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Abstract
Which aspects of tissue microstructure affect diffusion weighted MRI signals? Prior models, many
of which use Monte-Carlo simulations, have focused on relatively simple models of the cellular
microenvironment and have not considered important anatomic details. With the advent of higher-
order analysis models for diffusion imaging, such as high-angular-resolution diffusion imaging
(HARDI), more realistic models are necessary. This paper presents and evaluates the reproducibility
of simulations of diffusion in complex geometries. Our framework is quantitative, does not require
specialized hardware, is easily implemented with little programming experience, and is freely
available as open-source software. Models may include compartments with different diffusivities,
permeabilities, and T2 time constants using both parametric (e.g., spheres and cylinders) and arbitrary
(e.g., mesh-based) geometries. Three-dimensional diffusion displacement-probability functions are
mapped with high reproducibility, and thus can be readily used to assess reproducibility of diffusion-
derived contrasts.
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1 Introduction
In the central nervous system, information is conveyed along axons located within the white
matter. Injury to white matter occurs in disease processes with distinct pathophysiologic
mechanisms. Such mechanisms include edema, demyelination, axonal transection, and cell
death, as well as reparative processes such as remyelination, axon regrowth, and glial
regeneration. Ascribing particular patterns of injury and repair to distinct structural and
pathophysiologic mechanisms is an important clinical objective that will help to guide
treatment strategies. Diffusion-weighted MRI (DWI) is exquisitely sensitive to tissue
architecture on a micrometer scale. Yet current contrasts, whether from diffusion tensor
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imaging (DTI), the q-space formalism, high-angular-resolution diffusion imaging (HARDI),
or other current analysis methods, cannot distinguish broad classes of pathological processes
in white matter, especially when multiple types of damage occur together (i.e., myelin loss,
axonal loss, edema, inflammation, etc.) (1–3). Thus, hypotheses about subtle structural
differences cannot be tested with existing methodologies. This manuscript studies the
reproducibility of simulations of diffusion in biologically relevant compartments using a cross-
platform, three-dimensional computational framework. These numeric models enable in
silica comparison, evaluation, and design of DWI techniques based on complex, biologically
relevant geometries.

Determining whether it is possible to infer the specific mechanisms that underlie changes in
the DWI signal has been an area of intense investigation, and, particularly, the focus has been
on discovering DWI contrasts that are specific to particular white matter degeneration
processes (4). Analytic models of restriction environments are only available for simple
geometries (e.g., ellipsoids, plates, and cylinders) (5,6). Monte-Carlo simulations have been
shown to be a powerful and flexible tool for examining diffusion in more complicated
situations.

Norris (7) has reviewed the foundational works for modeling diffusion during MRI acquisition;
a brief summary relevant to this manuscript follows. Using scans of histological sections to
generate a two-dimensional pixel-based model, Lipinski (8) found that simulated diffusion in
the extracellular space corresponded to a porous and isotropic medium. In their work with giant
squid axons, Beaulieu and Allen (9) employed Monte-Carlo methods, with a two-dimensional
hexagonal lattice of impermeable cylinders, to explore the impacts of neurofilaments on intra-
axonal diffusion. Szafer et al. (10,11) explored the effects of membrane permeability, cellular
volume fraction, and diffusion time by incorporating T2 relaxation and semi-permeable
boundaries into a rectangular lattice model, whereas Ford and Hackney (12,13) generalized
Monte-Carlo approaches to include packed-cylinder models of spinal-cord axons. More
recently, several multi-compartmental hypotheses and studies, based on simulations with more
involved geometries, have begun to emerge (e.g., (14,15)).

Historically, the needs for specialized software and intense computation have made more
detailed, yet descriptive, studies extremely difficult, both in terms of simulation and analysis.
With the advent of higher-order analysis models for diffusion imaging (16–22), emerging DWI
methods appear to offer great potential for gaining insight into the intricate microstructural
configurations that are clearly present in tissues. These methods have shown promise for
resolution of crossing fibers in fiber tracking (23–25). Recently, advanced DWI analysis
methods (e.g., (17,20)) have been applied to study the effects of white matter damage (e.g.,
(26)), however the conclusive assignment between structural changes and change in DWI
contrasts is still lacking. While q-space, HARDI, and q-ball studies offer great potential for
higher order classification of both normal anatomy and white matter damage, the relationships
between the observed signal, diffusion process, and underlying biophysical processes are
complex and difficult to isolate. Simulations offer an attractive and powerful manner in which
to explore these phenomena and generate empirically testable hypotheses.

