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Abstract

Differentiation programs are aberrant in cancer cells allowing them to express differentiation markers in addition to their
tissue of origin. In the present study, we demonstrate the multi-lineage differentiation potential of breast cancer cell lines to
express multiple neuronal/glial lineage-specific markers as well as mammary epithelial and melanocytic-specific markers.
Multilineage expression was detected in luminal (MCF-7 and SKBR3) and basal (MDA-MB-231) types of human breast cancer
cell lines. We also observed comparable co-expression of these three cell lineage markers in MDA-MB-435 cells in vitro, in
MDA-MB-435 primary tumors derived from parental and single cell clones and in lung metastases in vivo. Furthermore,
ectoderm multi-lineage transdifferentiation was also found in human melanoma (Ul-MeL) and glioblastoma cell lines (U87
and D54). These observations indicate that aberrant multi-lineage transdifferentiation or lineage infidelity may be a wide
spread phenomenon in cancer.
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Introduction

Cancer diagnosis of the tissue origin of metastatic lesions,

especially those from occult primary tumors, relies heavily on the

expression of cellular or tissue differentiation markers. Emerging

clinical and pre-clinical evidence show that the differentiation

programs are aberrant in cancer cells allowing them to express

differentiation markers beyond their tissue of origin [1–3]. These

observations have implications for both cancer research and

clinical management of cancer. However, this property has not

been thoroughly examined in human cancer cell lines that are

frequently used in cancer research.

A microarray analysis has indicated that the gene expression

pattern of the human MDA-MB-435 [4] resembles that of human

melanoma cell lines [5]. Since then, additional evidence has shown

the ability of MDA-MB-435 cells to express melanocytic markers [6–

8]. However, upon induction with heregulin in vitro, MDA-MB-435

cells undergo sufficient mammary epithelial differentiation to

produce milk lipid droplets and to express b-casein mRNA [9].

Additionally, enhanced expression of NM23-H1 metastasis suppres-

sor gene leads to the formation of organized mammary acinus-like

sphere in 3D culture and the expression of sialomucin (epithelial

membrane antigen, EMA) [10]. A recent investigation confirmed the

ability of MDA-MB-435 cells to co-express markers of mammary

epithelium and melanocytes both in vitro and in vivo, and postulated

committing lineage infidelity as an underlying mechanism for the

observed dual lineage transdifferentiation [11]. Furthermore,

another recent study reported the robust expression of melanocyte-

related genes in a variety of breast cancer cell lines including MDA-

MB-435, and more importantly in freshly resected and histopath-

ologically confirmed human breast cancer specimens [12].

Here, we report the expression of multiple neuronal/glial

lineage-specific markers by MDA-MB-435 cultured cells in vitro

and in primary tumors and lung metastases in vivo in addition to

the reported expression of epithelial and melanocytic markers.

Furthermore, we observed the co-expression of three ectoderm cell

lineage markers in other luminal (MCF-7 and SKBR3) and basal

(MDA-MB-231) types of human breast cancer cell lines, as well as

in human melanoma and glioblastoma cancer cell lines generated

from tumors of ectoderm origin.

These observations indicate that while terminal differentiation

to the anticipated cellular type is compromised in the cancerous

state, aberrant multi-lineage transdifferentiation or lineage infi-

delity may be a wide spread in cancer phenomenon.

Materials and Methods

Cell culture
The MDA-MB-435s, MDA-MB-231, MCF-7 and MCF-10A

cell lines were obtained from ATCC (Manassa, VA). SKBR3 cells

PLoS ONE | www.plosone.org 1 March 2010 | Volume 5 | Issue 3 | e9712



were gifts from Dr. Suzanne Conzen, University of Chicago. Ul-

Mel, U87, and D54 were from gifts from Dr. Ralph Weichsel-

baum, University of Chicago. All cells were cultured in DMEM

high glucose (Hyclon, Logan, Utah) supplemented with 10% FBS

and 1% penicillin/streptomycin. MDA-MB-435-GFP derivative

cell lines were generated from single cell cloning through initial

seeding of single cells in 96-well plates and subsequent expansion

of cell numbers. MDA-MB-435-GFP-L cell lines were generated

from resected lungs that harbor pleural metastases derived from

tail-vein injected MDA-MB-435-GFP cells and purified using

G418 for the selection of GFP expression.

