrodynamic interactions, it may be enough to
consider only the first few multipoles. In other words,
the effect of the detailed cell shape is unimportant in the
far-field interactions, but the force, torque and stresslet
conditions become important.

If a micro-organism is force free and torque free, the
leading order term in equation (2.3) is the stresslet, i.e.
force dipole. Although the stresslet is a second-order
tensor, we discuss ee component of the stresslet,
where e is the orientation direction of the micro-organ-
ism. The ee component of the stresslet is positive for a
micro-organism that generates a thrust force in front
of the body (referred to as a puller), such as the biflagel-
late algae Chlamydomonas, as illustrated in figure 4a.
On the other hand, the ee component of the stresslet
is negative for a micro-organism that generates a
thrust force behind the body (referred to as a pusher),
such as many types of bacteria or spermatozoa, as illus-
trated in figure 4b. Thus, the disturbance flow fields
generated by a puller and a pusher are opposite. Two
pullers swimming side-by-side repel each other, but
J. R. Soc. Interface (2009)
two pushers swimming side-by-side attract each other.
Guell et al. (1988) modelled a bacterium as a force
dipole, similar to figure 4b, and discussed the interaction
between two bacteria by calculating the disturbance
flow field. They analysed the far-field interactions of
magnetotactic bacteria and gave one explanation
of why magnetotactic bacteria tend to form clusters.

When two micro-organisms come close, however, the
high multipoles in equation (2.3) become important. In
the case of lubrication flow between two near-contact
surfaces, all multipoles are required. Thus, near-field
interactions between two cells are difficult to solve
mathematically, and we usually must employ a detailed
computational analysis to solve the problem. The com-
putational models of micro-organisms often vary with
the problems to be solved; it is important to find an
appropriate model for the specific problem. It is also
unclear whether the near-field interactions can be
described only by hydrodynamics. In the following
subsections, we review some recent numerical
and experimental studies on interacting pairs of
micro-organisms in the near field.

2.1. Interactions between two nearby eukaryotes

While there have been numerous mathematical and
numerical investigations of hydrodynamic interactions
between two micro-organisms, relatively few experimen-
tal studies have thus far been carried out. Most of the
existing mathematical and numerical studies have
assumed that cell-to-cell interactions were purely hydro-
dynamic, and no biological reactions were considered. In
practice, however, the behaviour of a micro-organism
may be affected by the proximity of another micro-
organism. It may be stimulated to engage in reproductive
activity or to consume (or avoid being consumed by)
its neighbour. It may also move away from other
cells because of the increased competition for food.
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Figure 5. Comparison between experimental and numerical
results for the hydrodynamic interaction between two
swimming P. caudatum. (a) A sample sequence showing the
hydrodynamic interaction between two swimming P. cauda-
tum that experience a near contact in a fluid layer between
flat plates. The time interval between sequential images is
1/3 s. Long arrows are added to schematically illustrate cell
motion. (b) A sample sequence showing the hydrodynamic
interaction between two squirmer models. The orientation
vectors of the squirmers are denoted by large arrows on the
ellipsoids, and a thin solid line is added so that one can
easily visualize the angle between the two squirmers
(reproduced with permission from Ishikawa & Hota 2006).
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Hence, it is first necessary to investigate experimentally
whether two-cell interactions can best be described as
physical phenomena or biological phenomena.

Ishikawa & Hota (2006) carried out an experimental
study on the interaction of two swimming micro-
organisms using the unicellular freshwater ciliate
Paramecium caudatum. It is known that a solitary
Paramecium cell exhibits two types of biological reac-
tions to a mechanical stimulation, namely avoiding
reactions and escape reactions (Naitoh & Sugino
1984). An avoiding reaction occurs when a cell receives
a strong jolt at its anterior end. The cell first swims
backward, gyrates about its posterior end and then
resumes normal forward locomotion. An escape reaction
occurs when the cell’s posterior end is mechanically agi-
tated. The cell momentarily increases its forward swim-
ming velocity and then resumes normal forward
locomotion. The change in the swimming motion is
regulated by a change in the membrane potential,
since Paramecium cells (as well as other monads)
have neither nerves for transmitting stimulative
information nor synapses to determine transmission
direction (Machemer 1974). Ca2þ channels in the
anterior end regulate avoiding reactions, whereas Kþ

channels in the posterior end regulate escape reactions.
In the experiment by Ishikawa & Hota (2006), avoiding
and escape reactions were also observed when a Para-
mecium cell bumped into another cell. However, in
most of their experimental cases, obvious biological
reactions were not observed whenever two Paramecia
came into close contact. Although detailed interactions
between cilia and cell membranes, such as biochemical
repulsion, are still unclear, the trajectories of the cells
were mainly governed by hydrodynamics. One example
of the hydrodynamic interaction in a fluid layer between
flat plates is shown in figure 5a. Here, the angle between
the orientation vectors of the two cells is initially large.
The two cells then swim nearly side-by-side and finally
move away from each other at an acute angle.

Ishikawa & Hota (2006) also performed a compu-
tational analysis of the interaction between two
Paramecia. They modelled the Paramecium as a
squirmer (Ishikawa et al. 2006), which propels itself
by generating tangential velocities on its surface. The
squirming velocity was measured experimentally using
a particle image velocimetry technique. This is, in
fact, a very reasonable model for describing the loco-
motion of ciliates, which propel themselves by means
of pulsating arrays of cilia on their surfaces, as
illustrated in figure 1b. In particular, the so-called
symplectic metachronal wave, in which the cilia tips
remain close together at all times, can be modelled
simply as the stretching and displacement of the surface
formed by the envelope of these tips. The squirmer
model was first proposed by Lighthill (1952) and then
extended by Blake (1971), Stone & Samuel (1996)
and Downton & Stark (2009). Details of the squirmer
model can be found in Ishikawa et al. (2006). The
Stokes flow field and the squirmer motion were obtained
numerically by a boundary element method. In the case
of two cell surfaces in close proximity to each other, a
lubrication theory was incorporated to calculate the
lubrication forces and torques. No biological reaction
J. R. Soc. Interface (2009)
was included in the model, and the interaction was
purely hydrodynamic. Figure 5b shows the numerical
results for the interaction between two squirmers,
which are in close agreement with the experimental
results shown in figure 5a. The relationship between
uin and du was also investigated, where uin denotes the
angle between the orientation vectors of two cells
before the near contact and du denotes the change in
the angle of cell 2 relative to cell 1 after the near con-
tact. In figure 6, the experimental results are plotted
with grey symbols, and the numerical results are plotted
with large circles and squares. Head, body and tail
indicate the collision position in the cell body; e.g.
head–tail means that the head of cell 1 collides with
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Figure 6. Comparison of the experimental and simulation
results for du, where du is the change in the angle of cell 2 rela-
tive to cell 1 after near contact, and uin is the angle between
the orientation vectors of the cells before the near contact.
The experimental results are plotted with grey symbols
(filled circle, head–head; filled triangle, head–body; open
square, head–tail; dotted line, y ¼ x), and the numerical
results are plotted with large circles (head–head) and squares
(head–tail). The broken line with slope ¼ 1 and the solid lines
du ¼ 0 and du ¼ uin þ 0.4 are added for comparison. In the
figure, head, body and tail indicate the collision position on
the cell body (reproduced with permission from Ishikawa &
Hota 2006).
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the tail of cell 2. We note that for head–tail inter-
actions, the numerical results for du (large white
squares) cluster around du ¼ 0, and the experimental
results exhibit the same tendency. For head–head inter-
actions (large white circles), the numerical results for du
increase almost linearly with uin when uin is less than
about 3p/4, and once again the experimental results
exhibit the same tendency. Thus, the mathematical
model correctly describes many interactions between
Paramecia.