Very recently, a number of computational frameworks have been presented to study diffusion
in differing geometric models. Hall and Alexander present a model for optimizing simulation
parameters for packed and degenerating cylinders using the CAMINO software package (27).
Meanwhile, Balls and Frank extended the popular MCell physiological simulation framework
to allow for simulations of realistic diffusion models especially intended for high angular
resolution diffusion imaging studies (28,29). Herein, we present an alternative cross-platform,
three-dimensional computational framework (the random walk simulator software, RWS) for
simulating restricted diffusion in multiple compartments. As this is a rapidly evolving field for
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software development, a direct feature comparison would quickly become obsolete. Rather,
we emphasize the importance of quantitative and reproducible assessment of diffusion profiles
from compartmental models of cellular arrangements. Subsets and supersets of the RWS
features are available in other software packages. The results of this study are applicable to
studies of diffusion in complex geometries, independent of software package. RWS supports
models that may account for compartment-specific diffusivity, permeability, and T2 time-
constants using both parametric (e.g., spheres, cylinders, etc.) and arbitrary (e.g., mesh-based)
geometries. Note that permeability and exchange can be considered equivalent from a DWI
perspective.

In this manuscript, we demonstrate the efficacy studying three-dimensional diffusion
displacement probability functions with simulations for complex restriction profiles, such as
bulging axons. We demonstrate that alternate models of axon degeneration (i.e., broken,
crimped, bulging) may lead to significant differences in diffusion weighted (DW) contrasts.

With RWS, these computational studies can be implemented with little programming
experience on standard hardware and can rapidly generate results to enable generation of
hypotheses for further experimentation. The RWS software is available in open-source through
the Neuroimaging Informatics Tools and Resources Clearinghouse (www.NITRC.org: project
name: “DWI Random Walk Simulator”) under the Lesser GNU Public License.

This manuscript is organized as follows: Section 2 reviews the computational basis for
simulating diffusion and the RWS framework. Section 3 explores the interaction of Monte-
Carlo design choices (i.e., step size, number of simulated spins) with the error in estimated
parameters of existing models. Section 4 demonstrates that simulations in complex, three-
dimensional restriction geometries are reproducible. Finally, Section 5 discusses the
implications of the findings.

2 Simulating DWI
Diffusion, also known as Brownian motion, is the random motion of particles driven by thermal
energy. In free solution, diffusivity is an intrinsic property of a fluid, so that the same diffusion
coefficient is observed regardless of the number of observations or the time between
observations. In organized tissues, however, molecules may encounter barriers that restrict or
hinder their movement. Diffusion is restricted when the maximum displacement of molecules
is limited by compartment boundaries, while hindered diffusion refers to the reduction of the
apparent diffusion constant. Therefore, the observed diffusivity, or apparent diffusion
coefficient (ADC), may depend on the length of time over which molecular movements are
observed and the direction along which that motion takes place. Over short time courses, the
ADC is closely linked to the intrinsic diffusivity. However, over longer time courses, as
molecules interact with local tissues, the ADC more closely reflects the structural organization
of those tissues. DWI is therefore remarkably sensitive to the temporal and spatial scales of
the local environment. In biologic tissues, the intracellular and extracellular environments both
influence the signal arising from individual voxels.

2.1 Theory
In general, the probability that a particle (i.e., water molecule) will move from r0 to r in time
Δ can be written,

(1)
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Eq. (1) is known as the motion-probability propagator. The signal observed in a diffusion-
weighted experiment is generally lower than that observed without diffusion weighting due to
destructive interference from the phase shifts acquired by individual spins (i.e., the magnetic
moment from the hydrogen proton on water). Note that a single spin does not possess a “phase”
in the sense of a magnetic resonance signal. Rather, an ensemble of spins exhibits this quantity.
In this approximation, the phase-accumulation throughout a series of random walk steps is
represented by an analogy in which a single particle is attributed a phase (see section 21.2 in
(30)). The ratio between the signals observed with and without diffusion weighting is known
as the diffusion-weighted attenuation,

(2)

where S1 is a diffusion-weighted observation and S0 is a non- or minimally diffusion-weighted
reference.

