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Abstract

Background: Psoriasis is one of the most frequent skin diseases world-wide. The disease impacts enormously on affected
patients and poses a huge financial burden on health care providers. Several lines of evidence suggest that the nuclear
hormone receptor peroxisome proliferator activator (PPAR) b/d, known to regulate epithelial differentiation and wound
healing, contributes to psoriasis pathogenesis. It is unclear, however, whether activation of PPARb/d is sufficient to trigger
psoriasis-like changes in vivo.

Methodology/Principal Findings: Using immunohistochemistry, we define the distribution of PPARb/d in the skin lesions of
psoriasis. By expression profiling, we confirm that PPARb/d is overexpressed in the vast majority of psoriasis patients. We
further establish a transgenic model allowing inducible activation of PPARb/d in murine epidermis mimicking its distribution
in psoriasis lesions. Upon activation of PPARb/d, transgenic mice sustain an inflammatory skin disease strikingly similar to
psoriasis, featuring hyperproliferation of keratinocytes, dendritic cell accumulation, and endothelial activation. Development
of this phenotype requires the activation of the Th17 subset of T cells, shown previously to be central to psoriasis. Moreover,
gene dysregulation in the transgenic mice is highly similar to that in psoriasis. Key transcriptional programs activated in
psoriasis, including IL1-related signalling and cholesterol biosynthesis, are replicated in the mouse model, suggesting that
PPARb/d regulates these transcriptional changes in psoriasis. Finally, we identify phosphorylation of STAT3 as a novel
pathway activated by PPARb/d and show that inhibition of STAT3 phosphorylation blocks disease development.

Conclusions: Activation of PPARb/d in the epidermis is sufficient to trigger inflammatory changes, immune activation, and
signalling, and gene dysregulation characteristic of psoriasis.
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Introduction

Psoriasis is one of the most frequent skin diseases world-wide,

affecting appr. 2% in Caucasian, and 1% in African populations

[1]. The disease represents a life-long affliction of affected patients.

About 60% of psoriasis patients suffer from moderate to severe

disease, i.e. more than 10% of the body surface area is covered by

psoriatic plaques [2]. These patients are largely excluded from

participation in activities involving public skin exposure due to

stigmatization. Moreover, they exhibit increased rates of depres-

sion and alcohol consumption causing secondarily increased

mortality [3,4]. Besides high direct treatment-related costs,

absence from work-related indirect cost is enormous [5] and lack

of employment is attributed to the disease in one-third of psoriasis

patients [6]. Thus, psoriasis does not kill, but it impacts

enormously on those affected and poses a huge financial burden

on health care providers worldwide.

Among psoriasis patients, the prevalence of metabolic syndrome

is increased [7] and an increased body mass index is a strong risk

factor for psoriasis [8]. Although the molecular mechanisms

underlying this association are unknown, it likely involves the

existence of overlapping signalling pathways in psoriasis and other

disorders of metabolism and chronic inflammation. The nuclear

hormone receptor peroxisome proliferator activator (PPAR) b/d
has well established roles both in metabolism and in the skin. On

the one hand, PPARb/d is a key regulator of adipogenesis and

glucose metabolism [9]. On the other hand, it regulates

keratinocyte differentiation [10]. The PPAR subfamily of nuclear

hormone receptors also includes PPARa (target of fibrate class

lipid lowering drugs) and PPARc (target of the rosiglitazone-family

of anti-diabetes drugs), all of which form heterodimers with the

RXRa subunit of retinoid receptors and require binding of ligands

in order to bind cognate promoters and transactivate distinct set of

target genes. All three isoforms have been extensively reviewed

PLoS ONE | www.plosone.org 1 March 2010 | Volume 5 | Issue 3 | e9701



elsewhere (e.g. [11]). Table S9 lists selected information on ligands.

Several lines of evidence support a role for PPARb/d in psoriasis.

It is upregulated in psoriatic skin [12,13], induced by TNFa
[14,15], stimulates proliferation and blocks apoptosis in keratino-

cytes [16], and induces angiogenesis [17], all of which is consistent

with a disease-promoting role in psoriasis. Thus, induction of

PPARb/d in the context of metabolic dysregulation might

underlie the observed clinical association of psoriasis with

metabolic disease.

PPARb/d represents an isoform of the peroxisome – prolif-

erator activator receptor subfamily of nuclear hormone receptors.

The inflammatory patches of psoriasis exhibit a number of

characteristic properties which are important clues to the

underlying pathogenesis. Macroscopically, they are inducible by

wounding or other mechanical skin trauma, indicating that

challenges to the skin barrier trigger specific response pathways.

Histologically, they are marked by increased keratinocyte

proliferation, as well as a block in terminal differentiation.

Accordingly, markers of late differentiation, including fillagrin,

are decreased [18]. Besides keratinocyte biology, psoriasis is

marked by complex pattern of immune system activation,

including expansion of CD11c+ dendritic cells [19], upregulation

of interferon signalling, and influx of T cells. Specifically, the Th17

subset of T cells has recently emerged as central for the disease

[20]. In addition, endothelial cells are activated, bactericidal

proteins accumulate, and a variety of soluble mediators are

overexpressed (reviewed in [21]). Finally, the IL12/23p40 gene,

the IL23 receptor, the b-defensin locus, as well as the HLA-C

region harbour genetically predisposing variants [22], suggesting

that quantitative differences in immune response pathways affect

disease penetrance.

The combination of proliferative changes and a distinctive

immune response pattern in psoriasis has long been recognized for

its similarity to the wound response. Thus, like wound response

pathways, the development of inflammatory psoriasis plaques are

triggered by mechanical skin trauma, as well as infection.

Therefore, in many respects psoriasis represents a proliferative

wound response failing to terminate, suggesting the existence of

molecular feed-forward circuits fuelling a vicious circle. In this

regard, too, the upregulation of PPARb/d is notable since it is an

important regulator of the wound response [10].

We report here that PPARb/d activation is sufficient to trigger a

skin disease replicating many elements of psoriasis. Our findings

identify PPARb/d as a molecular link between metabolism,

keratinocyte differentiation, and the epidermal immune response.

