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Abstract

Motor actions and action verbs activate similar cortical brain regions. A functional interference can be taken as evidence
that there is a parallel treatment of these two types of information and would argue for the biological grounding of
language in action. A novel approach examining the relationship between language and grip force is presented. With eyes
closed and arm extended, subjects listened to words relating (verbs) or not relating (nouns) to a manual action while
holding a cylinder with an integrated force sensor. There was a change in grip force when subjects heard verbs that related
to manual action. Grip force increased from about 100 ms following the verb presentation, peaked at 380 ms and fell
abruptly after 400 ms, signalling a possible inhibition of the motor simulation evoked by these words. These observations
reveal the intimate relationship that exists between language and grasp and show that it is possible to elucidate online new
aspects of sensorimotor interaction.
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Introduction

The consequence of lesions and the functional overlap between

language and motor action strongly suggest that aspects of

language and action are intimately linked. In early writings on

apraxia, Liepmann [1] described patients unable to carry out

voluntary and skillful movements following verbal requests with

their left body parts following lesions to the forebrain. He named

this condition sympathetic apraxia. For Geschwind [2], this syndrome

followed the interruption or blocking of information transfer

between the language and motor brain areas. Also, in the case of

articulatory dyspraxia, with difficulties in speaking or pronunci-

ation, the question remains as to whether it is a disorder of motor

control or an expression of aphasia constrained by syntactic

categories. Broca [3], in his original presentation of patient Tan,

already presented evidence of articulatory disturbance in speech

(aphemia) as a result of frontal cerebral damage.

Action verbs and motor actions activate similar cortical brain

areas [4] [5]. An increasing number of studies have shown that the

sensorimotor components of word meaning activate cortical

regions overlapping with the neural systems involved in the

perception and execution of actions described by the words. For

example, processing verbally presented actions activates corre-

sponding sectors of the motor system, depending on the effector

(hand or foot) used in the listened-to action [6] [7]. It is also known

that reading the word write activates the cortical motor areas

involved in moving the hand [8]. Moreover, in sign language there

is a close semantic relationship between the gestures and the

function of the object expressed (e.g., hammer or scissors in

American Sign Language), suggesting that transmodal processes

are implicated in the semantic representations [9]. In addition,

lesion evidence also suggests that both language and pantomime of

object use are affected in patients with left brain damage [10].

These studies and numerous observations strongly suggest that the

brain areas subtending object-oriented actions are closely related

to the brain areas involved with language [11].

Glenberg [12] has proposed that linguistic meaning is grounded

in bodily activity when we are engaged in action that carries into

effect [see also, 13]. In this perspective, the linguistic message is

functionally assimilated in the intention of action [14]. It has been

proposed that if intention of a motor action were to be extended in

time it would progressively turn into a motor simulation of that

action [15]. This simulation of action becomes, according to Prinz

[16], an integral part of the sensorimotor interface. Over the

course of a given action, intention and simulation may become

indistinguishable. In the same vein, it has been suggested that

intention provides the cement binding afferent stimulation and

efferent response. For Hommel et al. [17] these action plans are

motor images. For Jeannerod [15], intentionality is at the core of

the representation of action, as incoming information modulates

ongoing action. In this view, intention and simulation are the

unifying elements between the linguistic stimulus and the action

response.

It has recently been suggested that there is a lexical-semantic

competition that interferes with the action, once an action is

triggered. Boulenger et al. [18] and Nazir et al. [19] have proposed

an experimental design for the investigation of language-

kinematics interaction. In their experiments, a manual action

verb is presented visually at varying moments during the execution
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of ballistic gestures (i.e., 0 ms, 50 ms, 200 ms following movement

onset) and the transport speed of the wrist is measured. The action

is generally perturbed when the action verb is presented once a

movement is initiated, testify to a complex interaction between the

linguistic and muscle components of action. However, in this

experimental paradigm the perturbation is not time-locked to verb

onset because the characteristics of the movement itself (i.e., the

ballistic momentum) partially mask the immediate impact of the

linguistic stimulus. Information about when exactly word process-

ing starts to affect motor behavior is therefore not available.