In DWI, the echo attenuation (or diffusion sensitization) is generated by application of balanced
sequences of magnetic field gradients which first introduce and subsequently reverse position-
dependent phase shifts. If a water molecule moves over the course of the experiment, the two
steps do not cancel and the water molecule is left with a residual phase difference. The complex-
valued signal from a spin accounting for phase accrued by a spin over an experiment, neglecting
position-encoding effects, is:

(3)

where q is the wavenumber of the experiment, a weighting factor that captures the direction,
duration, and intensity of diffusion sensitization. In traditional Stejskal-Tanner approaches, q
is piecewise constant (i.e., constant gradient applied during a rephasing interval from t0 to t1,
delay from t1 to t2, and a second, effectively opposite constant gradient applied during a
dephasing from t2 to t3) so that

(4)

The effects of a finite-duration pulse width are substantial in closed geometries (e.g., within
pores or between plates) (31) but have been shown to have less effect in open, tortuous
environments (32). However, phantom q-space experiments show better agreement with
simulations that account for finite pulse duration (33).

We can approximate the diffusion sensitization as an instantaneous process (i.e., the short-
gradient pulse, SGP, approximation) in order to reduce computational burden. Alternatively,
the RWS framework supports specification of arbitrary (discretized) gradient waveforms;
however, study of the impacts of the various forms of more realistic gradients (e.g., (34–36))
is beyond the scope of this work. Under SGP, the expected value of the echo attenuation may
be explained in terms of the motion-probability propagator and the experimental parameters
(37):

(5)
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where <> indicates the ensemble average over all protons within a detected volume. To account
for T2 effects, the phase must be weighted by the expected T2 signal attenuation that would
occur for a displacement from r0 to r, denoted ξT2,

(6)

This method of modeling of T2 effects is rather naïve (e.g., it does not account for surface
relaxation) . However, it provides a convenient framework in which to model very-short T2
compartments that may act as signal sinks. More complex T2 interactions are beyond the scope
of this work, and T2 effects are neglected for the remainder of this manuscript. For a pulsed-
gradient spin-echo (PGSE) sequence,

(7)

In general, p(r|r0,Δ) may be a function of spatial position and diffusion time.

DWI techniques assume a particular form for the motion-probability propagator and estimate
propagators through a series of carefully constructed diffusion-weighted acquisitions.

2.2 Simulation Framework
RWS is composed of an object oriented Monte-Carlo simulator (written in Java, Sun
Microsystems, Santa Clara, CA) and a simple front end for specifying the experimental design
and rendering results (written in Matlab, The MathWorks, Natick, MA). The simulator
considers the interaction between the motion of individual, non-interacting particles (i.e.,
protons or spins) and the boundaries of restriction compartments (which lie within an infinite
rectangular lattice). The lattice structure is a convenient representation for a space of infinite
extent. Arbitrarily large movements can be simulated by realizing that a movement beyond a
single lattice element can be modeled as a spin leaving one edge and “reappearing” on the
opposite side. When such a “wrap-around” occurs, the initial position of the spin is moved by
exactly one lattice element step in the opposite direction of the wrap-around. Thus, from the
spin’s perspective, a wrap is a continuous process event. In this way, spins that finish a
simulation within a lattice element may be identified regardless of where they might have
started the experiment.

Spin position may be initialized uniformly or at random within a lattice block either inside all
compartments, outside all compartments, or throughout the lattice element. The compartments
and the extra-compartmental space have independently defined (unrestricted) diffusivities (i.e.,
the diffusion coefficient in the absence of barriers, D) and transverse relaxation time constants
(T2); compartments also have boundary permeabilities (P).