Another interesting pairwise interaction of eukar-
yotes is a dancing pair of Volvox. Drescher et al.
(2009) recently discovered two types of dancing
motion of the multicellular freshwater ciliate Volvox
carteri. When suspensions of Volvox were placed in
glass-topped chambers, a stable bound state of two
Volvox cells orbiting each other occurred frequently
near the top surface. Since the orbiting motion
resembles the waltzing motion of dancers, it is termed
a ‘waltzing’ motion. Near the bottom surface, on the
other hand, the Volvox cells oscillate back and forth
as if held together by an elastic band; this motion is
called a ‘minuet’. The clustering of cells may be
evolutionarily favourable to Volvox, since it increases
the probability of fertilization. Thus, it becomes
important to clarify whether the dancing motions
occurred actively, as the result of a biological inter-
action (such as chemical communication), or passively,
due to the hydrodynamic interaction between the
Volvox. The waltzing motion was analysed mathemat-
ically using point singularities and numerically using a
boundary element method, and it was concluded that
the effect can be explained well in terms of
hydrodynamics.
J. R. Soc. Interface (2009)
Jiang et al. (2002) numerically investigated the hydro-
dynamic interactions between two copepods, although
the Reynolds number in this case is slightly larger than
unity and the flow field is not Stokesian. Their detailed
model consisted of a prosome, a urosome and two
antennules and was designed to imitate the external
morphology of a species of coastal water copepods.
They found two beneficial roles of the hydrodynamic
interactions for copepod swarms: the interactions main-
tained the integrity of the swarms and separated the
swarming members by ensuring large nearest-neighbour
distances. Although the interactions were not between
eukaryotes, Barbara & Mitchell (2003) found an interest-
ing example of a two-cell interaction between a motile
alga and a bacterium. They demonstrated that some
marine bacteria are able to track motile algae by a com-
bination of direction reversal and steering. Tracking
motile algae is biologically important for bacteria
because they are able to ingest nutrients exuded by the
algae. Locsei & Pedley (2009) investigated this phenom-
enon analytically and showed that a bacterial cell may
exploit the vorticity and strain-rate fields generated by
an algal cell in order to steer. In all these models, the
interaction was assumed to be purely hydrodynamic,
and no provision was made for any type of biological
reaction. Although the detailed roles of biological
reactions are still unclear, these findings suggest that
hydrodynamics play an important part in pairwise
interactions of swimming micro-organisms.
2.2. Interactions between two nearby bacteria

Aranson et al. (2007) experimentally observed two-cell
interactions between Bacillus subtilis bacteria in a
thin film. They observed that bacteria reoriented
during collision and tended to align side-by-side after-
wards. In a dense suspension of bacteria, many cells
interacted significantly, and the suspension showed
coherent structures (see §3.2). In order to study these
bacterial interactions, various levels of mathematical
models have been proposed. As mentioned earlier,
Guell et al. (1988) modelled a bacterium as a force
dipole and analysed the far-field interactions between
bacteria. Another simple mathematical model is a
linked-sphere model, which is widely used by many
researchers to investigate cell–cell interactions
(Hernandez-Ortiz et al. 2005; Pooley et al. 2007;
Alexander & Yeomans 2008; Alexander et al. 2008,
2009; Gunther & Kruse 2008; Underhill et al. 2008).
Although a linked-sphere model is not intended to specifi-
cally model a bacterium, it gives suggestive results even for
bacterial interactions. Pooley et al. (2007) employed a
simple swimmer model consisting of three spheres joined
by thin rods that move by shortening and extending the
rods in a periodic and time-irreversible manner. They
showed that the interactions between two swimmers may
be attractive, repulsive or oscillatory, depending on their
relative displacement, orientation and phase. Hernandez-
Ortiz et al. (2005) and Underhill et al. (2008) proposed
two rigidly linked beads and analysed the many-body
interactions. They successfully simulated coherent struc-
tures found in a dense suspension of bacteria (see §3.2).
Cisneros et al. (2007) also proposed a similar model, in
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Figure 7. Interaction of two swimming bacterial models (cf. Ishikawa et al. 2007b). (a) Computational mesh for a bacterium
model, in which 320 and 360 triangles are generated for a cell body and a flagellum, respectively. (b) Initial positions and trajec-
tories of two interacting bacterial models. The two bacteria are initially set parallel each other, and their orientation vectors are in
the x-direction.
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which a cell body is modelled by a sphere and a flagella
bundle is modelled by a rod. They numerically investi-
gated hydrodynamic interactions between several bacteria
swimming near a wall.

Ramia et al. (1993) and Nasseri & Phan-Thien
(1997) employed a more detailed model of a bacterium
as a spherical body with a rotating helical flagellum.
They numerically investigated the interactions between
bacteria using a boundary element method. They found
attraction between two bacteria swimming side-by-side,
as predicted by a far-field analysis. Keaveny & Maxey
(2008) investigated interactions between two artificial
micro-swimmers. Their model consisted of a series of
spheres, with a magnetic drive force exerted on each
sphere. Ishikawa et al. (2007b) have recently used a
similar bacterial model, illustrated in figure 7a, to inves-
tigate near-field interactions. They carried out a
numerical analysis of the stability of two parallel swim-
ming bacteria using a boundary element method.
Figure 7b shows a sample result for an interaction
between two bacteria initially placed parallel to one
another. The parallel swimming motion was demon-
strated to be unstable, whereas earlier experimental
research based on observations in a thin film and near
a wall and analytical research using multipoles yielded
the opposite result. It was concluded that the three-
dimensional shape of the helical flagellum and the
boundaries of their domain have an appreciable effect
on the near-field interactions of bacteria.

Although the interactions were not between two bac-
teria, numerous investigations have focused on the
interactions between a bacterium and a solid wall.
These interactions are crucial to understanding the con-
cepts such as the migration of infectious bacteria along
a catheter and the formation of a biofilm. Experimental
studies have shown that swimming bacteria tend to stay
near a wall for a time, and their trajectory often forms a
circle (Maeda et al. 1976; Berg & Turner 1990; Frymier
et al. 1995; Magariyama et al. 2005). The small number
of multipoles in equation (2.3) is not sufficient to ana-
lyse this phenomenon because of the small separation
between them. Lauga et al. (2006) used a numerical
approach called resistive-force theory, first proposed
by Gray & Hancock (1955). Resistive-force theory is
an approximation of slender-body theory, in which
J. R. Soc. Interface (2009)
Stokes flow singularities are distributed along the cen-
treline of the flagellum. Lauga et al. (2006) reproduced
the circular trajectories of bacteria, and their results
were in good agreement with the experiments. Goto
et al. (2005) developed a more detailed model, similar
to that of Ramia et al. (1993), and analysed the near-
field interactions between a bacterium and a wall
using a boundary element method. Their results
revealed that bacterium motion is influenced by the
angle between the boundary and the swimming direc-
tion and that forward swimming motion is more
stable than backward swimming motion near a wall.
These hydrodynamic models explain the behaviour of
bacteria near a wall.
3. COLLECTIVE MOTIONS OF SWIMMING
MICRO-ORGANISMS