Results

Overexpression of PPARb/d in psoriasis
We and others have previously shown that PPARb/d is

overexpressed in psoriasis. In order to independently confirm

those results, we re-analyzed two publicly available large gene

expression datasets, totalling 58 paired lesional and non-lesional

skin samples, for the expression of all PPAR isotypes. As shown in

figure 1a, both data sets confirm highly significant upregulation of

PPARb/d in psoriatic skin whereas both PPARa and PPARc are

downregulated, consistent with the notion that PPARb/d acts

antagonistically to PPARc in psoriasis, as previously proposed

[12]. Furthermore, we localized the site of maximal PPARb/d
accumulation in the skin by immunohistochemistry. As shown in

figure 1b, PPARb/d is found in the cytosol of the lower epidermis

both in normal skin and psoriasis. By contrast, strong nuclear

Figure 1. Overexpression of PPARb/d in psoriasis. A. Fold-change of mRNA expression of PPARb/d (black columns), PPARa (shaded), and PPARc
(white) between lesional and non-lesional skin. Data shown represent mean 6 s.d. from the GAIN dataset (left, n = 30) and the GSE14905 dataset
(right, n = 28). p,1023 for all data points shown. For each PPAR isoform, the probe yielding the highest hybridization signal was used to calculate the
data shown (probesets 37152_at, 226978_at, 208510_at, respectively). B. Nuclear accumulation of PPARb/d in suprabasal epidermis in psoriasis skin
lesions. Representative immunohistochemistry of paraffin-embedded lesional (left) and control (middle) skin samples stained with anti-PPARb/d, as
well as staining control (right). Magnification 2006.
doi:10.1371/journal.pone.0009701.g001
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expression in the upper spinous layer was only seen in psoriasis.

This pattern was highly reproducible (found in all eight lesional

skin samples examined, figure S1a). These data confirm that

upregulation of PPARb/d is a consistent feature of psoriasis and

define the suprabasal epidermis as major site of its activation.

Targeting PPARb/d expression to suprabasal skin in mice
in vivo

In mice, PPARb/d is not expressed in inter-follicular epidermis

beyond the postnatal period [23]. To model the suprabasal

expression of PPARb/d observed in psoriasis in humans, we

initially intended to target transgenic PPARb/d expression using a

‘‘conventional’’ promoter active in suprabasal epidermis, e.g. the

involucrin promoter. However, a transgenic line expressing

PPARb/d under the control of the rat CYP1A1 promoter was

already available, and turned out to afford skin-specific PPARb/d
activation, as follows. The CYP1A1 promoter allows expression

induced by the aryl hydrocarbon receptor (AhR) [24]. This

promoter activity is mediated by a well-documented so-called

‘‘DXE/XRE’’ sequence cluster conferring responsivity to AhR

[25]. In order to bind to the DXE/XRE cluster, the AhR must first

be ligand-activated, which can be achieved by employing specific

synthetic chemicals such as indole-3-carbinole (I3C). However, even

in the absence of AhR activation and binding to the CYP1A1

promoter, a EGFP reporter gene placed under the control of the

CYP1A1 promoter was found to be constitutively and strongly

active in skin-associated sebaceous glands [26]. We were able to

identify a G/C rich enhancer element most likely responsible for

this sebaceous-specific expression, since this element had previously

been shown to direct strong sebacous-gland specific expression in

the keratin 5 promoter [27]. Indeed, a screen of the GEO database

showed this G/C element to be highly conserved in the promoters

of multiple genes belonging to the top 10% of all genes expressed in

sebaceous glands (fig. 2a, bottom). Not surprisingly then, the

CYP1A1 promoter also conferred high constitutive sebaceous-

specific expression of PPARb/d in the absence of AhR activation

(figure 2b). Human, rather than murine PPARb/d, was chosen as

transgene to facilitate subsequent drug screening applications. We

next observed that, unexpectedly, administration of the highly

selective PPARb/d-agonist GW501516 to the chow of PPARb/d-

transgenic mice induced subsequent additional expression of the

PPARb/d-transgene in the epidermis (fig. 2c). Thus, functional

activation of PPARb/d expressed at high level in the sebaceous

glands causes secondary transgene expression in the epidermis.

(RT-PCR analysis of PPARb/d -transgene expression revealed a

borderline-detectable expression in whole-skin samples, consistent

with the sebaceous glands forming a small minority of all skin

associated cells, Figure S8). It is known that ligand-mediated

activation of PPARb/d in the sebaceous gland triggers sebocyte

differentiation [28,29] and delivery of sebum to the skin [30],

containing lipoxygenase-derived bioactive lipids that can bind and

activate the AhR, such as LXA4 or 5,6-DiHETE [31,32]. Once

ligand-bound, the AhR is then able to transactivate the expression

of the CYP1A1-controlled PPARb/d transgene in the epidermis via

the AhR-responsive DXE/XRE element (shown in fig. 2d). In

confirmation of this proposed mechanism, the transcriptional

induction of the CYP1A1-controlled PPARb/d transgene in the

epidermis could be replicated by direct topical cream application of

the AhR ligand indole-3-carbinole (I3C) to the skin (I3C, fig. 2e).

Furthermore, expression of transgenic PPARb/d was epidermis-

specific and was not detectable in dermal fibroblasts, endothelia,

skin – associated T cells, or any other organ screened, including

intestine, muscle, liver, spleen (Fig. S1b), confirming that activation

of AhR only occurred in the skin. Taken together, use of the rat

Cyp1A1-driven expression of PPARb/d and ligand-mediated

activation by the specific PPARb/d agonist GW501516 promoter

affords a tightly controlled epidermis-specific inducible expression of

PPARb/d. Although we have not identified the endogenous AhR

ligand(s) mediating secondary induction of the transgene in the

epidermis, the net effect is a distribution and expression level of

PPARb/d rather similar to that observed in human psoriasis (fig. 2f).

Psoriasis-like skin disease in PPARb/d transgenic mice
As early as seven days after initiation of PPARb/d - activation

by GW501516 (GW), scaling, inflammation, and skin thickening

was notable in all mice (figure 3a–c). Skin roughening (‘‘hyper-

keratosis’’) and concomitant hair loss was maximal in regions

subjected to mechanical friction, such as abdomen (fig. 3b, S2), the

paws (fig. 3a), or the chin (fig. S2). While psoriasis-like plaques also

developed on the back in some mice (fig. 3c), changes on the dorsal

skin were mostly limited to scaling (fig. S2). Thus, the overall

distribution of skin changes suggest that mechanical friction

contributes a trigger effect similar to that characteristic of psoriasis.

Histology showed epidermal thickening (fig. 3e), dilation of dermal

vessels (black arrowhead), and abundant lymphocytes (white

arrowheads). Moreover, Ki67 staining demonstrated massive

hyperproliferation in the basal layer of the epidermis (fig. 3g).

All of these changes are highly similar to those found in psoriasis.