To simulate diffusion, the simulator executes a finite, user-defined time-step (Δt) in which each
spin selects a random direction and takes a step with length . Thus, the velocity of a

spin is . If a spin encounters a compartment boundary, the spin is either specularly
reflected or transmitted, depending on the permeability, P, of the boundary and the diffusivities
on either side of the boundary. To assure no net flux across the boundary (11),

(8)
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where νin and νout are the spin velocities inside and outside the membrane and pin→out and are
the transmission probabilities of a particle to cross the membrane from inside or outside,
respectively. This is a classic kinetics problem; one derives the fraction of particles that would
hit a surface within a differential period of time and integrates over the time step. The number
of collisions can be found by writing the fraction of collisions as a function of trajectory angle
(because the particle must have right velocity range for the angle at which it is travelling to be
within the distance of hitting the wall). The factor of ¼ arises when one integrates over all
orientations (e.g., the surface of a sphere). The spins are assumed not to interact or influence
each other or the boundary states.

RWS includes basic compartment geometries for spheres, cylinders, and arbitrary polyhedral
meshes. Advanced compartment geometries may be generated by constructing the union,
intersection, set difference, or affine transform of existing basic or advanced geometries. T2
signal loss for each spin is computed based on the relative proportion of time spent in each
compartment, whereas the change in spin phase depends on the net change in position
(corresponding to the short-pulse approximation). Ensemble effects are computed by
integrating phase changes over all spins (i.e., Monte-Carlo integration of Eq. (5)) weighted by
each spin’s net magnitude after accounting for T2 relaxation.

2.3 Software Design
RWS appears to the user as a Matlab package. The user creates compartment definitions either
on the command line or through a script with the basic components
(RWScreateCompartmentSphere, RWScreateCompartmentCylinder,
RWScreateCompartmentMesh). The user may create new compartments by combining and/
or modifying existing compartments (RWScreateCompartmentUnion,
RWScreateCompartmentIntersection, RWScreateCompartmentDifference,
RWScreateCompartmentAffineTransform). Each compartment has its own diffusivity,
boundary permeability, and T2. Next, a simulator is created; this requires a definition of the
extracompartmental diffusivity and T2 as well as the lattice block size (RWSnewSimulator).
The user can add compartments (RWSaddCompartment) with the proviso that compartment
boundaries may not intersect (the union/intersection operators achieve the same biophysical
interpretation and ensure higher computational efficiency). The user can add any number of
spins either inside compartments, outside compartments, or uniformly at random within the
lattice structure (RWSaddSpins). Finally, the user can run the simulation for an arbitrary
amount of time with a specified time-step (RWSsimulate). RWS includes tools to visualize
and analyze the directionally dependent diffusivities and to create figures of the type shown in
this manuscript. The resulting data are stored as Matlab data objects that may be manipulated
and/or exported by user-generated routines or through the Matlab OpenGL visualization
framework.

2.4 Performance Evaluation
RWS computes samples of spin motion according to the biophysical motion-probability
propagator for the specified geometry while tracking T2 effects on individual particles. These
data can be used to construct either expected signal intensities or simulated signal intensities
(by the addition of noise) for DWI experiments through direct Monte-Carlo integration of Eq.
(6). In turn, the simulated data can be used to assess the sensitivity and specificity of contrasts
for simulated three-dimensional geometries. To investigate the applicability of RWS to the
general family of DWI methods (as opposed to a specific experimental technique), we need to
quantify variability and evaluate the estimation reproducibility of the underlying biophysical
processes, which can be used to generate both common contrasts (i.e., fractional anisotropy,
mean diffusivity, etc.) as well as novel contrasts. For the remainder of this manuscript, we
focus on evaluating the intrinsic reliability of RWS, so imaging (Rician) noise is not added.
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The motion-probability propagator and T2 attenuation are approximated as stationary (i.e.,
independent of position): p(r|r0,Δ)=p(r-r0|Δ)) over the field of interest – typically, a single
voxel. Therefore, the signal attenuation can be rewritten in terms of T2-weighted one-
dimensional projections of the motion-probability propagator,

(9)

(10)

The ψ representation provides a coordinate system for convenient and meaningful comparisons
of motion-probability propagators because it captures the mechanism by which spin motion
interacts with applied gradients to produce diffusion sensitization. For simple and limiting
cases (as in Section 3), expressions for p(x|r−r0,Δ) are known, and we can evaluate the error
of the estimated probability-density function with the RWS framework. However, this is not
the case for more general geometric models.