3.1. Various types of collective motions in a
suspension of micro-organisms

Micro-organisms in a suspension exhibit a variety of
collective motions, sometimes resulting in the formation
of interesting geometric patterns. Bioconvection is the
biological analogue to a physical process, such as ther-
mal convection, that sometimes results in geometric
patterns and has been investigated extensively (e.g.
Wager 1911; Platt 1961; Pedley et al. 1988; Kessler
et al. 1994; Bees & Hill 1997; Bearon & Grunbaum
2006; Denissenko & Lukaschuk 2007; Kitsunezaki
et al. 2007). Bioconvection is observed in suspensions
of algal cells and bacteria, whereby both generally
swim upwards either because of bottom heaviness or
the oxygen gradient produced by their own consump-
tion, respectively. Since these micro-organisms are
slightly denser than water, the upper regions of the sus-
pension become denser than the lower regions. This
leads to the development of overturning instability,
analogous to Rayleigh–Benard convection, resulting
in the formation of descending plumes of dense cell
suspension. The mechanism of bioconvection can be
satisfactorily explained in terms of hydrodynamics.
For details, see Hill & Pedley (2005).

Spormann (1987), Carlile et al. (1987) and Mann
et al. (1990) reported another type of migration
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phenomenon in dense suspensions of unidirectional
magnetotactic bacteria swimming in narrow glass
tubes. When such a suspension is subjected to an
aligned magnetic field, thousands of cells form a
stable band perpendicular to the direction of move-
ment. Magnetotactic bacteria contain intracytoplasmic
Fe3O4 particles, and the magnetic dipole is oriented
more or less parallel to the axis of motility of the cells
(Balkwill et al. 1980). There are two kinds of dipoles
acting on a magnetotactic bacterium: the magnetic
dipole owing to permanent magnetic particles in the
cell and the hydrodynamic force dipole resulting from
the swimming motion of the cell. Carlile et al. (1987)
speculated that band formation is due to the magnetic
interaction, whereas Guell et al. (1988) suggested that
it is a consequence of the hydrodynamic interaction.
Although the exact nature of the mechanism
remains unclear, both hypotheses suggest that this
migration phenomenon may have a biomechanical
explanation.

Collective motions of spermatozoa have also been
widely investigated. Moore et al. (2002) reported the
probable altruistic behaviour of spermatozoa in a
eutherian mammal. They showed that the spermatozoa
of the common wood mouse displayed a unique morpho-
logical transformation, resulting in the cooperation in
distinctive aggregations or trains of hundreds of cells.
They performed a computer-assisted sperm analysis
and found that the mean average path velocity of
sperm trains was significantly greater than that of
single spermatozoa. Eventual dispersal of sperm trains
was associated with most of the spermatozoa under-
going a premature acrosome reaction. Yang et al.
(2008) studied the hydrodynamic interaction and
cooperation of sperm embedded in a two-dimensional
fluid using a particle-based mesoscopic simulation
method. Owing to the hydrodynamic effects, a multi-
sperm system showed aggregations and swarm behav-
iour, similar to former experimental observations. The
synchronization of sperm beats was accomplished by
the hydrodynamic interactions. Similar synchronization
was also found in the interactions between flagella of a
bacterium (Kim et al. 2003; Kim & Powers 2004;
Reichert & Stark 2005). Riedel (2005) found a self-
organized vortex array of sperm cells at planar surfaces.
These vortices formed an array with local hexagonal
order when the sperm density was above a critical
value. They also concluded that large-scale coordi-
nation of cells could be regulated hydrodynamically,
and chemical signals were not required. Similar circling
sperm cells in the vicinity of a wall were found numeri-
cally by using a coarse-grained model (Friedrich &
Julicher 2008). These collective motions were well
explained by hydrodynamic forces.

Bacterial colonies cultured on agar gels are known to
exhibit fractal-like branching and complex spatio-
temporal patterns. This phenomenon was first reported
by Fujikawa & Matsushita (1989). Bacterial colonies
respond to adverse growth conditions by sophisticated
cooperative behaviour and intricate types of communi-
cation such as direct cell-to-cell physical interactions
(Igoshin et al. 2004) and long-range chemotactic signal-
ling (Bassler 2002). Shapiro & Hsu (1989) investigated
J. R. Soc. Interface (2009)
cell–cell interactions in bacterial colonies of Escherichia
coli. They showed that E. coli cells responded to each
other and adjusted their cellular morphogenesis to
form multicellular groups as they proliferated on agar.
A detailed discussion of these mechanisms can be
found in the excellent review papers by Ben-Jacob &
Levine (2006), Ben-Jacob et al. (2000) and Copeland &
Weibel (2009). In these views, it is shown that pattern
formation in micro-organisms can be viewed as a
result of an exchange of information between the indi-
vidual cell level and the macroscopic colony level.
Lega & Passot (2003, 2004, 2007) developed a hydro-
dynamic model for the evolution of bacterial colonies
growing on soft agar plates. Their model consists of
hydrodynamic equations coupled with reaction–
diffusion equations for the respective concentrations of
nutrients and bacteria and is capable of reproducing
both the usual colony shapes and the typical hydrodyn-
amic motions such as whirls and jets observed in
wet colonies of B. subtilis (Mendelson et al. 1999). In
bacterial colonies, the interactions between cells are
mediated both by chemical signalling and by
hydrodynamics. Recently, however, there has been a
growing interest in hydrodynamic motions (such as
whirls and jets), since they have a significant effect on
the properties of a suspension in regions of high cell
concentration.
3.2. Coherent structures in a bacterial
suspension

Coherent structures in bacterial suspensions were
first reported by Kessler & Wojciechowski (1997) and
Kessler & Hill (1997), followed by Mendelson et al.
(1999). They observed a meso-scale motion of whorls
and jets generated by B. subtilis in a thin water film
above an agar gel. Steager et al. (2008) also found similar
swarming motion of Serratia marcescens bacteria
above an agar gel. Dombrowski et al. (2004) reported
meso-scale coherent structures in a concentrated sus-
pension of B. subtilis. In a concentrated suspension, a
B. subtilis cell tends to swim in much the same direction
as its neighbours, generating a flow pattern larger than
the scale of an individual cell, but smaller than the scale
of the container used in the experiment, as shown in
figure 3. The meso-scale structure changes its direction
randomly, in a manner reminiscent of turbulence. The
concentration dependence of the coherent structure
was later reported by Sokolov et al. (2007). Liao et al.
(2007) examined the pair velocity correlations among
E. coli bacteria swimming freely in a microfluidic chan-
nel. A large number of bacterial tracks were obtained
using a particle-tracking algorithm, and the longitudi-
nal and transverse pair velocity correlation functions
were evaluated. Their experiments indicated that the
longitudinal and transverse correlation functions were
positive and negative, respectively. The diffusivity of
inert particles in such a suspension was investigated
experimentally by Kessler (2000) and Wu & Libchaber
(2000). Specifically, the latter group studied the effect
of bacterial motion on the diffusivity of micro-scale
polystyrene beads in a freely suspended film using a
stable two-dimensional soap film seeded with bacteria
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(E. coli) and micro-scale beads. Interestingly enough,
the diffusion of beads in the cell suspension was
enhanced thousands of times compared with Brownian
diffusion owing to the effect of the coherent structures.
By measuring correlations of passive tracer particles
in a bacterial bath, Chen et al. (2007) found that
the macroscopic stress fluctuations were sensitive to the
microscopic swimming behaviour of the bacteria.