We propose a novel approach that will allow online examination

of the relation between language and action. By analyzing

modulations of the precision grasp of a cylinder with an integrated

force sensor, we shall examine the extent to which listening to

words related to the action of the prehensile hand can affect grip

force. It is known that Broca’s area is activated during the

simulation of grasp movements [20] [21]. However, the

relationship between language and grip force has not yet been

investigated. The approach used in the present study will help

determine when word processing influences motor behavior. Force

variations in prehensile grip, while listening to manual action and

control words, were analysed in order to consider the links

between the kinematics of the hand and linguistic content. The

question of the relationship between language and action has been

with us for over a century. The convergence of efforts in the

elucidation of this question has been to determine how the two

interact. Whatever the methodology (ERP, fMRI, behavioral, and

now grip force studies), all work in this area has attempted to

understand the influence of one of the other in as small a time

window as possible. ERP methods come closest and now, with our

grip force paradigm, we suggest a complementary alternative that

will provide, we hope, a new way to look at and better understand

the nature of the relationship.

Methods

Ethics Statement
Ethics approval was obtained from the ethics committee of

Montreal Centre for Interdisciplinary Research in Rehabilitation.

Participants
Six monolingual French native volunteers, 2 men and 4 women

(age range: 15–52; median age was 23 years) participated in this

study. All were right- handed as assessed with the Edinburgh

Handedness Inventory [22]. All subjects (or parents in the case of

the youngest subject) gave written consent to be included in the

study. None of the authors participated as subjects in the study.

Stimuli
A total of 35 nouns and 35 verbs, controlled for frequency,

number of letters, number of syllables, bi- and trigram frequency

[23] served as stimuli. All verbs denoted actions performed with

the hand or arm (e.g., write, throw) while nouns referred to

imaginable concrete entities without specific motor associations

(e.g., mill, cliff) and were used as control words. Words that could

be used as both nouns and verbs were excluded from the selection.

Words were spoken by an adult male and recorded on a digital

voice recorder (Olympus DS-50), in two consecutive sessions with

a pause of five minutes between the sessions. All 35 verbs were

recorded at one session, and the 35 nouns were recorded in the

same manner, at a separate recording session. The resulting two

recordings were transferred to a computer and each word in the

two lists was individually extracted and saved to a file. Comparison

of voice amplitude of the words in the two lists (nouns, verbs)

yielded no statistically significant difference.

Digitized lists of words were then generated from the 70 items.

Within these lists, one randomly selected target word (noun or

verb) was repeated 17 times while all remaining words were

presented only once. Participants thus listened to a total of 86

items. Mean word duration was 684 ms and there was an interval

of 1000 ms between word presentations. Word order was

randomized between subjects.

Procedure
Participants wore headphones and were seated on a chair

without armrests, facing a table on which the instrumented

cylinder was placed at a distance of 53.5 cm from their chest

(Figure 1). The cylinder weight was 267 g. Participants were first

asked to rest both hands on the table and touch a home pad with

their thumbs (5 cm from the edge of the table and 13 cm to either

side of the midline). They were then asked to lift the cylinder

[Figure 2A; for a technical description of the apparatus, see [24]]

with the thumb and index finger of the right hand and hold it at

about 5 cm above the table (Figure 2B). We used a cylindrical

object, so there was no imposed grasp orientation. The

participants maintained this position by flexing the shoulder while

keeping the elbow in full extension. Participants listened to the list

of words and silently counted the occurrence of the target word

while performing this motor task. The target word was an action

verb in one condition, and a noun in the other.

