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Abstract
Amyloids have traditionally been associated with misfolded protein aggregates and debilitating
neurodegenerative diseases. However, a growing number of functional amyloids have now been
described that demonstrate that amyloid formation can be an integral part of normal cellular
physiology. Functional amyloid production is highly regulated, and the resulting fibers serve a variety
of roles for the cells that produce them. A new role for amyloid as storage reservoirs for peptide
hormones within mammalian secretory granules has been discovered. More than 30 different peptide
hormones have been found to form amyloids in vitro, and both rats and mice have been shown to
store hormone amyloid deposits in secretory granules. Thus, the emerging evidence adds to the
diverse roles of amyloid and raises intriguing questions for both the peptide hormone and the
functional amyloid fields.

The amyloid protein fold is characterized by ordered β-sheet repeats arranged in a fibrous
structure in which the β strands orient perpendicular to the fiber axis. The name amyloid derives
from the original characterization by Virchow, who observed structures that stained with iodine
similar to starch (amylum in Latin) (1). The conserved amyloid structure creates a remarkably
stable protein fold that is resistant to heat and chemical treatments that normally dismantle
soluble proteins. Amyloids have several distinct biochemical properties, such as causing
birefringence of the dye Congo red (CR) and a spectral shift of the dye thioflavin T (ThT) (2,
3). They also exhibit characteristic cross–β sheet x-ray diffraction patterns. Amyloids are
thought to assemble through a conserved pathway, with soluble monomers forming ordered
oligomeric intermediate structures and finally, fibers. It has been demonstrated that, under
optimal conditions, many proteins can aggregate into amyloids, suggesting that amyloid
formation is mediated, at least in part, by peptide backbone interactions (4).

Traditionally, amyloids have been associated with protein misfolding, cellular toxicity, and
neurodegenerative diseases such as Alzheimer's and Parkinson's (5). However, several
functional amyloids have been discovered that contribute to cellular biology without causing
measurable cytotoxicity. Unlike disease-associated amyloids, functional amyloids are the
product of coordinated and regulated cellular processes that ensure that amyloidogenesis does
not result in cell damage and death (6,7). Functional amyloids were first described in microbes,
although they have now been found in many organisms, including humans (8–10) (Table 1).
Not only do functional amyloids perform key physiological functions in the cell, they also
provide a unique perspective from which to understand protein homeostasis, folding, and
misfolding. One of the best-understood functional amyloid assembly systems is curli, which
are extracellular amyloids produced by several bacterial species, including Escherichia coli
and Salmonella spp. (11). Curli are critical for biofilm formation and are thought to contribute
to bacterial pathogenesis (12–14). In curli biogenesis, an amyloidogenic major subunit protein
is nucleated into a fiber on the cell surface by a membrane-anchored minor subunit protein that
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acts as an amyloid-like template for the major subunit (15). Bacteria assemble several other
functional amyloids, including the chaplins produced by Streptomyces coelicolor to aid in
hyphae formation and spore dispersal (16,17).

Several eukaryotic functional amyloids have also been described, including functional prion-
like proteins produced by yeast and the mammalian protein Pmel17, which assists in melanin
production (10,18,19). However, our appreciation of the diversity of functional amyloids took
a giant leap forward with the discovery by Maji and co-workers (20) that peptide hormones
can be stored as amyloids in secretory granules (Fig. 1). Maji et al. identified over 30 human
peptide hormones that are stored as amyloids in secretory granules. Found in neuroendocrine
and exocrine cells, secretory granules are the home of highly concentrated protein hormones
(21). The densely packed cores of secretory granules were previously shown to consist of
protein aggregates with distinct protein structure (22). Maji and colleagues now provide
evidence that secretory granules store concentrated hormones in an amyloid conformation.

Maji et al. demonstrated the amyloid nature of peptide hormones by using a series of in vitro
and in vivo techniques. In vitro amyloid formation was initially detected in only 10 of 42
peptide hormones. However, Maji and co-workers better mimicked in vivo conditions by
adding glycosaminoglycans (GAGs) to their in vitro polymerization reactions and found that
31 peptides were then able to form amyloid fibers. GAGs have been previously shown to
accelerate amyloid fiber formation, possibly by serving as a template for fiber assembly. A
fascinating finding was that two peptides, adrenocorticotropic hormone and β-endorphin,
which are processed in the same biosynthetic pathway, were unable to form amyloid on their
own. However, these two hormones readily polymerized into amyloid fibrils when incubated
together. Additional immunohistochemistry experiments using the AtT20 mouse pituitary cell
line demonstrated that adrenocorticotropic hormone and β-endorphin colocalized, implying
these hormones are necessary for amyloid fiber formation.