Various types of mathematical and numerical models
have been suggested for investigating the coherent
structures and collective motions observed in suspen-
sions of micro-organisms. These models can be classified
into two major groups: continuum models and discrete
models. In the case of a continuum model for a dilute
suspension of micro-organisms, the bulk velocity field
u is assumed to satisfy the continuity and Cauchy
equations, subject to the Boussinesq approximation,
given by (cf. Hill & Pedley 2005)

r � u ¼ 0 ð3:1Þ

and

r
@u
@t
þ rðu � rÞu ¼ �rpe � nrg0 kþ mr2u

þr � Sð pÞ; ð3:2Þ

where r is the density, pe is the pressure excess over
hydrostatic pressure, g0 is the reduced gravity, k is the
vertical unit vector and m is the viscosity. S( p) is the
particle stress tensor, which indicates how the stress
field is affected by the swimming micro-organisms
(Batchelor 1970). This single fluid model with the
Boussinesq approximation has been used for the biocon-
vection analysis (Pedley & Kessler 1992). Although the
model was successful in explaining the overturning
instability resulting in the formation of descending
plumes, it has not been used for simulating coherent
structures in a bacterial bath.

Continuum models for dense suspensions of cells have
been proposed by Simha & Ramaswamy (2002),
Hatwalne et al. (2004), Toner et al. (2005), Ramaswamy
& Simha (2006), Sankararaman & Ramaswamy (2009),
Saintillan & Shelley (2008a,b), Aranson & Tsimring
(2005), Aranson et al. (2007) and Wolgemuth (2008),
as well as by other researchers such as Voituriez et al.
(2006) and Liverpool & Marchetti (2006). Ramaswamy’s
group constructed hydrodynamic equations for suspen-
sions of self-propelled particles. The effect of swimming
particles was taken into account by adding force dipoles
in the momentum equation of the fluid. Linear analysis of
their model showed that nematic suspensions were
unstable for certain wave angles with respect to the direc-
tion of alignment. Saintillan & Shelley (2008a,b) used a
kinetic theory and performed nonlinear continuum simu-
lations. Their results showed that the instability actually
occurred for all wave angles. In their model, the dense
regions of particles are typically in the form of bands,
which become unstable and fold onto themselves owing
to the disturbed flow. After folding, the bands break up
and reorganize in the transverse direction. These
dynamics may be analogous to the jetting found in a
bacterial bath. Aranson et al. proposed a two-dimensional
J. R. Soc. Interface (2009)
master equation for the probability density of bacterial
position and orientation, derived from microscopic inter-
action rules dictated by experiments. By assuming a
fully inelastic collision between two micro-organisms,
the model could successfully reproduce the coherent
structures in a bacterial bath and their cell density depen-
dency. Wolgemuth (2008) developed a two-phase model
for the collective swimming of dense colonies of bacteria.
His model treats the fluid and bacteria as independent,
interpenetrating continuum phases. By introducing an
entropically driven tendency for the bacteria to align,
similar to nematic liquid crystals, the model could
reproduce coherent structures and density fluctuations
in a bacterial bath. Most of the continuum models
described in this paragraph have successfully reproduced
coherent structures and density fluctuations found in
former experiments.

The mathematical models described for the system of
cell suspensions are quite similar to the work being done
on active gels. Voituriez et al. (2006), Liverpool &
Marchetti (2006) and Marenduzzo et al. (2007) pro-
posed nematic hydrodynamic equations similar to
continuum models for a cell suspension and discussed
rheology and macroscopic phase separation of active
gels or active liquid crystals. The importance of
hydrodynamic interactions between particles in the
fluctuations of a suspension has also been recognized
in former studies on inert particles. Koch & Shaqfeh
(1989) and Saintillan et al. (2006) investigated the
density fluctuations in a suspension of sedimenting
non-Brownian spheroids. Although the spheroids did
not swim like micro-organisms, they found that the
suspension was unstable to particle density fluctuations.
Sedimenting suspensions of spherical particles,
however, were shown to be stable in the absence of
inertial effects.

Another type of model for suspensions of cells is a
discrete model, in which the motions of individual
cells in a suspension are solved in a discrete manner.
Wide varieties of discrete models with different levels of
hydrodynamics have been proposed so far. In some
models, the hydrodynamics were not at all incorporated,
and thus they are not applicable to a dense suspension of
bacteria (Vicsek et al. 1995; Czirok et al. 1997; Gregoire &
Chate 2004; Sambelashvili et al. 2007). Some other
discrete models solve far-field hydrodynamics precisely,
although near-field hydrodynamics are not accurately
incorporated. Hopkins & Fauci (2002) solved the
Navier–Stokes equations of fluid dynamics in the pres-
ence of a discrete collection of micro-organisms. These
cells act as point sources of gravitational force in the
fluid equations and thus affect the fluid flow. This
model was not only successful in reproducing biocon-
vection, but also it was done in three dimensions,
with good fidelity of results to both geometry and tem-
poral dynamics. Llopis & Pagonabarraga (2006) ana-
lysed the collective dynamics of self-propelling
particles using a lattice Boltzmann method. Although
they reported aggregation of particles and self-diffusion
over a long period of elapsed time, coherent structures
were not mentioned in the paper. Hernandez-Ortiz
et al. (2005) and Underhill et al. (2008) simulated the
motions of large populations of confined swimming
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particles that interact hydrodynamically. Their model
consists of two rigidly linked beads that exert equal
and opposite point forces on the fluid. The swimmer
moves and rotates in response to the low-Reynolds-
number flow of the suspending medium, driven by all
the other structures. Their model successfully
reproduced coherent vortex motions in the flow, which
are similar to the coherent structures observed in the
experiments. Saintillan & Shelley (2007) investigated
orientational order in suspensions of self-locomotive
narrow spheroids using slender-body theory. In their
work, a bacterium is modelled as a slender, narrow
spheroid particle that propels itself by exerting an axi-
symmetric tangential shear stress on the fluid over a
section of its body, while the remainder of its body is
subject to the usual no-slip boundary condition.
Coherent structures of particles appeared in their
model, and they confirmed numerically that nematic
suspensions of swimming particles were unstable at
long wavelengths, which was reported in the former
study by Simha & Ramaswamy (2002). In the models
of Hernandez-Ortiz et al. (2005) and Saintillan &
Shelley (2007), the coherent structures found in a
bacterial bath were well reproduced. Since their
models have elongated shapes (i.e. dumbbells and
rods), the models tend to align to the average direction
of the surrounding particles, even without precise
hydrodynamics in the near field. This local alignment
seems to be an important factor in the coherent
structures.