In contrast to psoriasis, the granular layer was prominent (fig. 3f,

white arrowhead), consistent with the known effect of PPARb/d
on epidermal differentiation [33]. In order to exclude that AhR

activation as such contributed to the development of skin disease,

we also administered the AhR ligand I3C in the chow at a very

high concentration (0.5% w/w) in the absence of GW501515

administration, which did not induce a skin phenotype. Likewise,

skin disease could be effectively replicated by topical cream-based,

instead of systemical, application of GW501516 + I3C to the skin,

but not by I3C alone (fig. 3h), consistent with the observation that

I3C induces transcription of the CYP1A1-driven PPARb/d
transgene (fig. 2e), but does not activate it. Finally, C57Bl/6j wild

type mice fed GW501516 did not exhibit skin changes. Thus, the

psoriasis-like skin disease in PPARb/d transgenic mice is triggered

solely by activation of PPARb/d overexpressed in the skin, but not

by endogenous murine PPARb/d.

Immune system activation and involvement of Th17 cells
in PPARb/d dependent skin disease

In order to further explore overlaps of the skin phenotype in

PPARb/d transgenic mice with psoriasis, we next characterized

immunological changes after disease induction. As shown in

figure 4a, there was a massive influx of CD4+ T cells into the

dermis and, to a lesser extend, of CD8+ T cells into the epidermis.

CD11c+ dermal dendritic cells were abundant, while CD11c+
epidermal Langerhans cells were not found. Activation of

endothelial cells was also evident by staining with CD31. All of

these changes are highly consistent with those typical of psoriasis.

Co-immunofluorescence studies revealed that the PPARb/d
transgene was not found in either endothelial cells or dermal

dendritic cells (fig. S3), further confirming that the skin disease in

PPARb/d transgenic mice is driven by expression of the transgene

in suprabasal epidermal keratinocytes, but not other cell types.

Th17 cells are required, but not sufficient, for phenotype
development

Since the Th17-subset of T cells is of central importance in the

immune activation of psoriasis, we next quantified these cells using

intracellular FACS analysis. Indeed, Th17-cells, marked by

PPARb/d in Psoriasis
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expression of IL17, were significantly expanded in the psoriasis-

like plaques of PPARb/d mice, whereas the Th1 subset, marked

by IFNc+ expression, was not (fig. 4b,c). A small, but statistically

significant expansion of IL17+ cells was also noted in peripheral

lymphoid organs upon GW501516 stimulation (fig. S4). To assess

the requirement of Th17 cells for PPARb/d - mediated skin

disease, we depleted them in vivo by intraperitoneal injection of

anti-IL12/23p40, analogous to the monoclonal antibody (usteki-

numab) used to treat psoriasis. We extended this experiment to

include the effect of injection using anti-TNFa. Blockade of TNFa

is an established treatment for psoriasis. Since TNFa itself induces

PPARb/d expression [14], blocking of TNFa- should not be able

to completely abrogate skin phenotype development in PPARb/d-

transgenic mice since PPARb/d expression is enforced down-

stream of TNFa in this model. As shown in fig. 4d, treatment with

anti-IL12/23p40, but not with anti-TNFa, effectively suppressed

expansion of Th17 cells in GW501516-treated PPARb/d
transgenic mice, verifying that the treatment had the expected

effect. Strikingly, Th17-depletion caused a significant reduction of

disease severity, as shown in fig. 4e and S5. By contrast, the effect

Figure 2. Inducible expression of PPARb/d in mouse epidermis. A. Cis-regulatory elements in the rat CYP1A1 promoter used to drive
inducible expression of human PPARb/d. Upper panel: Map of the sebaceous – specific G/C-box element and the AHR – responsive DXE/XRE cluster in
the cyp1A1 promoter as well as the human human K5 promoter. Bottom panel: ClustalW alignment of promoters identified by a BLAST search using
the 20 bp G/C element of the Cyp1A1 promoter. All of the genes shown were found in the top 10% percentile of all transcripts expressed in human
sebaceous glands (GDS3215 at the NCBI GEO website www.ncbi.nlm.nih.gov/geo/). B. Immunohistochemistry using anti-PPARb/d of mice transgenic
for human PPARb/d driven by the rat CYP1A promoter (PPARb/d TG), as well as wild type mice. Magnification 2006C. Immunohistochemistry of skin
samples from PPARb/d transgenic mice taken before, or 48 h after after initiation of PPARb/d activation by oral administration of the synthetic ligand
GW501516 in the chow; (inset in ‘‘48 h’’: 4006); d. schematic illustrating the mechanism regulating constitutive expression of transgenic PPARb/d
driven by the rat CYP1A1 promoter in sebaceous glands, as well as delayed PPARb/d expression in the epidermis after ligand-mediated activation of
PPARb/d e. PPARb/d immunohistochemistry 48 h after topical cream application of indole-3-carbinole (I3C) to the skin of PPARb/d transgenic mice at
4006 (right) magnification. f. Immunohistochemistry of PPARb/d in the skin of PPARb/d - transgenic mice after seven days of feeding of the PPARb/d
ligand GW501516 in the chow (left) and in human psoriasis skin (right).
doi:10.1371/journal.pone.0009701.g002
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of anti-TNFa was much less pronounced, as expected. Thus, Th17

cells are required for full disease expression in PPARb/d
transgenic mice. In order to clarify whether they are sufficient to

trigger disease development, we performed adoptive transfer of

splenocytes from PPARb/d transgenic mice with active disease to

wild-type mice, which had previously been depleted of endogenous

CD4+ cells. This treatment failed to induce any skin phenotype

even after GW501516 administration to the recipient mice.

Moreover, when GW501516 was administered to naı̈ve wild type

C57Bl/6j mice, they did exhibit a modest increase of Th17 cells in

peripheral organs (fig. S4), indicating that endogenous murine

PPARb/d also stimulates Th17 cell expansion. Wild type mice did

not, however, develop skin disease. Thus, Th17 cells are required,

but not sufficient for development of psoriasis-like disease in

PPARb/d transgenic mice, although we cannot rule out that their

presence in the skin in high numbers might allow disease

development.

Psoriasis-like gene dysregulation in PPARb/d transgenic
mice

Although psoriasis lesions are complex, involving various cell

types and a multitude of dysregulated genes, the observed changes

in gene expression are remarkably reproducible between different

patients. This is demonstrated by the tight correlation between two

large independent expression profiling datasets (Fig. S6), thus

yielding a consistent psoriasis-specific pattern of global gene

dysregulation. We studied to what extent this pattern is reflected in

PPARb/d mice. As shown in figure 5a, most of the top 50 genes

upregulated in lesional skin of PPARb/d mice were found

congruently upregulated in human psoriasis. Quantitative real-

time-PCR of selected genes confirmed that the changes observed

by microarray-based expression profiling were reproducible (figure

S7). Indeed, 56% of all upregulated and 33% of all downregulated

genes in PPARb/d mice were found congruently regulated in

psoriasis, respectively (figure 5b, clusters I and VI). Conversely,

appr. 30% of all genes dysregulated in human psoriasis were found

to be regulated congruently in PPARb/d mice (table S3). Geneset

Enrichment analysis (GSEA) independently confirmed a highly

significant enrichment of those genes upregulated in psoriasis

(defined as gene-set) in lesional skin of PPARb/d mice (figure 5c).