PCR analysis of lineage markers expression
Total RNA was isolated using TRIZOL (Applied Biosystems

Inc. Foster City, CA) according to the manufacturer’s instructions,

followed by DNAse treatment (Promega, Madison, WI). cDNA

was reverse transcribed from 2 mg of total RNA using random

primer method (Applied Biosystems Inc.) according to the

manufacturer’s instructions. PCR amplification was performed

by incubation at 94uC for 1 min, followed by 32 cycles of 94uC for

30 s, 55uC for 30s, and 72uC for 25s. Amplified products were

separated and visualized on a 0.8% agarose gel. TBP was used as a

loading control.

The sequence for the primer sets used are as follows: Nestin (F:

aacagcgacggaggtctcta; R: ttctcttgtcccgcagactt), EMA (F: tcccag-

caccgactactacc; R: cagctgcccgtagttctttc), ESA (F: ggaagctgagtgcaa-

gaagg; R: gctgcacaacctcaatctca), TRY (F: tacggcgtaatcctggaaac; R:

attgtgcatgctgctttgag), Melan-A (F: gctcatcggctgttggtatt; R: ataag-

caggtggagcattgg), MITF (F: aactcatgcgtgagcagatg; R: tacttggtgg-

ggttttcgag), GFAP (F: acatcgagatcgccacctac; R: atctccacggtcttcac-

cac), TUBB3 (F: cagatgttcgatgccaagaa; R: gggatccactccacgaagta),

CK19 (F: tttgagacggaacaggctct; R: aatccacctccacactgacc), CK17

(F: gctgctacagctttggctct; R: tcacctccagctcagtgttg), and TBP (F:

tataatcccaagcggtttgc; R: cacagctccccaccatattc).

Immunofluorescence analysis of differentiation marker
expression in cultured cells

Five thousand unlabeled cells were plated in each chamber of 8-

well chamber slides (BD) and grown for 48 hours. Cells were fixed

with buffered formalin, permeabilized with 0.3% Triton X-100/

PBS, blocked with 10% goat serum (Vector S-1000)/PBS and

incubated with primary antibodies diluted in 2%BSA/16PBS for

1 hour: ESA (Anaspec, San Jose, CA) (1:100), melan-A (DAKO,

Carpinteria, CA) (1:100), Nestin (Abcam, Cambridge, MA) (1:250)

and GFAP (R &D, Minneapolis, MN) (1:100). Thereafter, cells

were incubated with Alexa 488-conjugated secondary antibodies

(Molecular Probes) for 30 min, followed by mounting with Prolong

Gold antifade reagent containing DAPI for nuclear counter-

staining. Slides were photographed with a Leica SP-2 confocal

microscope and images were processed with image J.

Immunohistochemistry (IHC) analysis of differentiation
marker expression in cultured cells, primary tumors, and
lung metastases

All animal studies were carried out according to protocols

approved by the IACUC Committee at the University of Chicago.

Six-week-old female athymic Ncr/nu/nu mice (NCI-Frederick), 18

to 20 g, were used. For orthotopic tumor implantation, 56106

cultured MDA-MB-435 cells suspended in 0.1 ml of PBS were

injected into the left inguinal mammary fat pad (m.f.p.). Tumors

were harvested upon reaching ,200 to 250 mm3, fixed in

formalin and embedded in paraffin. To produce experimental

lung metastases, 16106 cultured MDA-MB-435-GFP cells,

suspended in 0.1 ml of PBS, were injected into the mouse tail

vein. Twelve weeks later, mouse lungs were dissected and fixed in

formalin and embedded in paraffin. The tumor and lung blocks

were cut into 5-mm paraffin sections. For IHC analysis, tissue

sections were deparafinized, rehydrated followed by antigen

retrieval and treated with 3% hydrogen peroxide to block

endogenous peroxidase activity. 1:100 dilution of cytokeratin

(DAKO, M3515), 1:100 dilution of melan-A (DAKO M7196),

1:100 GFAP (R & D System), and 1:500 dilution of Nestin

(Abcam, ab5968) were applied to the tissue slides and incubated

for one hour. Envision+anti-mouse system was used for antigen-

antibody detection. The slides were counter-stained with hema-

toxylin, air dried, and examined under light microscopy.