As a surrogate for the (possibly unknown) estimated models of diffusion and diffusion-
weighting paradigms (Eq. (10)), we study the reproducibility of the derived quantity ψ̈, which
we define as ψ represented in spherical basis set of 258 unique directions (the vertices of an
eighth order tessellation of an octahedron) at 125 linearly spaced distances between 0 µm and
30 µm. Note that ψ̈ is assumed to be symmetric. This choice of discrete representation is
essentially arbitrary, but assessment of a continuous representation of ψ is not possible with
Monte-Carlo methods without assuming a specific model and/or functional form. In this work,
we are interested in assessing variability in a model-agnostic approach to inform future work
with specific diffusion-weighting analysis approaches. We believe that this basis set affords
sufficient resolution to study the models presented here; extension of these metrics to other
basis sets is straightforward.

First, to assess reproducibility of ψ̈ by orientation, the angular peak signal-to-noise ratio
(PSNR) is calculated as,

(11)

where g denotes the direction, SD indicates the standard deviation of repeated experimental
measures, ψ̂g,r indicates the empirical estimate for direction g and distance r, and <>r indicates
the average over distances. Statistics are shown as spherical maps as well as mean/standard
deviation over the set of orientations. Second, to assess reproducibility of ψ̈ by distance, the
radial PSNR is calculated as,

(12)

where r denotes the radial distance and <>g indicates the average over orientations.
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3 Validation Experiments
3.1 Free Diffusion

When no boundaries to diffusion are present, the radial distribution (i.e., in one-dimension) of
spins follows a time-varying Gaussian (μ=0, σ2=2Dt). In Monte-Carlo simulations, steps are
of equal length along a random direction, chosen from a uniform distribution of orientations.
The result converges to a Gaussian distribution asymptotically with the number of steps. When
too few steps are taken, the random walk has not had time to converge, so the results do not
represent the physical process and are biased, thereby increasing error. However, if the total
number of simulation steps (i.e., number of spins times number of steps per spin) is held
constant, increasing the number of steps reduces the number of spins available. Thus, the
number of motion measurements will be fewer and the measured distribution will be of higher
variance, also increasing total error. Hence, the optimal choice of the number of steps and spins
represents a balance between sufficient steps to create representative measurements and
sufficient spins to achieve an empirical measurement of low variability.

Figure 1 illustrates this phenomenon. Free diffusion (2 × 10−3mm2/s) was simulated for a period
of 1, 20, and 100 ms with the total spins steps = 100,000. The number of steps was spaced
logarithmically from 1 to 1000. To assess variability, the simulation was repeated 25 times.
Error was assessed by the root-mean-square difference between the empirical cumulative-
distribution function (P(x > c)=Σiδ(xi > c)) and the theoretical Gaussian distribution.
Simulations with few steps (<~5) resulted in increased error. Increasing the number of steps
had decreasing marginal benefit and eventually (for >~10) resulted in increased error as well.

3.2 Diffusion within Impermeable Cylinders
The probability distributions and expected echo attenuations for NMR experiments within
cylindrical environments have been presented in detail (38–40). An exact expression could be
derived for the ensemble propagator for perpendicular diffusion in an infinite cylinder from
previously published single spin propagators (41). Here, we are interested in the effects of step
size, so a direct comparison between fine-time-step and coarse-time-step simulations is of
primary interest. Thus, we examine the impact of the time-step duration on the evolution of
the cumulative-distribution function estimated with Monte-Carlo methods using several time-
steps. A single 10 µm diameter cylinder of infinite length was simulated within a 10 × 10 × 10
µm lattice. Intra-cylinder diffusivity was set to 2 × 10−3 mm2/s. Simulations were run with
10,000 spins within the cylinders for diffusion times of 1 to 25 ms (expected free diffusion
root mean square displacement, RMSD, of 4.5 to 14.1 µm along one dimension) using time-
steps of 100 µs (Δ0,1), 1 ms (Δ1) and 5 ms (Δ5), equivalent to step lengths of 0.62, 2.0, and 4.5
µm, respectively. All spins were initialized within the cylinder. Again, there were 25
repetitions.