Only two small subsets of genes (8.3% of all, clusters III and IV)

displayed inverse regulation between psoriasis and PPARb/d
mice. When analysing the functional profile of these, we observed

that cluster III, containing genes upregulated in PPARb/d mice

but downregulated in psoriasis, was enriched for markers of late

epidermal differentiation (e.g. FLG, PCDH21), indicative of cells

in the so-called granular layer, which is prominent in PPARb/d
mice (fig. 3f) but absent in psoriasis. Cluster IV, containing genes

upregulated in psoriasis but downregulated in PPARb/d mice, was

highly enriched for interferon-signalling (fig. 5b, table S3), where

we were able to identify the mechanism underlying this

discrepancy (see below). Taken together, expression profiling

Figure 3. Skin phenotype in PPARb/d TG mice twenty days after GW501516 (GW) administration for twenty days. (a–c) Gross
morphology, (d–e) H&E histology of control mice not treated with GW (d), or fourteen days after induction (e–g). Magnification 2006(d,e) or 4006(f).
The white arrowhead in (f) denotes the granular layer. (g) Immunostaining for Ki67 of skin from PPARb/d TG mice maintained in the absence (left) or
presence (right) of GW. Magnification 2006. (h) Induction of skin disease by topical application of either 0.3% of indole-3-carbinole (I3C, left) or I3C
plus 0.3% GW501516 once daily to shaved abdominal skin. Gross macroscopic phenotype (top) and H&E histology of treated skin (bottom) was
documented 10 days after beginning of treatment.
doi:10.1371/journal.pone.0009701.g003
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Figure 4. Immune activation in PPARb/d-mediated skin disease. (a) Immunohistochemistry for CD4, CD8, CD11c, and CD31 (Pecam 31) of skin
from PPARb/d transgenic mice maintained in the absence (top) or presence of GW501516. Magnification 2006, (b) flow cytometry analysis showing
intracellular FACS-staining for IFNc and IL17 of skin cells (gated for CD4) from wild type and PPARb/d transgenic mice maintained in the presence or
absence of GW501516, respectively. Numbers in quadrants indicate frequency of positive cells, (c) frequency of CD4+IL17+ of IL17+ cells (expressed as
percent of all CD4+ gated cells) in PPARb/d transgenic and C57Bl/6 wild type mice maintained in the presence or absence of GW501516 (n = 4 per
group), as determined by flow cytometry. * p,0.01; ** p,0.001, (d) frequency of CD4+IL17+ Th17 cells (left y-axis, black columns) and ratio of IL17+

and IFNc+ cell frequencies (righ y-axis, grey columns) in the skin of PPARb/d mice maintained in the absence or presence of GW501516 with or
without i.p. injection of anti-TNFa, or aIL12/23p40 (n = 4, see Methods), (e) disease severity, expressed as mean 6 s.d., assessed by the degree of
erythema, thickening, scaling, and hair loss (see Methods, representative photographs of mice on day 19 post induction are shown in figure S6) in
PPARb/d transgenic mice GW501516 – containing chow with or without additional intraperitoneal injection of anti-TNFa or aIL12/23p40 (anti-IL12).
* p,0.01, ** p,0.001 (treatment vs. control).
doi:10.1371/journal.pone.0009701.g004
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Figure 5. Congruent gene dysregulation in PPARb/d mice and psoriasis. (a) Fold-change between the lesional skin of PPARb/d mice after
administration of GW501516 and control mice (n = 3 per group), and between lesional and non-lesional skin samples from psoriasis obtained through
the GAIN (I) and the GSE14905 (II) datasets, respectively, as detailed in Methods. Red: FC .1.5, Green: FC ,0.8. Shown are the top 50 upregulated
genes. The complete dataset is given in table S1. (b) Heat map showing all genes dysregulated in GW501516-fed PPARb/d mice (n = 1077), clustered

PPARb/d in Psoriasis
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confirms a large overlap in gene regulation between psoriasis and

the skin disease in PPARb/d mice, strongly suggesting that the

phenotype similarities described above are not a phenocopy but

involve overlapping signalling pathways.

PPARb/d-dependent regulation of specific pathways
When extending analysis of gene expression to functional

processes, we found that processes concordantly regulated in

psoriasis and PPARb/d transgenic mice included lipid-metabo-

lism, differentiation, and proliferation (table S4), which confirmed

the expected, given the known activity profile of PPARb/d.

Likewise, the complete set of genes involved in cholesterol

biosynthesis was strongly co-upregulated (fig. 5d, table S6), as

were a number of proliferation-associated kinases (table S8).

Unexpectedly, however, both the human and the murine datasets

exhibited a highly consistent upregulated IL1-signalling module,

which, remarkably, not only includes pro-inflammatory transcripts

but also the anti-inflammatory components IL1F5, and the IL1-

receptor antagonist (fig. 5e, table S7). Importantly, wild type

C57Bl/6 mice administered GW501516 did not exhibit these

changes (table S1), but did show the expected upregulation of

genes involved in lipid metabolism (table S5), thereby confirming

that the observed induction of IL1-signalling was triggered by the

transgene rather than endogenous murine PPARb/d. These

results strongly suggest that a number of transcriptional programs

known to be dysregulated in psoriasis are regulated by PPARb/d.

Critical role of STAT3 in PPARb/d dependent skin disease
STAT3 is phosphorylated in psoriasis [34], as well as in a

wound-response type model of psoriasis induced by serum

response factor-deficiency [35]. Accordingly, we analyzed STAT3

activation in PPARb/d mice. Tyr-705 phosphorylation of STAT3

was markedly increased in lesional skin of PPARb/d transgenic

mice (figure 6a) and localized to the nuclei of suprabasal cells in

the epidermis (figure 6b). Moreover, inhibition of STAT3

phosphorylation by the JAK2 inhibitor WP1066 led to a marked

attenuation of skin disease, demonstrating the relevance of this

pathway for the development of clinical disease, further demon-

strating the overlap in pathogenesis between psoriasis and the

current model (figure 6c).