Results and Discussion

MDA-MB-435 cell lines derived from lung metastases
exhibit morphology of neuronal/glial differentiation

We generated an MDA-MB-435 cell line stably expressing

green fluorescent protein (GFP) [13] and have been using this

model routinely to produce experimental lung metastases for

conducting in vivo imaging experiments (data not shown). We

subsequently established MDA-MB-435-GFP sub-lines (MDA-

MB-435-GFP-L) from pleural metastases harvested 12 weeks after

tail vein injection of MDA-MB-435-GFP cells. In contrast to the

spindle-shaped parental MDA-MB-435-GFP cells (Figure 1A and

E), three representative MDA-MB-435-GFP-L cell lines displayed

Figure 1. MDA-MB-435 lung cell lines derived from lung
metastases display neuronal/glial differentiation morphology.
A and E, parental MDA-MB-435-GFP cells. B–D and F–H, three
representative MDA-MB-435-GFP-L cell lines exhibit morphological
features of well-differentiated neuron/glial cells.
doi:10.1371/journal.pone.0009712.g001
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morphological features of differentiated neuron/glial cells such as

the presence of polygonal soma (cell body), extended dendrites and

axons, and cell-cell communication at synapses (Figure 1 B–D
and F–H). Similar changes were also seen in non-GFP-labeled

parental MDA-MB-435 cells freshly obtained from ATCC and in

MDA-MB-435-GFP cell cultures set up at low seeding density

(data not shown). Exhibition of diverse neuronal morphological

features by MDA-MB-435 and MDA-MB-435-GFP-L cells lead us

to hypothesize that in addition to undergoing aberrant melano-

cytic transdifferentiation, MDA-MB-435 cells are also capable of

undergoing neuronal/glial-lineage transdifferentiation.

mRNA transcripts of neuronal/glial, epithelial and
melanocytic differentiation markers are co-expressed by
MDA-MB-435 and other breast, melanoma and
glioblastoma cancer cell lines

Subsequently, we determined the expression of epithelial (ESA)

and mammary epithelial (EMA, CK19, CK17) differentiation

markers by RT-PCR analysis. In addition to the ER2/PR2/

HER22 MDA-MB-435 cells, we also included the ER+/PR+

luminal MCF-7 human breast cancer cell line (Figure 2, lane 2),

the ER2/PR2/HER2+ luminal SKBR3 human breast cancer line

(lane 3), and the highly metastatic basal ER2/PR2/HER22

MDA-MB-231 (lane 4) breast cancer cell line as representatives of

the major clinical subtypes of human breast cancer [14]. The

immortalized MCF-10A cell line derived from normal basal

mammary epithelium was chosen as a non-malignant control for

comparison (Figure 2, lane 1). As expected, both the normal and

malignant mammary epithelial cell lines expressed the epithelial

markers EMA (epithelial membrane antigen, also known as MUC-

1) and ESA (epithelial specific antigen) [Figure 2(I), lanes 1–5].

While MCF-10A cells abundantly express the basal epithelial

marker cytokeratin 17 (CK17) [Figure 2(I), lane 1], CK17 was

weakly expressed by basal metastatic MDA-MB-231 cancer cells

[Figure 2(I), lane 4], and was largely absent in MDA-MB-435

cells [Figure 2(I), lane 5]. However, the basal marker CK17 was

detected in luminal MCF-7 cells [Figure 2(I), lane 2]. In

comparison to CK17 expression, the luminal epithelial differen-

tiation marker cytokeratin 19 (CK19) was expressed at high levels

by luminal MCF-7 and weakly by SKBR3 cells [Figure 2(I),
lanes 2–3]. CK19 was also expressed by MDA-MB-231 cells

[Figure 2(I), lane 4] but was absent in MCF-10A non-malignant

cells and in MDA-MB-435 cancer cells [Figure 2(I), lanes 1

Figure 2. PCR analysis of mRNA expression of neuronal/glial, epithelial and melanocytic differentiation markers in vitro. Expression of
epithelial (I), melanocytic (II) and neuronal/glial markers (III) by MCF-10A normal mammary epithelial cells (lane 1), breast cancer cell lines (lane 2–5),
melanoma (lane 6), and glioblastoma cells (lane 7 and 8). TBP is used as a loading control.
doi:10.1371/journal.pone.0009712.g002
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and 5]. The lack of expression of both CK17 and CK19 epithelial

differentiation markers in cultured and non-induced MDA-MB-

435 cells is consistent with its characterization as a poorly

differentiated cancer cell line [4]. These results demonstrate that

the expression of luminal and basal epithelial differentiation is

aberrant in human breast cancer cell lines.

Thereafter, we determined the expression of three melanocytic

differentiation markers (MITF, melan-A and tyrosinase) in breast

cancer cell lines. We included human melanoma cell line Ul-MeL

as a positive control for this analysis (Figure 2, lanes 6).