Figure 2 illustrates that these three simulations achieve similar results at 25 ms (after 250, 25,
and 5 time-steps, respectively). However, the intermediate results are quite different. After 1
ms simulation, the estimated distribution for the Δ0,1 and Δ1 simulations are dramatically
different (the median absolute difference divided by the maximum of the empirical probability
density function was greater than 17%). At 5 ms, the differences between Δ0,1 and Δ1 are much
less apparent (approximately 1%). Similarly, the differences between Δ0,1 and Δ5 are
substantial for 1 and 5 ms (approximately 16%), but quickly converge by 10 ms (approximately
3% by 10 ms and approximately 1% for 20 ms) (not shown). These results illustrate the need
to use short time-steps for short diffusion times.
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3.3 Diffusion within Permeable Cylinders
We examined the impact of the time-step duration on the evolution of the cumulative-
distribution function for particles in a permeable cylinder, using fine-grained Monte-Carlo
simulations as a reference. An 8 µm diameter cylinder of infinite length was simulated within
a 10×10×10 µm lattice. Intra- and extra-cylinder diffusivity was set to 2 × 10−3 mm2/s.
Simulations used 100,000 spins uniformly distributed over the lattice volume (both inside and
outside the cylinders) for diffusion times of 5 and 20 ms (expected RMSD free diffusion of
4.47 and 8.94 µm along one dimension) using time-steps of 0.1 (Δ0.0001), 0.1 (Δ0.001), 10
(Δ0.01), 100 (Δ0.1), 1000 (Δ1), 2000 (Δ2), and 5000 µs (Δ5) (see Table 1). Membrane
permeabilities of 0.005 cm/s and 0.01 cm/s were examined separately. These permeabilities
were chosen to span the range of physiologically relevant permeabilities reported by Latour et
al.(42).

Figure 3 illustrates the impacts of step length on the estimated motion-probability propagator
structure in cylinders with permeable membranes. Table 1 summarizes the deviations from the
finest resolution simulations (with a time-step of 0.1 µs) for each of the simulation experiments.
At both diffusion times, large time-steps lead to an overestimation of the transmission
probability, and the resulting probability-density functions had heavier tails and lower peaks.
Longer diffusion time mitigated the penalty in accuracy associated with longer time-steps.
Similar results were observed with a range of cylinder diameters between 0.5 and 10 µm
diameters (not shown).

3.4 Guidelines for Monte-Carlo Simulations of Restricted Environments
Although this paper examines a small fraction of the types of simulations possible within the
proposed framework, it establishes rough guidelines for planning simulations of more
biologically plausible geometries. Figure 1 suggests that 5–10 steps of free diffusion phase are
required for the random walk simulations to converge. This finding applies to multiple realistic
MRI time scales. With fewer steps, the empirical distribution does not approximate the
theoretical one; with more steps, lower total error could be achieved with more spins (in a study
with the same total number of steps).

Figure 2 shows that a very similar general rule holds in impermeable environments: at least
five Monte-Carlo steps are required within a fixed duration interval for the random-walk
simulator to converge. In impermeable geometries, the long-time-limit diffusion behavior,
where the expected diffusion is much greater than the dimensions of the restriction
environment, can be accurately captured without Monte-Carlo simulation either by analytic
convolution of the restriction geometric or by numeric approximation.

The situation is more complex for permeable objects because of the need to achieve close
approximations for spins near and distant from boundaries at the same time. In the absence of
a boundary, diffusion is Gaussian. At limiting small time-steps, all diffusion is Gaussian since
the probability of encountering a wall approaches zero (as epsilon→0, the fraction of volume
within epsilon distance of a solid’s surface goes to zero). As time evolves, the discrete Monte-
Carlo sampling converges to the biophysical continuous process. With impermeable cylinders,
we find that suitable convergence happens in approximately 5 steps (Figure 2). In a permeable
cylinder, however, there is a “leak” from the perimeter and near-Gaussian spreading the in the
center. Large time-steps can interfere with the convergence of the ever-changing distribution
of spins.