Recently, discrete models with full hydrodynamics
were proposed by Ishikawa et al. (2008) and Mehandia &
Nott (2008). Ishikawa et al. (2008) developed an effec-
tive numerical method for investigating collective
motions of swimming particles in a concentrated
suspension. They used Stokesian dynamics (Brady &
Bossis 1988) coupled with a boundary element
method to solve the equations of near- and far-field
hydrodynamics precisely. In the model of Ishikawa
et al. (2008), a swimming micro-organism is assumed
to be a squirming sphere with a prescribed tangential
surface velocity, and no biological reactions are
incorporated. Details of the squirmer model can be
found in Ishikawa et al. (2006); this model was also
used in the Paramecium simulations illustrated in
figure 5b.

Ishikawa & Pedley (2008) calculated the motions of
interacting squirmers in a monolayer, in which the
centres and orientation vectors of all squirmers are on
the same plane. The movement of non-bottom-heavy
squirmers was computed for random initial positions
and orientations. The distributions of squirmers with
b ¼ 5, as well as their velocity vectors for areal fractions
of 0.1 and 0.5, are shown in figure 8a,b, where b denotes
the ratio of second-mode squirming to first-mode
squirming and is proportional to the squirmer’s stresslet
strength. In figure 8a, two large clusters are formed in a
unit computational cell, which indicates that squirmers
aggregate hydrodynamically in this case. In figure 8b,
the clusters move together and the squirmers generate
collective motions. The scale of the collective motions
can be described in terms of the velocity correlations
among the particles, as shown in figure 9. The velocity
J. R. Soc. Interface (2009)
correlations are positive when the distances between the
particles are small, indicating that neighbouring squir-
mers tend to swim together in a similar direction. The
velocity correlations are negative when the distances
are large, and thus squirmers that are far apart gener-
ally swim in opposite directions. This determines the
typical scale of the coherent structures. The directions
of the collective motions also changed over time, and
the model was able to reproduce meso-scale spatio-
temporal motions that were similar to experimental
observations. Figure 8c shows the distribution and
velocity vectors of bottom-heavy squirmers, relative to
the average velocity. Although the squirmers were
initially placed randomly, they tended to form a large
band perpendicular to the gravitational direction, in a
manner analogous to the band formation of
magnetotactic bacteria (Carlile et al. 1987; Spormann
1987). These simulation results illustrate that various
types of coherent structuring, such as aggregation,
meso-scale spatio-temporal motion and band
formation, can be generated by purely hydrodynamic
interactions between micro-organisms.

Ishikawa et al. (2008) also investigated coherent struc-
tures in three-dimensional suspensions of squirmers. The
movement of 216 identical squirmers in a concentrated
suspension with no imposed flow was simulated in a
cubic domain with periodic boundary conditions. One
realization of the instantaneous positions of the squirmers
and their trajectories is shown in figure 10. The trajec-
tories of the squirmers are not straight, since the
hydrodynamic interactions between the squirmers cause
them to change direction. In order to determine the
scale of the collective motions, the velocity correlations
between the particles were again calculated, and the
results are plotted in figure 11. The velocity correlation
is positive when the distance is small, indicating that
neighbouring squirmers tend to move together in a simi-
lar direction, even in a three-dimensional suspension. The
velocity correlation is negative when the distance is large,
which is suggestive of a whirl structure. The effects of
squirming velocity, volume fraction of cells and bottom
heaviness on three-dimensional coherent structures were
also investigated. The overall results indicated that a
weak aggregation of cells appears as a consequence of
the hydrodynamic interaction between cells, the cells gen-
erate collective motions via the hydrodynamic interaction
and the range and duration of the collective motions
depend on the volume fraction and the stresslet strength
of the squirmers. These tendencies were in satisfactory
qualitative agreement with previous experimental
observations. In the model of Mehandia & Nott (2008),
however, coherent structures similar to former exper-
imental observations were not mentioned. The difference
may have come from the near-field hydrodynamics
between interacting particles. Ishikawa et al. (2008)
reported that their squirmer models tend to show align-
ment in the average direction of surrounding cells because
of the near-field hydrodynamics. Although identifying
the mechanism governing coherent structures requires
more detailed study, the local alignment of particles
owing to the near-field hydrodynamics as well as the
instability of ordered suspensions at long wavelengths
could be key factors.
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Figure 8. Distribution of squirmers in a monolayer and their velocity vectors. The computational cell is located at the centre as
indicated by the solid lines. b is the ratio of second-mode squirming to first-mode squirming (cf. Ishikawa & Pedley 2008).
(a) Aggregation of non-bottom-heavy squirmers with the areal fraction of 0.1 (b ¼ 5). (b) Meso-scale spatio-temporal motion
of non-bottom-heavy squirmers with the areal fraction of 0.5 (b ¼ 5). (c) Band formation of bottom-heavy squirmers. Velocity
vectors are taken relative to the average squirmer velocity, and vector g indicates the gravitational direction (b ¼ 1).
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4. RHEOLOGICAL PROPERTIES OF A
SUSPENSION OF MICRO-ORGANISMS

When the size of the individual micro-organisms is
much smaller than that of the flow field of interest, it
is inconvenient to attempt to understand the bulk
motion of the suspension from an analysis of individual
cell motions. In such cases, it is better to model the sus-
pension of micro-organisms as a continuum, in which
the variables are volume-averaged quantities (Pedley &
Kessler 1992). Continuum models for dilute suspensions
of micro-organisms have been applied to bioconvection
(Childress et al. 1975; Pedley & Kessler 1990; Hillesdon
et al. 1995; Bees & Hill 1998, 1999; Metcalfe & Pedley
2001; Alloui et al. 2005; Ghorai & Hill 2005, 2007;
Taheria & Bilgen 2008) and other phenomena (Metcalfe
J. R. Soc. Interface (2009)
et al. 2004; Tuval et al. 2005), although cell-to-cell
interactions were neglected in all cases.

The stresslet of a solitary micro-organism provides
the first-order correction to the bulk stress, in terms
of the volume fraction f. The particle stress tensor in
equation (3.2) can be expressed by using the stresslet
as (Batchelor 1970)

S
ð pÞ ¼ 1

V

X
S ¼ 1

V

X
ðSi þ SsÞ; ð4:1Þ

where the particle stress tensor is averaged in the volume
V and the sum is over all particles in V. The stresslet
exerted on a particle may be split into two contributions:
the stresslet generated by an inert particle in a back-
ground linear flow field, Si, and the stresslet owing to
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Figure 9. Correlation of the velocity of squirmers in a mono-
layer, with b ¼ 5 and areal fractions of 0.1 (solid line), 0.3
(dashed line) and 0.5 (dotted line) (cf. Ishikawa & Pedley
2008).