STAT3 activation mediates suppression of
interferon-target genes

As described above, the single group of genes upregulated in

psoriasis but downregulated in PPARb/d mice were the interferon

response genes (fig.5b, cluster IV). Strikingly, precisely this set of

genes was previously shown to be repressed by STAT3 in vivo

(fig. 6d, dark shaded columns). We therefore hypothesized that the

notable repression of interferon-response genes in the skin of

PPARb/d transgenic mice with skin disease was mediated by

activation of STAT3. Indeed, repression of STAT3 activation by

use of the JAK2 inhibitor significantly blocked the down-

regulation of one of the most repressed transcripts, IFI27 (fig. 6e).

This STAT3-dependent effect was specific to interferon-response

genes, since the dysregulation of another inflammatory pathway,

exemplified by IL1b, remained unaltered by STAT3 inhibition

(fig. 6e). These data show the inhibition of IFN signalling in

PPARb/d transgenic mice is mediated by STAT3 as part of what

has previously been termed the ‘‘anti-inflammatory response’’

[36].

Discussion

We here show that PPARb/d is activated in the upper

epidermis of human psoriatic skin and that recapitulation of this

event in mice is sufficient to elicit major elements of psoriasis.

PPARb/d transgenic mice exhibit not only down-stream immu-

nological changes but also psoriasis – specific gene dysregulation,

thereby defining subsets of genes regulated by PPARb/d in

psoriasis. Although the current transgenic model exhibits impor-

tant differences to psoriasis (see below) and cannot recapitulate all

features of a polygenetic disease, it does thus indicate that

activation of PPARb/d in the upper spinous layer of the epidermis

initiates a number of inflammatory and immunological changes

seen in psoriasis.

One major implication of the present results is that they suggest

a molecular explanation for the clinical overlap between psoriasis

and metabolic, as well as cardiovascular disease [37]. Thus,

PPARb/d expression is increased in chronic inflammation and

regulated by caloric intake [38,39]. Specifically, factors such as

TNFa which are known to directly induce PPARb/d expression

are increased in the chronic inflammation accompanying

metabolic syndrome [40]. Therefore, obesity, chronic inflamma-

tion, and dyslipidemia may increase the penetrance of psoriasis by

inducing PPARb/d expression. Conversely, it is tempting to

speculate that weight reduction or correction of other PPARb/d -

inducing factors leads to suppression of PPARb/d expression in

the skin, thus dampening disease severity. This may well be a

contributory factor in the clinical observation that the response to

low-dose cyclosporin, an established psoriasis treatment, is

improved in psoriasis patients undergoing weight loss [41].

The role of PPARb/d in inflammation has been extensively and

controversially studied, several papers suggesting anti-inflamma-

tory properties (e.g. [42]), while others find that it stimulates pro-

inflammatory cytokine synthesis including IL-8 and IL1b in

macrophages [43]. Here, we show that, in the skin, PPARb/d
induces a specific IL-1 signalling ‘‘module’’ both in human

psoriasis and in PPARb/d transgenic mice. This module includes

pro-inflammatory mediators such as IL1b, which is known to

stimulate Th17 differentiation [44], and IL1F8, which stimulates

pro-inflammatory mediators in fibroblasts [45], but also anti-

inflammatory cytokines such as IL-1F5, which actually inhibits

inflammatory skin disease [46], as well as the IL1 receptor

antagonist (IL1RA). The latter has recently been shown to be a

direct target of PPARb/d [47] and to be upregulated in psoriasis

[48], thereby corroborating our findings. Thus, the PPARb/d -

mediated induction of IL1-family cytokines in psoriasis defies a

by congruence with psoriasis. Color codes for –fold change are indicated. The genes in all clusters are detailed in table S2. (c) gene-set enrichment
analysis (GSEA), performed using the top 500 genes upregulated in psoriasis lesions from the GSE14905 dataset (top), or the GAIN dataset (bottom),
as genesets, respectively, and the complete mouse array collapsed to single genes as expression dataset. Analysis was run with 100 permutations and
a classic statistic, NES = normalized enrichment score. The blue-red lines on the bottom represent heat-map of human genes found to be
upregulated (blue on top) or downregulated in the mouse set. (d) Induction of cholesterol biosynthesis, conjugation, and channeling by PPARb/d.
Red: upregulated in psoriasis and PPARb/d transgenic mice, blue: upregulated only in PPARb/d transgenic mice. Shaded boxes: repressed by Foxo1.
(e) Induction of IL-1 signalling by PPARb/d. Datasets and color codes are as in (a). ‘‘n.s.’’: p.0.01; ‘‘--’’: fold change between 0.8–1.2., blue print: anti-
inflammatory. * gene located within the IL1 cluster on chr. 2q between 113.2–113.7 Mb. (IL1F7 has only been identified in homo sapiens and bos
taurus, the closest homologue in mice is IL1F5.).
doi:10.1371/journal.pone.0009701.g005

PPARb/d in Psoriasis

PLoS ONE | www.plosone.org 8 March 2010 | Volume 5 | Issue 3 | e9701



PPARb/d in Psoriasis

PLoS ONE | www.plosone.org 9 March 2010 | Volume 5 | Issue 3 | e9701



simplified concept of purely ‘‘pro-‘‘ or ‘‘anti-’’ inflammatory.

Clearly, these results would signal some caution regarding the

proposed use of PPARb/d agonists to treat a variety of conditions

[49].

We here identify activation of STAT3 as a novel pathway

targeted by PPARb/d. PPARb/d activation evidently causes

psoriasis-like disease not solely through STAT3 activation since (i)

the phenotype is not completely reversed by inhibition of STAT3

and (ii) overexpression of STAT3 alone causes a less widespread

psoriasis-like phenotype with a much longer latency [34].

Regarding the mechanism of STAT3 activation, STAT3 can be

phosphorylated by a number of kinases. Of these, at least two

appear to be involved. First, the two EGF-family ligands TGFa
and HB-EGF, previously identified as a direct transcriptional

target of PPARb/d [12], are highly upregulated in PPARb/d as

well as in psoriasis, suggesting that EGF-receptor activation

contributes to STAT3 phosphorylation. Second, PTK6 kinase,

which also phosphorylates STAT3 [50], is the most highly

upregulated kinase in psoriasis and PPARb/d mice (table S8).

Thus, at least two kinase pathways converge on STAT3

phosphorylation both in psoriasis and PPARb/d mice.