Each subject participated in two sessions, counterbalanced

across subjects. They were instructed to listen to and count the

occurrence of the target words . Thus, subjects were presented

with 35 nouns and 51 verbs (one of the verbs was repeated 16

times) in one session, and they were presented with 35 verbs and

51 nouns in the other session. Verb and noun list presentations

were randomized across subjects. . If the first session had a target

Figure 1. The experimental paradigm. Participants wore head-
phones and were seated on a chair facing a table. The instrumented
cylinder was placed at a distance of 53.5 cm from their chest.
doi:10.1371/journal.pone.0009728.g001
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verb, then the second one had a noun as a target, and conversely .

Subjects kept their eyes closed for the duration of the experiment.

At the end of each session, the cylinder was lowered on the table

and the participants were asked to give the number of times the

target word was presented.

Data Acquisition
The output of three force and three moment signals (Fx, Fy, Fz,

Mx, My, Mz) captured with the cylinder was generated by a

standalone F/T sensor system controller (ATI Industrial Automa-

tion, NC, USA). Fx is the longitudinal force exerted on the

cylinder, Fy and Fz are the radial and compression forces,

respectively (Figure 2A). Mx, My, and Mz are the moments. The

signals were recorded with an AT-MIO-16E-10 A/D card

(National Instruments, TX, USA) and acquired at 100 Hz per

channel, for about 145 seconds. The list of digitized words was

delivered through a D/A channel of another AT-MIO-16E-10

card connected to the headphones. Both cards were synchronized

such that the output of the digitized list of words automatically

triggered the acquisition of grip information.

Data analysis
Prior to data analysis, each signal component was filtered at

10 Hz with a fourth-order, zero-phase, low-pass Butterworth filter.

The grip force was computed by taking the resultant force of Fx,

Fy and Fz. Data were then segmented from the onset of one word

to the onset of the following word. Since the level of force applied

on the cylinder differed between subjects, each segment of the

signal amplitude was normalized by subtracting the lowest point

value and dividing the result by the span range (max – min value),

thus yielding values ranging between 0 and 1. Normalized signals

for nouns, verbs and target words were averaged for each

participant and the grand mean was computed for each condition.

As the number of target words was smaller than that of nontargets

(17 vs. 34), a random selection of 17 nontarget words were

extracted from each condition to be used in the data analyses. In

order to determine whether the vertical load (gravitational and

inertial) of the cylinder did influence the results in any way,

analyses were conducted with and without the vertical force

component (Fx) . Comparisons on the grip force normalized

curves were also run. Two curves were generated: one taking into

account computations of all axes (Fx, Fy, Fz); and another with the

forces orthogonal to the cylinder (Fy, Fz). The statistical

comparison of the two curves yielded R2 = 0.9996, showing that

the load charge had no effect on the curves. This was an expected

result since the analysis was conducted on the variation of force in

the system, and the cylinder is considered to be in a quasi-static

state — thus contributing very little effect, if any.

Results

Figure 3 displays the grand mean of normalized grip force

amplitude of verb and noun signals between the onset of a stimulus

word until 800 ms later, corresponding to about the end of the

longest word duration. There was a change in grip force when the

target word was a verb , but not when it was a noun An increase in

force was observed at about 100 ms following the verb display,

deviated significantly from the noun curve at approximately 260

ms and fell abruptly after reaching a peak at 380 ms. A ms-by-ms

paired t-test was conducted on the data points defining both

curves. A significant difference was noted between 260 and 430 ms

(p,0.05). Analyses of non-target verbs and nouns showed no

significant difference in grip force.

Discussion

The aim of this study was to investigate the interaction between

the motor representation of manual action verbs and linguistic

content online. Until now, it was not clear when the processing of

linguistic information (i.e., verbs) influenced motor behavior. The

present results indicate that it is possible to determine through

online analysis of grip force modulation when this effect occurs.

Reading manual action verbs perturbs reaching movements

[18] [19]. Reaching and grasping are intimately linked [25] and it

is likely that manual action verbs can impact upon grasping action.