Consistent with previous reports [3,6–8], all three melanocytic

markers were expressed by MDA-MB-435 cells [Figure 2(II),
lane 5]. The expression of all or a sub-set of the three markers was

also detected in MCF-7, SKBR3 and normal MCF-10A cells

[Figure 2(II), lanes 1–3]. Weak but detectable expression of

MITF and melan-A was seen in MDA-MB-231 cells, and

tyrosinase (TYR) was nearly absent in MDA-MD-231 cells

[Figure 2(II), lane 4]. As anticipated, Ul-MeL melanoma cells

express all three melanocytic markers [Figure 2(II), lanes 6].

Consistent with observed morphology of neuronal/glial cell

differentiation (Figure 1A, B), two neuronal markers, nestin and

b3-tubulin, were robustly expressed by all four-breast cancer cell

lines including MDA-MB-435 cells [Figure 2(III), lanes 2–5].

In contrast, their mRNA expression was much lower in non-

malignant MCF-10A cells [Figure 2(III), lane 1]. Nestin and

b3-tubulin mRNA transcripts were also detected in the two

metastatic human glioblastoma cell lines U87 and D54

[Figure 2(III), lanes 7–8]. The glial cell marker GFAP mRNA

transcript was only detected in SKBR3 and MDA-MB-231 cells

[Figure 2(III), lanes 3–4]. While we failed to detect GFAP

mRNA expression in cultured MDA-MB-435, U87 and D54 cells

[Figure 2(III), lanes 5, 7–8], we observed abundant specific

GFAP protein expression in these cell lines by immunofluorescent

(IFC) and immunohistochemistry (IHC) analyses (Figure 3).

These observations demonstrate that co-expression of multi-

lineage differentiation markers, including epithelial, melanocytic

and neuron/glial occurs in human breast cancer cell lines. Similar

findings were observed in MDA-MB-435-GFP, MDA-MB-435-

GFP-L cell lines and in MDA-MB-435-GFP cell lines derived from

expansion of a single MDA-MB-435-GFP cell (data not shown).

Thus, expression of melanocytic and neuronal/glial differentiation

markers in our analysis could not be due to contamination of the

MDA-MB-435 culture stock we used in this study with either

melanoma or glioblastoma cancer cells.

To confirm our novel findings on neuronal/glial differentiation

based on RT-PCR analyses, we conducted IFC and IHC analyses

of the protein expression of lineage markers in cultured MDA-MB-

435 cells (Figure 3). Consistent with the lack of cytokeratin mRNA

Figure 3. Determination of protein expression of lineage markers in cultured MDA-MB-435 cells. A, immunofluorescence staining of
epithelial (ESA), melanocytic (melan-A) and neuronal/glial markers (GFAP and nestin) in cultured MDA-MB-435, U87 glioblastoma and Ul-Mel
melanoma cancer cell lines. B, immunohistochemistry staining of lineage markers in embedded MDA-MB-435 cells. AE1/AE3: pan-cytokeratin
epithelial marker.
doi:10.1371/journal.pone.0009712.g003
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expression in MDA-MB-435 cells [Figure 2(I), lane 5], we failed

to detect pan-cytokeratin protein expression in embedded MDA-

MD-435 cells by IHC staining (Figure 3B). Compared to the Ul-

MeL melanoma cell line that expressed high levels of melan-A

(Figure 3A), the protein expression level of this melanocytic

differentiation marker was considerably lower in MDA-MD-435

and U87 cells (Figure 3A). In contrast, cultured MDA-MB-435

cells strongly expressed both GFAP and nestin proteins. Similar

patterns of IHC staining of GFAP and nestin were observed

(Figure 3). The discrepancy between mRNA and protein

expression of cytokeratin and GFAP could be due to differences

in mRNA stability among genes analyzed. This observation

highlights the importance of using multiple complementary analyses

for drawing conclusions from gene expression assessment.

Further, we also observed aberrant transdifferentiation or

lineage infidelity in the Ul-MeL melanoma cell line that co-

expresses epithelial and neuronal markers [Figure 2(I) (III),
lanes 6], and in two glioblastoma tumor cell lines that co-express

epithelial and melanocytic markers [Figure 2(I) (II), lanes 7–8].

These findings indicate that terminal differentiation to the

anticipated cellular type is altered in the cancerous state and that

the phenomena of lineage infidelity that is associated with the

ability of cancer cells to transdifferentiate, occurs in different

cancer types and is not limited to breast cancer.