Empirically, observed bias was minimal when the diffusion step size was much less than the
width of the cylinder and, hence, less than 20 percent of spins encountered boundaries at each
time-step. The bias is assessed relative to the very high temporal resolution experiments (which
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are assumed to be less susceptible to numerical error). The low permeability (P=0.005 cm/s)
simulations exhibited a slightly lower sensitivity to temporal resolution than the high
permeability (P=0.01 cm/s) simulations for longer diffusion times. Based on these
observations, we advocate using a time-step that results in less than 10–20 percent boundary
collisions per time-step. Of course, the choice of step size should be empirically verified by
comparison of results to those from simulations with smaller step sizes.

4 Reproducibility of Diffusion Simulations in Complex Three-Dimensional
Restriction Geometries

To demonstrate the utility of our approach and the potential for continuing exploration, we
investigate the reproducibility of motion-probability propagators and the impacts on the DWI
signal for geometric models of broken, crimped, and bulging axons. This is work is motivated
by Coleman’s recent review (45) on axonal degeneration, in which he notes that “axonal
spheroids, or smaller varicosities, which can be broadly termed axonal dystrophy, are almost
universal in neurodegenerative diseases of the CNS, probably as manifestations of a major
pathway of CNS axonal death.” The structural pathways by which varicosities arise are often
unknown or poorly understood, partly due to the difficulty of observing this (often local)
behavior. In separate work, we are characterizing animal models of axonal degeneration as
observed with MRI. Here, we show how simulations can produce reproducible results for
complex models and lead to testable empirical hypotheses.

The three models of white matter damage that we explore here are notably different from
traditional models in that they are not constant along the long axis of the axons. Therefore,
radial and longitudinal diffusivities are coupled to the full three-dimensional geometry, and
the models do not reduce to two-dimensional problems when the radial diffusivities are
considered in isolation.

4.1 Models of Axon Damage
Four models of axon geometry were studied in a 20×10×10 µm lattice (as shown in Figure
4A): (1) healthy axon – a single infinite cylinder with a 1.5 µm diameter; (2) bulging axon –
an infinite length of beads on a string with cylinder diameter of 1.5 µm and a spherical bulge
diameter of 4 µm repeated every 10 µm; (3) crimped axon – an infinite length of repeating
crimp injuries with axon diameters of 1.5 µm and two 4 µm spheres located outside of the
cylinder reducing the minimum diameter to 60% of the original; and (4) broken axon – an
infinite set of 15 µm cylindrical segments of 1.5 µm diameter separated by 5 µm. In the crimped
axon model, the spheres were centered along the long-axis of the lattice and symmetrically
positioned at 180 degrees to each other along a mid-line axis of the cylinder. In the broken
axon model, diffusion is restricted by closed boundaries near the center of the lattice (shown
as solid boundaries) while the ends of the lattice wrap around such that the effective segment
length is 15 µm. All compartments were impermeable with a diffusivity of 2 µm2/ms and T2
of 100 ms. In 25 repetitions, 100,000 spins were initialized within each compartment and were
studied for diffusion times of 2 ms and 20 ms with 250 time-steps.

4.2 Model Comparison
The empirical probability distributions (i.e., the distributions that would be observed with q-
space or diffusion spectrum imaging) clearly disambiguate the four geometries from each other
and from the free diffusion case (Figure 4B and 4C). To quantify these changes, we consider
the kurtosis excess(46,47), which has been used in diffusion kurtosis imaging (48), which can
also distinguish the four models studied (Figure 4D and 4E). The kurtosis excess (KE) is the
difference between the kurtosis of a given probability-density function and that of a Gaussian
(the probability-density function for free diffusion),
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(13)

where E denotes the expected value of the random variable X with the probability density
function of interest. KE compares the kurtosis of a PDF to a Gaussian distribution of equivalent
variance. If the peak sharpens, then the probability mass must be shifted out towards the tails
at the same time to maintain equal variance. This results in a positive KE. Therefore, positive
KE has both a higher peak and heavier tails. Conversely, negative KE has a broader peak. Thus,
RWS results can help to accept or reject models of axonal damage in relation to empirical
observations.