An obvious difference between the skin disease induced by

activation of PPARb/d and psoriasis in humans is the regulation

of IFN signalling. While IFN response genes are strongly induced

in psoriasis they are repressed in PPARb/d transgenic mice. On

the other hand, subsequent downstream events, including CD4+
and CD8+ T-cell influx, endothelial activation, dendritic cell

accumulation, as well as Th17 activation are all recapitulated

preserved in this model. Therefore, the present data suggest that

upregulation of interferon response genes is not, as commonly

assumed, required for sustained disease. Furthermore, while the

upregulation of IFN response genes could be taken for granted in

the milieu of a wound-response, our data show that they should

actually be repressed by the so-called anti-inflammatory response

mediated by STAT3 [36,51]. Their continuous upregulation

despite STAT3 activation suggests the existence of as yet to be

identified factors actively inhibiting STAT3 repression of IFN

target genes (schematically shown in fig. 6f).

Psoriasis is a genetically determined disease and genomic

variants at the PPARb/d genomic locus have not so far been

associated with psoriasis. Although this might be regarded as

evidence against a role for PPARb/d in psoriasis, our data clearly

show that overexpression of PPARb/d in psoriasis skin lesions is a

common phenomenon occuring in the vast majority of psoriasis

patients (fig. 1). Thus, upregulation of PPARb/d appears to occur

downstream of individually variable genomic risk, offering a

potential target for treatment relevant for most patients.

Apart from interferon response genes, the other major

difference in gene expression between psoriasis and the phenotype

in PPARb/d mice is terminal epidermal differentiation, which is

blocked in psoriasis, but increased in the mouse model, which

confirms the established pro-differentiation activity of PPARb/d
[52] and the fact that it triggers differentiation in wound healing

[28,53]. In psoriasis, on the other hand, late epidermal differenta-

tion is disturbed and the skin barrier disrupted. Based on the data

presented here, one may speculate that the suppression of terminal

differentiation and the block in skin barrier repair, aggravated by

genomic risk alleles such as the recently described LCE3 variant

[54], act as stimuli to maintain sustained upregulation of PPARb/

d in the upper epidermal layers. The net effect would be the

establishment of a vicious cycle, schematically shown in fig.6f,

which is able to account for the chronic persistent course typical of

psoriasis.

In conclusion, we here identify a central role for PPARb/d in

the pathogenesis of psoriasis and identify IL1 and STAT3

signalling as novel pathways regulated by PPARb/d. Our data

suggest novel approaches to psoriasis treatment. Finally, our results

underscore that PPARb/d activation as a treatment strategy for

metabolic diseases might harbour the risk of pro-inflammatory

effects or autoimmune activation.

Methods

Ethics Statement
All work involving animals was approved by the Tayside Ethics

Committee. Storage and use of all tissues included in the work

presented here was approved by the Tayside Committee on

Medical Research Ethics B (REC ref. Nr. 07/S1402/90).

PPARb/d immunohistochemistry
Paraffin-embedded samples were obtained from the Tayside

Tissue bank. Prior to biopsy, patients gave written consent to

storage and analysis of biopsy samples. Sections from paraffin

embedded tissue (nominally 4 microns thick) were cut onto

superfrost plus slides (VWR International Ltd) and dried for

1 hr at 60 uC before being de-paraffinised in Histoclear

(National Diagnostics) and then rehydrated through a graded

alcohol series. 10 mM Citric acid buffer, pH 6.0 was used as

standard microwave-based antigen retrieval methods. Sections

were microwaved in a pressure cooker for 15 min before being

immunostained on a DAKO autostainer using VectastainH
ABC kits (Vector Labs) according to the manufacturer’s

protocol. Briefly, sections were blocked in either normal goat,

rabbit or horse serum containing 10%(v/v) from stock avidin

solution (Vector Labs) for 20 min followed by 1 hr incubation

with anti-PPARb/d (R&D, PP-K9436) at 1:100 overnight at

4uC for human samples (incubation for 1 h at room tem-

perature yielded comparable results.), and 1:1000 for mu-

Figure 6. Activation of STAT3 by PPARb/d. (a) Western blot of whole skin samples from two GW501516-treated (GW) and two control PPARb/d
transgenic mice, respectively, probed with anti phospho-STAT3 (top) and anti-STAT3 (bottom) along with anti-GAPDH loading controls (top-band of
the STAT3 doublet represents STAT3a, bottom-band STAT3b, respectively), semi-quantitative densitometry performed using ImageJ is included on
the bottom, (b) immunofluorescence with anti phospho-STAT3 of GW-treated skin (upper left), upper right: same with DAPI counterstain to verify
nuclear localisation, bottom left: control stain performed in the presence of blocking peptide, lower right: PPARb/d transgenic mouse not treated
with GW. White dashed lines mark the dermo-epidermal bounday; all samples at 4006magnification. * = hair shaft (c) H&E histology of skin from
GW-treated (left panel), untreated (middle), GW-treated mice concurrently receiving intraperitoneal injections of the STAT3 inhibitor WP1066 (right)
at 2006magnification, (d) fold change of genes previously shown to be repressed by activated STAT3 (dark grey columns, data taken from [56]) and
their regulation in GW501516-fed vs. control PPARb/d transgenic mice (white), lesional vs. non-lesional skin from psoriasis patients in the GSE14905
(black), as well as the GAIN (light grey) datasets, respectively. * denotes genes that are not contained in cluster IV (table S2) since they did not meet
the p,0.01 cut-off. (e) Taqman-based qPCR of IFI27 and IL1b from whole skin of untreated (black columns), GW-fed (white), and GW-fed + WP1066-
injected PPARb/d mice (grey), respectively (n = 3 mice per group), * p,0.05; (f) schematic illustrating the PPARb/d /STAT3 /IL-1 pathway identified
here, the role of PPARb/d in maintaining chronically active psoriasis, as well as disease-enhancing role of predisposing genomic risk alleles. The box
on the upper left lists factors known to trigger both PPARb/d induction as well as clinical psoriasis flares.
doi:10.1371/journal.pone.0009701.g006
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rine samples. Sections were washed 36 for 15 min in TBS,

pH 7.6, followed by anti-mouse-biotin, antibody for 30 min

followed by Vectastain Elite ABC reagent for another 30 min.

Liquid Diaminobenzidine (DAB) (DAKO) was applied for

5 min and sections were counterstained with Mayer’s haema-

toxylin.

H&E histology
Paraffin-embedded samples were heated for 15 minutes.

Samples were treated with 3 washes of Xylene, followed by a

series of graded alcohol washes. Samples were washed with water

followed with staining with Harris’ Haematoxylin. Wash 2 with

water. Samples incubated in 0.1% acid alcohol for 1 minute

followed by a 3rd wash with water. Samples were then incubated in

STWS for 1 minute followed by a 4th wash with water. Samples

stained with Shandon Eosin for 30 seconds followed by a 5th wash.