Co-expression of multi-lineage protein markers in
MDA-MB-435 primary tumors and metastases

To further confirm that the expression of epithelial, melanocytic

and neuronal/glial markers in MDA-MB-435 cells is not due to an

artifact of cell culture, MDA-MB-435 primary tumors growing

orthotopically in the mammary fat pad (m.f.p) of nude mice and

pleural macro- and micro-metastases of MDA-MB-435 were

utilized for the analyses of the expression of three cellular lineage

markers by IHC (Figure 4 and Methods). We consistently

observed more robust and consistent MDA-MB-435 tumor growth

(higher tumor cell take rate, initiation of tumor growth, higher

level of tumor angiogenesis and higher incidence of lung

metastasis) at the m.f.p, than when MDA-MD-435 was trans-

planted under the skin of the hind leg or on the back. These

observations demonstrate that the m.f.p represents a more

favorable microenvironment for MDA-MB-435 tumor initiation,

expansion and progression, consistent with its ability to undergo

mammary epithelial differentiation [9,14]. While cultured MDA-

MB-435 cells were negative for AE1/AE3 staining for pan-

Figure 4. Determination of protein expression of lineage markers in MDA-MB-435 xenografts and in metastatic lesions.
Immunohistochemical detection of epithelial (AE1/AE3, ESA), melanocytic (melan-A), and neuronal/glial markers (GFAP, nestin) in orthotopic
mammary fat pad tumors, and mammary duct differentiation (H&E) (A), pleural lung macrometastases (B) and lung micrometastases (C, arrows).
doi:10.1371/journal.pone.0009712.g004
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cytokeratin [Figure 2(I), lane 5], MDA-MB-435 primary

tumors exhibited weakly positive staining for AE1/AE3

(Figure 4A) and strong staining for ESA. This observation is

consistent with a previous report [11]. Additionally, we also

observed evidence of mammary duct differentiation at the

periphery of MDA-MB-435 tumors (Figure 4A, H&E panel).

Similar to IFC, IHC and PCR analyses in vitro, both the orthotopic

primary tumor and macro/micro lung metastases displayed

intense and homogenous expression of nestin and GFAP

(Figure 4). In contrast, strong melan-A staining was only detected

in discrete clusters of cancer cells within the primary tumor

(Figure 4A).

Based on the close clustering of MDA-MB-435 cells with

melanoma cell lines in microarray analysis [5], the possibility of

the breast cancer patient, from whom MDA-MB-435 was derived

from, having an undetected occult melanoma was suggested.

However, cell lines generated from breast tumors and from non-

small lung carcinoma used in the same micro-array study also

failed to yield a clear clustering pattern according to their tissue of

origin. In particular, two other invasive breast cancer cell lines,

Hs578T and BT-549 were clustered together with brain tumor cell

lines, a finding that is consistent with our detection of neuronal

and glial differentiation markers in breast cancer cell lines.

Further, a recent report demonstrated a wide spectrum of

expression of melanocyte-related genes in histologically confirmed

human breast tumor specimens [3]. It thus appears that aberrant

co-expression of multi-lineage markers via transdifferentiation or

lineage infidelity occurs frequently in breast cancer. Therefore,

molecular signatures derived from gene expression profiling should

not be used as exclusive evidence or criteria to determine the tissue

origin of a cancer cell line or a metastatic lesion from an occult

primary tumor. Functional properties such as in vitro functional

characterization of cellular differentiation (acinus formation in 3D

gel culture, production of milk products upon induction of lineage-

specific differentiation), in vivo tumor growth and progression

should all be taken into account when we consider the

classification of a human cancer cell line.

We have demonstrated in this report the co-expression of three

ectoderm cell lineage differentiation markers by a panel of breast

cancer cell lines, by MDA-MB-435 cells obtained from the ATCC,

by cell lines derived from single-cell cloning of MDA-MB-435 and

MDA-MB-435 cells derived from lung metastases grown in vitro;

and as well as by MDA-MB-435 orthotopic primary tumors and

lung metastases in vivo. It is thus highly unlikely that this cell line

was contaminated by both melanoma cells and neuron/glial

cancer cells, or that the breast cancer patient from whom MDA-

MB-435 cells were derived also had an undiagnosed melanoma

and undiagnosed glioblastoma.

In conclusion, our observations indicate that aberrant multi-

lineage transdifferentiation or lineage infidelity occurs frequently

in multiple types of human cancer and may be a wide spread

phenomenon.
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