Figure 10. Instantaneous position of 216 identical squirmers in
a fluid otherwise at rest, with b ¼ 5. The solid lines are the
three-dimensional trajectories of the squirmers over five time
intervals.
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Figure 11. Correlation of the velocities of squirmers in a three-
dimensional suspension with b ¼ 5 (cf. Ishikawa et al. 2008).
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the swimming motion of a particle in a fluid otherwise at
rest, Ss. The Si of an inert sphere with radius a in a dilute
limit (i.e. no hydrodynamic interactions between
particles) was first derived by Einstein (1906) as

Si ¼
20
3
pma3E; ð4:2Þ

whereE is the rate of the strain tensor. This equation indi-
cates that the particle stress generated by inert spheres is
proportional to E in the dilute limit, and the rheology of
the dilute suspension of spheres shows Newtonian proper-
ties. In the case of an ellipsoid, the angular velocity ė is
given by Jeffery’s equation as (Jeffery 1922)

ė ¼ ðI� eeÞ � ðgEþVÞ � e; ð4:3Þ

where e is the orientation vector and V is the rate of
rotation tensor. Here, g is Jeffery’s parameter given by
g ¼ ðz2 � 1Þ=ðz2 þ 1Þ, where z is the aspect ratio. This
equation indicates that ellipsoids tend to align with the
principal axis of strain. The stresslet Si of an ellipsoid is
given by Si ¼ 4pmPE, where P is a rank 4 tensor and
dependent only on the shape, size and instantaneous
orientation of the particle (Batchelor 1970). Rheological
properties of a dilute suspension of ellipsoids often
become non-Newtonian except for some special cases,
such as in an axisymmetric bulk pure straining motion.

The non-isotropic orientation of particles also results
in significant change in the bulk stress field through the
stresslet owing to swimming, Ss. As explained in
figure 4, Ss is positive for a puller, but negative for a
pusher. Ishikawa et al. (2006) derived the following
equation for the stresslet Ss of a solitary spherical
squirmer model:

Ss ¼
4p
3
ma2ð3ee� IÞB2; ð4:4Þ

where a is the radius, e is the orientation vector of the
squirmer and B2 is the coefficient of the second mode
of the surface squirming velocity. Similar equations
have been obtained by other researchers for an axisym-
metric swimming micro-organism (Pedley & Kessler
1990; Hatwalne et al. 2004). Haines et al. (2008)
J. R. Soc. Interface (2009)
investigated the effective viscosity in a dilute suspension
of bacteria using a two-dimensional mathematical model.
They analysed the effect of self-propulsion on the stress
field and showed that the effective viscosity decreased
in bacterial suspensions. They also pointed out the
importance of bacterial shape to the leading order effects
on the effective viscosity of dilute suspensions. In par-
ticular, a significant order f effect was derived for
elongated particles, such as bacteria, owing to the non-
isotropic orientation distribution. D. Saintillan (2009,
unpublished data) also investigated the shear viscosity
of a dilute suspension of swimming particles. He found
that normal stress differences appeared in a suspension
subjected to a simple shear flow.

In the non-dilute regime, however, we need to
accurately solve the hydrodynamics between micro-
organisms interacting in the near field, which usually
requires a numerical analysis. For a semi-dilute
suspension of squirmers, Ishikawa & Pedley (2007a)
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Figure 12. The effect of volume fraction f on the xy- and yx-
components of the apparent viscosity of a suspension of
bottom-heavy squirmers, under the conditions of weak shear
flow and strong bottom heaviness, with b ¼ 5. For details,
see Ishikawa & Pedley (2007a). A simple shear flow is applied
in the xy-plane, and the gravitational directions are taken in
the 2x- or 2y-directions, i.e. vertical or horizontal shears.
The broken line indicates the values obtained from the
analytical equation of Batchelor (1977) for a suspension of
Brownian spheres. Vertical: filled circle, hxy; open circle, hyx.
Horizontal: filled triangle, hxy; open triangle, hyx. Dashed
line, 1þ2.5fþ5f2.
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Figure 13. The effect of bottom heaviness on the time change
of the yy-component of a squirmer-averaged stresslet, where
gravity is taken in the 2y-direction. Ssol is the stresslet
strength of a solitary squirmer. Gbh is a dimensionless par-
ameter for bottom heaviness, defined as 2prgah/mB1, where
h is the distance between the centre of gravity and the
centre of the squirmer, and B1 is the first mode of the squirm-
ing velocity. The horizontal axis is calibrated in units of the
time divided by the characteristic time t c. Analytical solutions
with Drt c ¼ 0 (solid line), 0.03 (dashed line) and 0.35 (dashed-
dotted line) are drawn for the sake of comparison, where Dr

denotes the rotational diffusion. The case Drt c ¼ 0 is equival-
ent to a dilute suspension. Simulation: open circle, Gbh ¼ 100;
filled circle, Gbh ¼ 10 (cf. Ishikawa et al. 2007a).
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investigated the f2 dependency of the asymptotic
expression for the particle bulk stress in terms of f.
They dynamically computed the three-dimensional
hydrodynamic interactions of squirmers subjected to a
simple shear flow exerted in the xy-plane. For bottom-
heavy squirmers, the results indicated that the stresslet
generated by the squirming motion contributes to the
bulk stress in direct proportion to f. When the back-
ground shear flow is directed vertically, and the stresslet
of a solitary squirmer is positive (puller), the apparent
viscosity of the semi-dilute suspension of bottom-heavy
squirmers becomes smaller than that of inert spheres, as
shown in figure 12. On the other hand, when the shear
flow is horizontal and varies with the vertical coordi-
nate, the apparent viscosity becomes larger than that
of inert spheres (figure 12). Thus, in the case of
bottom-heavy squirmers, the suspension rheology is
strongly influenced by the direction of shear relative
to the gravitational direction. It is also affected by the
sign of the stresslet (puller or pusher), the strength of
the bottom heaviness and the shear rate. The xy- and
yx-components of the stress tensor are no longer
symmetric (the shear flow is in the xy-plane), and the
suspension exhibits strongly non-Newtonian properties.

A suspension of bottom-heavy micro-organisms also
shows normal stress differences and stress relaxation,
analogous to a visco-elastic fluid. Ishikawa & Pedley
(2007a) numerically demonstrated that in a suspension
of bottom-heavy squirmers, normal stress differences
appear for all relative orientations of gravity and
shear flow. Ishikawa et al. (2007a) focused on the
unsteady behaviour of a cell suspension and carried
out analytical and numerical investigations of the orien-
tational relaxation time, which is the time required for a
micro-organism to reorient itself from a disoriented con-
dition to its preferred direction. They assumed isotropic
random orientation at t ¼ 0 and calculated the time
change of the squirmer-averaged stresslet component
,Syy., where the gravitational direction is taken as
2y. The numerical and analytical results are shown in
figure 13, in which the stresslet and time are replaced
by dimensionless quantities obtained by dividing
the stresslet by the stresslet strength Ssol of a solitary
squirmer and the time by the characteristic time tc for
reorientation. Here, t c is defined as 6m/rgh, where h is
the distance between the centre of gravity and the
centre of the squirmer (Pedley & Kessler 1987). The
results indicate that both the mean stresslet strength
and the orientational relaxation time are less than
those for a dilute suspension. A stress overshoot was
also observed in some cases. Although these tendencies
are similar to a visco-elastic fluid, the mechanism of the
time variation in the stress field is different, as discussed
in Ishikawa et al. (2007a).