Although the storage of peptide hormones as amyloids seems like an ingenious method for
stable packing of potentially aggregating peptides, the densely packed hormones must be able
to quickly release active monomers outside the cell. The authors addressed this question by
demonstrating that biologically active hormones are released from amyloid fibers. The released
monomers contain β-sheet secondary structures but are not as toxic as monomers released from
disease-associated amyloids such as β-amyloid (Aβ) (23).

The authors not only characterized the amyloid properties of these peptides in vitro, but also
provided direct evidence that secretory granules in vivo contain hormones in the amyloid form.
AtT20 cells could make secretory granules that contained hormones in an amyloid state, as
measured by an amyloid-specific antibody (24), CR staining, and ThT binding. Also, secretory
granules purified from rat pituitary glands and immunohistochemical staining of mouse
pituitary tissue showed the presence of hormones in amyloid form. There was almost complete
colocalization between thioflavin S, another amyloid-specific dye, and several hormone-
specific antibodies, strongly implying that these secretory granules isolated from mammals are
composed of hormones stored in an amyloid configuration.

The results presented by Maji et al. add another chapter to the rapidly growing story of
functional amyloids. The use of the amyloid configuration for storage of highly concentrated
peptide hormones in densely packed aggregates is reasonable, considering the stability that the
amyloid structure might afford peptide hormones. However, the presence of large amyloid
deposits in human tissues and organs is still somewhat difficult to rationalize, given the
extensive neuronal damage caused by amyloids associated with Alzheimer's and Parkinson's
diseases. Because proper protein folding and cellular protein homeostasis must be maintained,
the cell must have exquisite control of functional amyloid formation. This control is achieved
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by a number of mechanisms. First, protein hormones must be cleaved from a prohormone or
require additional molecules to initiate amyloid packing, allowing the cell greater control of
the timing of this process. Second, these amyloids are sequestered in secretory granules and
are released only upon stimulation. Third, the results presented by Maji et al. also raise the
intriguing possibility that hormone amyloids are slightly less toxic than those associated with
disease. Therefore, functional amyloids are not necessarily incongruent with the amyloid
hypothesis, which suggests that amyloidogenesis is cytotoxic. Functional amyloids may have
simply evolved to be spatially and temporally controlled by cellular machinery so as to
minimize the opportunity for interactions with membranes or other cellular components that
may lead to toxicity. Understanding the similarities and differences between functional and
disease-associated amyloids will undoubtedly provide unique insights into the development of
next-generation amyloid therapies.

The findings by Maji et al. are not the only observations that link amyloidogenesis and secretory
vesicles. The Aβ peptide precursor can also be cleaved in vesicles within cells (25).
Additionally, islet amyloid polypeptide (IAPP) is known to form amyloid fibrils in β-secretory
granules, which is the underlying cause of type II diabetes (26). There is even a pharmacological
link between secretory granules and amyloidogenesis, as the antimalarial drug chloroquine and
a polyphenol derived from tumeric, curcumin, can inhibit secretion of hormones and amyloid
formation (27–29). However, the physiological relation between functional and disease-
associated amyloidogenesis remains unresolved and ripe for future investigations. Because
amyloidogenesis can have cytotoxic consequences if it occurs at the wrong time or place,
understanding the fate of newly released soluble peptide hormones will also be important.
Elucidating the dynamic structural aspects of the hormone as it is released from the secretory
vesicle and moves into the bloodstream will add to our knowledge of hormone protein folding
and its relationship to cellular signaling. This work has provided exciting new evidence for
how a functional amyloid can be used to store peptide hormones and enhances the
understanding of both hormone storage and functional amyloid fields.
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Fig. 1.
Amyloid storage of peptide hormones. Maji et al. found that 31 out of 42 peptide hormones
fold into an amyloid configuration in vitro. From an in vivo perspective, secretory granules
purified from AtT20 cells and rat pituitary contained peptide hormones in an amyloid-like
structure. Moreover, immunostaining of mouse pituitary with several peptide hormones found
that the peptide signal colocalized with the amyloid-specific dye thioflavin-S. Their results
suggest a model where peptide hormones are stored in the secretory granules as amyloid fibers.
Some peptide hormones form amyloid fibrils spontaneously (A), whereas other peptides form
amyloid fibrils when coincubated with another peptide hormone (B) or with GAGs (C). Upon
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hormone release, the amyloid fibers are broken down by an unknown mechanism to soluble
peptides, which are then secreted.
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Table 1

Functional amyloids in bacteria and eukaryotes (1,7,30).

Bacteria Eukaryotes

Curli (9) Sup35 (8)

Microcin E492 (31) Ure2p (34)

Chaplins (32) Hydrophobins (35)

Harpins (33) HET-s (36)

Pmel17 (10)

CPEB (cytoplasmic polyadenylation element-binding protein) (37)

Mot3 (19)
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