Samples were re-hydrated with a series of graded alcohol washes

followed by 3 washes with Xylene. Sections were mounted with

DPX.

Generation of PPARb/d transgenic mice
PPARb/d transgenic mice were generated by cloning full-length

human PPARd downstream of the human CYP1A1 promoter.

Plasmids encoding human PPARd were prepared as follows. The

PPARd coding sequence was amplified using primers PRMG15

(59-CTAGTCTAGAATGGAGCAGCCACAGGAGGAAGC-39)
and PRMG3 (59-CTAGTCTAGATTAGTACATGTCCTTG-

TAGATCTCCTG-39), respectively (XbaI-sites underlined, ATG

start codon in bold). PCR products were cleaved with XbaI and

cloned in plasmid pUHD10-3 (M. Gossen, unpublished, Genbank

accession number U89931) creating pMGD7 (PPARd). The

integrity of the inserts was confirmed by sequencing and cleaved

out using BamHI and ligated into plasmid pAHIR1-b-gal (Camp-

bell, 1996} cleaved with BglII, resulting in the plasmid pMGD72

(PPARd). Proper insert orientation was confirmed by restriction

endonuclease analysis and sequencing. Transgenic mice were

generated by microinjection of the expression unit (NotI fragment)

of the plasmid pMGD72 into pro-nuclei of C57BL/J6 x CBA F1

fertilized eggs. Mice were maintained under standard animal

house conditions.

Disease induction
PPARb/d mediated skin disease was induced either by

administration of powdered standard RMI-chow containing

0.003% GW501516 (w/w, custom – synthesized by AF-Pharma-

ceuticals, UK, to $98% purity), or topical application of 0.3% (w/

w) GW501516 in 10% (w/w) DMSO in Hydromol ointment

(Alliance, UK); for topical induction, control mice received 10%

DMSO in Hydromol.

Flow cytometry and intracellular measurement of IL17
Skin samples were shaved, trimmed of associated fat, cut to

appr. 10–15 mm3 size using a scissor, incubated in 2 mg/ml

collagenase IV (Roche, cat-nr. 110880855001), 1.1 U/ml dispase I

(Roche, cat-nr. 04942086001) in HBSS for 309 at 37uC.

Subsequently, samples were incubated in RPMI incl. Pen/Strep

and 10% FCS, 0.5 mg/ml PMA, 0.5 mg/ml ionomycin for 3 h.

For the last hour, Brefeldin A was added at 2 mg/ml. Surface and

intracellular staining for CD4-FITC (Pharmingen, clone RM4-4),

CD8-PerCP/Cy5.5b (Pharmingen, 53–6.7), IFNc-APC (Pharmin-

gen, cat-nr. 554413), and IL17-PE (Pharmingen, cat-nr. 559502)

and analysis on a FACS-Calibur was done according to standard

procedures.

TNFa and IL-12 antibody treatment
70 mg of anti-TNFa (Millipore, cat-nr 05-168), anti-IL12/

23p40 (BioLegend, Clone C17.8, cat-nr. 505304), or PBS,

respectively, were injected on three times per week, beginning

on day 1 of GW501516 administration. Mice were sacrificed on

day 22 for tissue analysis. For disease severity, erythema, scaling,

palpable hyperkeratosis, and hair loss were scored as absent (0),

weak (1), moderate (2), or severe (3), respectively, and the sum

calculated for index regions (chin, forepaws, abdomen) chosen in

order to allow hand-held analysis of mice during on-going

treatment.

Expression profiling was performed as detailed in the supporting

information (Method S1).

Western blot STAT3, P-STAT3
Nuclear extracts were made using the NE-PER kit (Pierce).

Protein concentration was determined by Bradford assay. 40 mg of

protein loaded per well, subjected to SDS-PAGE gel and

transferred to nitrocellulose membrane. Primary antibodies:

1:1000 dilution of Phospho-Stat3 (Tyr705) Antibody (New

England BioLabs UK, 9131S) and 1:1000 dilution of anti-Stat3

(New England BioLabs UK, 9132) followed by HRP– conjugated

anti-rabbit Ig, ECL Plus (GE Healthcare, Amersham), and

detection using a CCD camera.

Immunofluorescence P-STAT3
5 mm thick sections of snap-frozen skin were fixed in methanol,

followed by incubation with anti-Phospho-Stat3 (Tyr705) (D3A7)

(New England Biolabs UK, 9145S) with or without blocking

peptide (New England Biolabs UK, 1195) for 1 hour at RT.

Secondary antibody was Alexa FluroH 488 donkey anti-rabbit IgG

(H+L) (Invitrogen). Coverslips were mounted using ProLongH
Gold antifade reagent with DAPI (Invitrogen, Cat.no.: P-36931).

Treatment with WP1066
WP1066 (Calbiochem, order-nr 573097) was dissolved in

DMSO/PEG 600 (20/80) according to [55] at 1.25 mg/ml. Mice

were injected with WP1066 or vehicle at 75 ml intraperitoneally

three times a week.

Supporting Information

Table S1 Synopsis of dysregulated genes in PPARb/d trans-

genic mice and psoriasis. Sheet ‘‘Changed in PPARd mice’’: all

genes found dysregulated in PPARd mice, as detailed in the file

Method S1. Sheet ‘‘PPARd mice vs psoriasis’’: all genes

dysregulated in PPARb/d mice (orange shaded cells) that are also

present on the two gene expression sets representing psoriasis

(green shaded cells). FC = fold change lesional vs. non-lesional

(psoriasis), or induced vs. non-induced (PPARb/d transgenic

mice).

Found at: doi:10.1371/journal.pone.0009701.s001 (0.65 MB

XLS)

Table S2 Clustering of genes dysregulated in PPARb/d
transgenic mice. The table contains all 1077 genes listed in the

synopsis between dysregulated genes in PPARb/d transgenic mice

and psoriasis, color-coded as up- (red/orange) or down- regulated

(light-green/dark green), as shown in Figure 5b.

Found at: doi:10.1371/journal.pone.0009701.s002 (0.17 MB

XLS)

Table S3 Concordance of gene dysregulation between psoriasis

and PPARb/d transgenic mice.
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Found at: doi:10.1371/journal.pone.0009701.s003 (0.03 MB

DOC)

Table S4 Genes concordantly regulated between PPARb/d
transgenic mice and psoriasis, listed for the functional categories

lipid-metabolism, differentiation, and cell-cycle.