In a dense suspension of bacteria, Chen et al. (2007)
experimentally found stress fluctuations by using a
combination of passive two-point microrheology and
active response measurement. They showed that
macroscopic stress fluctuations were sensitive to the
microscopic swimming behaviour of bacteria. The
rheology of such dense suspensions of active particles
was first analysed by Hatwalne et al. (2004). They
employed coarse-grained equations governing the
J. R. Soc. Interface (2009)
hydrodynamic velocity, concentration and stress fields,
as introduced in §3.2, although the effect of near-field
hydrodynamic interactions was not incorporated in
the model. They showed that an orientationally ordered
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state of active particles had a non-zero macroscopic
stress, in contrast to thermal equilibrium nematics.
Saintillan & Shelley (2008a,b) analysed the particle
stress in active suspensions in more detail using a
kinetic theory. In isotropic suspensions, their theory
indicated the existence of an instability for the active
particle stress, in which shear stresses are eigen modes
and grow exponentially at long scales. They also per-
formed nonlinear simulations and observed the growth
of large-scale stress fluctuations. Interestingly, their
model indicated that the active shear stresses were
unstable at long wavelengths in the case of pushers,
but not for pullers. Since coherent structures were
found in a suspension of pushers (i.e. bacteria), essential
differences may exist in terms of stability between a
suspension of pushers and pullers, as predicted by them.
5. DIFFUSION PROPERTIES OF A
SUSPENSION OF MICRO-ORGANISMS

In a cell suspension, micro-organisms are dispersed by
the intrinsic randomness of their swimming motion, as
well as by hydrodynamic interactions. This is called
self-diffusion of micro-organisms. Chemical substances
in the suspension, such as oxygen and nutrients, are
also diffused, both by Brownian motion and by the
micro-scale flow field generated by micro-organisms.
In order to understand cell distribution and mass trans-
port in a suspension of micro-organisms, these diffusion
properties must be clarified.

5.1. Self-diffusion of micro-organisms

The key equation in a continuum model of cell suspen-
sions is the cell-conservation equation. When birth and
death processes are neglected, this is given by (cf. Hill &
Pedley 2005)

@n
@t
þ ðu � rÞn ¼ �r � ðnVc �Ds � rnÞ; ð5:1Þ

where n is the number density of cells, Vc is the average
cell swimming velocity, Ds is the self-diffusion tensor
and the cell dispersal is modelled as a random diffusion
process. Micro-organisms have some genetic random-
ness, in size and in shape, which may induce different
swimming speeds, swimming directions and swimming
trajectories for individual micro-organisms. There may
also be some randomness in their reactions to light,
gravity, nutrients and other micro-organisms. In the
case of non-dilute suspensions of micro-organisms, the
hydrodynamic interaction between cells causes frequent
changes in the orientation of cells; this interaction may
also be modelled as a chaotic process.

The self-diffusion of micro-organisms has been
investigated analytically, numerically and experimen-
tally by a number of researchers. One of the most
intensively investigated topics is the self-diffusion of
E. coli bacteria (Berg 1993). An E. coli cell has approxi-
mately six flagellar filaments on the side of its body.
When these flagella turn counterclockwise, they form
a synchronous bundle that pushes the body steadily
forward, known as a ‘run’ motion. When they turn
clockwise, the bundle comes apart and the cell body
J. R. Soc. Interface (2009)
rotates in an erratic manner, known as a ‘tumble’
motion (Macnab & Ornston 1977). If a cell swims at a
constant velocity Ub along a trajectory comprising
a sequence of exponentially distributed straight
runs of mean duration tb, the self-diffusion D s can be
derived as (Lovely & Dahlquist 1975)

Ds ¼
U 2

b t b

3ð1� aÞ ; ð5:2Þ

where a is the mean value of the cosine of the angle
between successive runs. For E. coli, a ffi 0.33, Ub ffi
3 � 1025 (m s21) and tb ffi 1 (s), and we get D s ffi
4 �10210 (m2 s21) (Berg 1993). Many researchers
have also proposed biased random walk models for che-
motactic bacteria (e.g. Alt 1980; Schnitzer 1993; Bearon
2003); these mathematical models have been recently
reviewed by Codling et al. (2008) and Tindall et al.
(2008a,b). These studies showed that the spreading of
run-and-tumble bacteria in a dilute suspension can be
well described by a random walk model.

A diffusion process was also identified for bottom-
heavy algal cells in a dilute suspension. Childress
et al. (1975) analysed an anisotropic self-diffusion
tensor for bottom-heavy micro-organisms. They esti-
mated the ratio of horizontal-to-vertical self-diffusions,
and their results agreed with those of experiments invol-
ving Tetrahymena. Hill & Hader (1997) plotted the
horizontal and vertical projections of a large number
of experimentally observed individual trajectories for
the bottom-heavy alga Chlamydomonas, swimming in
a fluid with no imposed ambient flow. The cell trajec-
tories showed significant randomness, and the diffusive
process was described as a biased random walk.
Vladimirov et al. (2000, 2004) also tracked several
hundred individual Chlamydomonas and demonstrated
that cell diffusion can be described again by a random
walk model.

In the case of non-dilute suspensions of micro-organ-
isms, the hydrodynamic interactions between cells play
an important role in the spreading of cells. Ishikawa &
Pedley (2007b) carried out analytical and numerical
investigations of the self-diffusion tensor of squirmers
in a semi-dilute suspension. In order to discuss the effec-
tive diffusivity, it is convenient to calculate the mean
square displacement, which grows linearly over time if
the dispersal is diffusive. The results for the square dis-
placement as a function of elapsed time are shown in
figure 14. The square displacement increases linearly
with the squared elapsed time over short periods,
which indicates that the translational and rotational
velocities are relatively unchanged over short time
intervals. On the other hand, for sufficiently long time
intervals, both the translational and rotational square
displacements increase linearly with elapsed time.
Thus, the dispersal of squirmers can be accurately
described as a diffusive process over a sufficiently long
time interval, even though the movements of all the
individual squirmers are calculated deterministically.

Ishikawa & Pedley (2007b) also performed a scaling
analysis. The appropriate length scale between near col-
lisions may be the effective mean free path, lmfp. If we
assume that squirmers swim at a constant speed Usol
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Figure 14. Translational–rotational square displacements of
non-bottom-heavy squirmers, with b ¼ 5 and a volume frac-
tion of 0.1. When the time interval is long enough, the
square displacement and the time interval are proportional.
Filled circle, translational; open circle, rotational; dashed
line, y ¼ cx2; solid line, y ¼ cx.
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between collisions, then the typical time between col-
lisions is tmfp ¼ lmfp/Usol. Also, the volume swept out by
a squirmer in time t will be around Vp ¼ pa2Usoltmfp,
where it is assumed that anything within a cylinder of
radius a will be encountered. Thus, the number of par-
ticles within Vp is 3fUsoltmfp/4a; if this number is
assumed to be unity, we have that, in dimensionless
terms, tmfp ¼ 4/(3f). It is possible to propose scalings
with f for the magnitudes of the translational and
rotational diffusivities, DT and DR, respectively. In
the case of translational spreading, the random walk
model suggests that DT ¼ Usollmfp/3 or, in dimension-
less terms, DT ¼ tmfp/3 ¼ 4/(9f). The principal
prediction is that DT is inversely proportional to f. In
the dilute limit (i.e. as f!0), a squirmer swims at a
constant velocity, and the square displacement is
proportional to the square time interval. Thus, the
translational diffusivity diverges when f! 0, which
means that the spreading of squirmers is no longer
diffusive. This is because Ishikawa & Pedley (2007b)
assumed that the orientational change in squirmers
is caused by hydrodynamic interactions. In the
rotational case, a similar random walk model implies
that DR ¼ du2/(6tmfp), where du2 is the mean square
angular displacement during one (near-)collision. The
latter quantity should not depend on the distance
travelled between collisions and therefore should be inde-
pendent of f. Thus, this model predicts that DR/1/
tmfp/f. These predictions were confirmed by numerical
simulations.