Reaching implicates proximal muscle systems under the control of

the two cerebral hemispheres. Grasping with the preferred right

hand implicates distal muscles under — as is the case for most of

the verbal system — left hemispheric control.

A number of interpretations can be offered for the fact that the

processing of verbs and processing of the corresponding actions

share similar brain resources. A first possibility is that a verb

activates cerebral motor areas since it brings about a motor image

of the verbally presented action — suggesting that activation of the

motor system takes place at the post-lexical level. The motor

simulation thus provides the pragmatic knowledge congruent with

the underlying action and complements the semantic recognition

of the verb.

Figure 2. Functioning of the instrumented cylinder. A. The
apparatus is designed to measure the orientation (h) and vertical
location (x) of the applied force (P) by either the index or thumb while
exerting a grip force. These parameters are computed from outputs of a
F/T sensor (with axes X, Y and Z) embedded in the two half-cylinders
using two T-adaptors. B. The participants were asked to lift the cylinder
with the thumb and index fingers of the right hand and hold it at about
5 cm above the table.
doi:10.1371/journal.pone.0009728.g002
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Pulvermüller et al. [26] had proposed a contrasting view of the

motor activation induced by verbs: activation is not the

consequence of the relationship between the verbs and the

simulated actions but rather that it is inherently linked with lexical-

semantic processing. A key argument for this interpretation is that

the activation of the motor system occurs early in the course of

presentation of the verb (under 200 ms following onset of display).

The results of the present study indicate that these two views can

actually be integrated along a motor continuum of linguistic

information. The observed increase in grip force occurring with the

presentation of verbs can be interpreted as both the progression of

the spontaneous muscular facilitation evoked by the verb during

lexical-semantic processing [27] and as the incomplete inhibition of

the motor output during simulation [15] [28]. To our knowledge,

this is the first time that a demonstration of this phenomenon is

made, indicating that the structures that participate in the retrieval

of verbs also partake in the control of motor behavior. Thus,

simulation of action is at the interface between verb comprehension

and motor production [16]. This is a difficult issue to resolve, as a

number of authors have interpreted this facilitation effect as an

incomplete inhibition of muscular activity [28]. The present results

can also be taken as evidence for a facilitation mechanism of the

lexical semantic treatment and an incomplete central inhibitory

mechanism, as reflected in the decrease of grip strength.

It is important to note that the variations in force level were

subliminal as subjects did not report, even when specifically

questioned at the end of the experiment, that they were aware of

observable changes in grasp force between the different experi-

mental conditions. This suggests that onset of linguistic informa-

tion can generate motor simulations, producing peripheral muscle

changes that are not under conscious control or awareness.

The crosstalk between language processes and overt motor

behavior provides unambiguous evidence that verbs and motor

action share common cortical representations, suggesting that

cortical motor regions are indeed involved in verb retrieval. As this

happens during a manual action, such as holding an object with a

precision grasp, it also means that the muscular changes related to

the simulation and the action, although closely tied, constitute

separable elements. This distinction has been reported following

damage to frontal brain areas [29]. Furthermore, hemiplegic

patients are capable of simulating manual actions even though they

are paralyzed as a result of brain injuries in M1 [30]. The approach

presented here opens up a new avenue of research investigating the

impact of complex language and speech activity in healthy subjects

and clinical populations with movement or language disorders.
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29. Sirigu A, Duhamel JR, Cohen L, Pillon B, Dubois B, et al. (1996) The mental

representation of hand movements after parietal cortex damage. Science 273:

1564–1566.

30. Johnson-Frey SH (2004) Stimulation through simulation? Motor imagery and

functional reorganization in hemiplegic stroke patients. Brain Cogn 55:

328–331.

Language Grounded in Action

PLoS ONE | www.plosone.org 5 March 2010 | Volume 5 | Issue 3 | e9728