Found at: doi:10.1371/journal.pone.0009701.s004 (0.23 MB

DOC)

Table S5 Genes induced by the PPARb/d agonist GW501516

in the skin of C57Bl/6 wild type mice.

Found at: doi:10.1371/journal.pone.0009701.s005 (0.06 MB

DOC)

Table S6 Expression of genes involved in cholesterol biosynthe-

sis in PPARb/d transgenic mice and psoriasis.

Found at: doi:10.1371/journal.pone.0009701.s006 (0.07 MB

DOC)

Table S7 Interleukin-1 related genes in PPARb/d transgenic

mice and psoriasis.

Found at: doi:10.1371/journal.pone.0009701.s007 (0.09 MB

DOC)

Table S8 Expression of kinase genes in PPARb/d transgenic

mice and psoriasis.

Found at: doi:10.1371/journal.pone.0009701.s008 (0.04 MB

PDF)

Table S9 PPAR isoforms and ligands.

Found at: doi:10.1371/journal.pone.0009701.s009 (0.06 MB

DOC)

Method S1 Expression profiling.

Found at: doi:10.1371/journal.pone.0009701.s010 (0.80 MB

DOC)

Figure S1 (a) Immunohistochemistry of PPARb/d in a panel of

eight paraffin-embedded samples from psoriasis skin lesions,

counterstained with hematoxilin. The inset in the right upper

panel in addition demonstrates expression in dermal fibroblasts

and endothelial cells. Magnification 2006 in each case. (b)

Immunohistochemistry of PPARb/d in PPARb/d- transgenic

mice treated with GW501516 for seven days, counterstained with

hematoxilin. Panels in lower row were taken fom slides stained

with secondary antibody only. Magnification 2006 for all panels.

Found at: doi:10.1371/journal.pone.0009701.s011 (3.17 MB TIF)

Figure S2 Macroscopic changes in PPARb/d transgenic mice

upon ligand-mediated activation of PPARb/d by administration of

the ligand GW501516 in the chow. Pictures shown were taken 14

(left) or 20 days (middle, right) after disease induction. Note the

sharp demarcation of hyperkeratosis on the abdomen (middle).

Panel on upper right represents illustrates the scalp, exhibiting

heavy scaling, but no marked erythema.

Found at: doi:10.1371/journal.pone.0009701.s012 (1.79 MB TIF)

Figure S3 Confinement of PPARb/d transgene expression to

suprabasal epidermal keratinocytes. Co-immunofluorescence with

anti-PPARb/d visualized with Alexa288 and either CD11c,

visualized with TexasRed, was performed as described in

Methods. The white dashed line indicates the dermo-epidermal

boundary. Magnification 4006.

Found at: doi:10.1371/journal.pone.0009701.s013 (1.93 MB TIF)

Figure S4 Expansion of Th17 cells upon activation of PPARb/

d. PPARb/d transgenic mice were maintained in the presence

(black columns) or absence (dark shaded) of GW501516, as were

C57Bl6/j wild type (light shaded: GW; white: control) and Th17

cell frequencies determined by intracellular FACS, as described in

Methods. Data show mean 6 s.d. of Th17 cells (top), as well as the

ratio between IL17+ and IFNc+ cells (bottom) in the lymphocyte

gate for n = 3 mice per group. * p,0.05.

Found at: doi:10.1371/journal.pone.0009701.s014 (0.21 MB TIF)

Figure S5 Inhibition of PPARb/d-mediated skin disease by

depletion of Th17 cells. PPARb/d transgenic mice were maintained

in the absence (control) or presence (all other groups) of GW501516

and additionally treated by injection of either anti-IL12/23p40, or

anti-TNFa, as described in Methods. Pictures shown were taken

nineteen days after disease induction. Mice were manually

restrained to allow for comparable positioning during photography,

thereby causing artificial tightening of abdominal skin.

Found at: doi:10.1371/journal.pone.0009701.s015 (5.20 MB TIF)

Figure S6 Reproducibility of gene dysregulation in psoriasis.

Fold-change of gene expression between lesional and non-lesional

skin in two independent datasets. The left panel shows all genes,

the right panel all genes significantly upregulated (p,0.001) in

both datasets. R2 = 0.93 for both panels. The dashed line indicates

theoretically equal up-regulation in the two datasets. Both datasets

were obtained using the same platform (using the Affymetrix

HU133 Plus 2.0 array). The dataset from the GAIN cohort was

obtained from the dbGaP website (www.ncbi.nlm.nih.gov/sites/

entrez?db = gap). The CEL files are also available at the GEO

website of NCBI (GEO dataset GSE13355). In the initial release,

whole-skin expression profiles from paired lesional/non-lesional

samples of 31 psoriasis patients were available which was used for

the present analysis. The CEL files containing the dataset

GSE14905 (n = 28 patients) were also downloaded from the

GEO website. The data show the extend of reproducibility of gene

dysregulation across patients and also indicate that -fold changes

obtained with the GSE14905 dataset are consistently slightly

higher than those observed in the GAIN data.

Found at: doi:10.1371/journal.pone.0009701.s016 (0.15 MB

DOC)

Figure S7 Upregulation of psoriasis-associated genes in lesional

skin of PPARb/d transgenic mice. The expression level for the

representative genes shown, previously found to be upregulated in

the skin of PPARb/d mice treated with GW501516 by microarray-

based expression profiling (see main text), was quantified using

TaqMan-based real-time PCR using Assays-on-Demand kits ob-

tained from ABI according to the manufacturer’s instruction

(LCE3f: Mm02605425, Il1b: Mm01336189, Hb-EGF: Mm004-

39305, CRABPII: Mm00801693, ALOX12b: Mm00507782, m1:

MM00436999, ATP12a: Mm00446786). The data shown represent

mean 6 s.d. of GAPDH-calibrated expression levels obtained from

n = 3 mice for each group (GW-fed, red columns, vs. control, blue

columns). For all genes, p,0.001 in a two-sided independent t-test.

Found at: doi:10.1371/journal.pone.0009701.s017 (0.09 MB TIF)

Figure S8 Expression of transgenically overexpressed PPARb/d
in murine skin. Whole skin samples from C57Bl/6j wild type (WT)

or PPARb/d transgenic mice fed control chow (Tg) or

GW501516-containing chow (TG+GW) were taken, genomic

DNA digested, and total RNA isolated, followed by cDNA

synthesis. RT-PCR was performed for the indicated number of

cycles using primers specific for the transgene. Two mice for each

condition were used.

Found at: doi:10.1371/journal.pone.0009701.s018 (0.25 MB TIF)
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