It is also interesting to examine how bacteria spread
when a suspension shows coherent structures. Hernandez-
Ortiz et al. (2005) and Underhill et al. (2008) numerically
analysed the self-diffusion of swimming particles,
modelled as two rigidly linked beads, in a concentrated
suspension. Although the swimmers formed spatio-
temporal coherent structures (as discussed in §3.2), their
dispersion can be well described as a diffusive process
over a sufficiently long time. These studies suggest that
cell dispersal can be modelled as a random diffusion
J. R. Soc. Interface (2009)
process, and it is appropriate to introduce the self-diffu-
sion tensor in equation (5.1), as long as the macroscopic
time scales of interest are large enough compared with
the microscopic time scales for cell reorientation and
interaction.

5.2. Diffusion of tracer particles in a suspension

It is also important to understand how chemical
substances and fluid particles are dispersed in a suspen-
sion of micro-organisms. In a continuum model, the
mass-conservation equation for chemical substances
may be expressed in a manner analogous to equation
(5.1) (cf. Hill & Pedley 2005):

@c
@t
þ ðu � rÞc ¼ �r � ð�Dc � rcÞ �Kn; ð5:3Þ

where c is the concentration, Dc is the diffusion tensor
for the chemical substance and 2K is the production
rate. In much of the earlier research, Dc is assumed to
be Brownian diffusion. However, the actual diffusion
may be much greater than Brownian diffusion, since
micro-organisms agitate the suspension by generating
a micro-scale flow field around them.

Recently, Ishikawa & Yamaguchi (2008) developed
an accurate numerical technique for investigating fluid
particle motions (rather than tracer particle motions)
in a suspension of particles. They applied their
method to fluid particle motions in a suspension of
squirmers, neglecting Brownian motion. The results
for the square displacement as a function of elapsed
time are shown in figure 15. The square displacement
of a fluid particle increased linearly with the time inter-
val, when the time interval was long enough. Hence, the
dispersal of fluid particles may again be accurately
described as a diffusive process over a sufficiently long
time interval. The diffusion of the fluid particles was
not induced by Brownian motion, but rather by the
micro-scale flow field generated by the squirmers.
These findings suggest that the apparent Peclet
number for mass transport may be much smaller in a
suspension of micro-organisms than in a solvent fluid.

Some researchers have reported the diffusion of
tracer particles in a dense suspension of bacteria.
Wu & Libchaber (2000) experimentally investigated
the diffusion of inert particles in a bacterial suspension.
Specifically, they studied the effect of bacterial motion
on the diffusivity of micro-scale polystyrene beads in a
freely suspended film using a stable two-dimensional
soap film seeded with bacteria (E. coli) and micro-
scale beads; their observed diffusion constant was two
to three orders of magnitude greater than Brownian
diffusion. Kim & Breuer (2004) used E. coli to exper-
imentally investigate the enhanced diffusion of large
molecules in a bacterial suspension. They found that
the effective diffusion coefficient increased linearly as
the cell concentration increased. Since they used a
rather small volume fraction of bacteria, coherent struc-
tures might not have appeared, and the results were
thus different from those of Wu & Libchaber (2000).
Saintillan & Shelley (2008a,b) used a nonlinear kinetic
theory and computed the fluid mixing in a suspension
of self-propelled particles. They showed that convective
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heavy squirmers with b ¼ 5 and fluid particles, under the
condition that f ¼ 0.1. When the time interval is long
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mixing in such suspensions was very strong as a result
of the complex dynamics and flow instabilities that
take place. Underhill et al. (2008) carried out a numeri-
cal investigation of the diffusion of tracer particles in a
suspension of swimming particles modelled by two
rigidly linked beads. Their results also indicated that
collective motions of swimming particles dramatically
enhance the diffusion of tracer particles. These results
suggest that diffusion properties in a suspension
are strongly influenced by the collective motion of
micro-organisms.
6. CONCLUSIONS AND PROSPECTS

In this paper, we have reviewed a number of biomecha-
nical studies of pairwise interactions and collective
motions of swimming micro-organisms. Some pairwise
interactions between micro-organisms, such as
Paramecia and Volvox, are adequately explained by
mathematical and numerical models. These results
reveal the importance of biomechanics and biophysics
in understanding the behaviour of micro-organisms.
Some collective motions of micro-organisms, such as
coherent structures of bacterial suspensions, are also
satisfactorily explained by biomechanics. Others, such
as the fractal-like branching of bacterial colonies, are
mediated by both hydrodynamics and chemical signal-
ling. Although the examples of micro-organism
behaviour discussed in this paper are only the tip of the
iceberg, the fundamental knowledge we have obtained
will be useful for a better understanding of the behaviour
of micro-organisms. It will also be useful in developing
micro-machines such as micro-swimmers mimicking
micro-organisms (Dreyfus et al. 2005), bacterial
carpets to manipulate micro-particles (Darnton et al.
2004) and micro-motors pushed by micro-organisms
(Hiratsuka et al. 2006; Angelani et al. 2009).

We also discussed some of the macroscopic properties
of a suspension of micro-organisms. The swimming
motions of micro-organisms have a considerable
J. R. Soc. Interface (2009)
influence on the rheological properties of a suspension,
which affect the bulk motion of the suspension.
Interactions between micro-organisms also affect the
self-diffusion of micro-organisms. Moreover, the
mixing caused by the swimming motion of the cells sig-
nificantly enhances the diffusion of chemical substances
dissolved in the suspension. Since these macroscopic
properties are influenced by the microscopic character-
istics of the suspension (such as individual swimming
motions), they must be constructed by accurately
analysing the behaviour of individual micro-organisms.
Although the suspension properties considered in this
paper may not be sufficient, they are useful for
constructing a continuum population model for a
suspension of micro-organisms.

Biomechanics and biophysics have been successfully
employed to describe some of the behaviours of micro-
organisms and properties of suspensions. However,
many unexplained phenomena remain. One example
is the biological reaction of micro-organisms to stimu-
lations, such as chemical substances, light intensity
and gravity, referred to as taxis. Gyrotaxis of micro-
organisms is well described by simple mathematical
models (e.g. Jones et al. 1994), but further work is
required to achieve the same level of accuracy in mod-
elling chemotaxis and phototaxis. We believe that
mathematical modelling of these biological phenomena
is a key issue in understanding various types of
micro-organism behaviours. The immaturity of the
theoretical understanding of this research field calls
for theoretical physicists and biologists to continue to
work together, with advances in experiments and
related science supporting each other. Many research-
ers will undoubtedly be interested in this field and
will continue to clarify the natural beauty exhibited
by micro-organisms.

Some of the results presented in this paper were obtained in
collaboration with Prof. T. J. Pedley, University of
Cambridge, and the author appreciates his kind advice and
helpful suggestions. The author is also grateful for helpful
discussions with Prof. R. E. Goldstein and Dr J. T. Locsei
of the University of Cambridge and Prof. T. Yamaguchi of
Tohoku University.
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