4.3 Simulation Reproducibility
Qualitatively, the repeated estimates of the motion probability were nearly indistinguishable
(Figure 5A–D). The three nested surfaces overlay the 25 repetitions of the 10th, 50th, and
90th percentile distances embodied by motion-probability propagators. Since each surface
mesh is rendered semi-opaque, variability in the surfaces would visually result in a blurring
and thickening of each mesh. At a visual level of precision, almost no variability is present in
the simulation results. Quantitatively, the radial PSNR was 30–40 dB (31–100:1) for distances
with a probability greater than ~1 × 10−6. The sharp fall off in PSNR for very unlikely events
is due to undersampling (very few of the 105 particles would be likely to reach such a distance)
and to numerical accuracy issues in the computation of the density function. The orientation
PSNR was 50–70 dB (320–3200:1) for all orientations, with lower PSNR for orientations with
lower probability. Note that all orientations had significant integrated probability, so that there
were no sharp drops in PSNR for unlikely events. Since the spins are treated as independent
events, variability can be reduced (if needed) by increasing the number of spins. By the law of
large numbers, variability approximately scales inversely with the square root of the number
of spins.

4.4 Simulation Benchmarks
All simulations were run on a 2.5 GHz single-processor notebook computer running 64-bit
Windows Vista. On average, tracking 100,000 particles for 250 time-steps took 39 seconds.
Longer steps and more complex geometries increased the computation time due to the need to
check for collisions, with the longest simulation reported here lasting 58 seconds. Table 2
provides a summary for each of the eight experiments.

4.5 Technical Demonstration
The SGP approximation may be relaxed by specifying discretized arbitrary waveform gradients
in terms of the x, y, and z vector components of the effective magnetic field gradients in mT/
m. Gradients must be specified prior to simulation. The framework does not take into account
radio frequency pulses, so the user must adapt the sign of the waveform to compensate for
these effects (hence effective gradient rather than absolute gradient). Each particle maintains
a relative phase for each gradient waveform which is updated at each time-step. At the end of
the simulation, each particle reports a vector of phase changes which correspond to each of the
specified gradient waveforms. To illustrate these effects a simulation was conducted with a 5
µm diameter impermeable cylinder. Signal attenuation was simulated along the 30 directions
specified by Jones et al. (reported in (43)) at a b-value of 1000 s/mm2 with diffusion time of
100 ms (0.1 ms time-step, 10,000 spins, 50 Monte Carlo iterations) under two conditions: 1)
with the SGP and 2) using a bipolar diffusion encoding gradient with 50 ms of dephasing time
and 50 ms of rephasing time (rectangular gradients with infinite slew rate). Results are shown
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in Figure 6 and generally agree with previous finding that finite gradients result in lower signal
attenuation (and perceived lower diffusion constant).

Some models of axon degeneration may involve complex changes to the global axonal shape
in addition to local compression/compression. For example, the axons of the twitcher mouse
are extremely wavy (i.e., saw-toothed as seen on electron microscopy) relative to a control
animal (44). To illustrate the mesh-based capabilities of the RWS, we explore a simple
approximation of this type of change (Figure 7). Our lattice element for the bent axon model
consists of an 11 mm length with a square cross-section (4 µm per side) at the lattice boundaries.
The central of the axon model had one edge pushed left 4 µm and the other edge pushed 5 µm
(which resulted in a 5 µm × 4 µm cross-section at the center). The cross-section linearly varied
between square at 1.1 µm from the lattice boundaries to the described rectangle at the center
(as shown in Figure 7A). There were a total of 20 vertices and 36 faces. Note that each mesh
model must form an enclosed polyhedron so that inside/outside tests are efficient. However,
surface patches that lie outside of the lattice element are not considered during collision
detection. The model in Figure 7 includes end-caps that extend beyond the lattice element.
During rendering these are hidden since their location has no impact on the simulation. As with
the parametric models, any intersection with the lattice boundary is considered a location for
wrap-around to the next lattice element. A simulation was demonstrated with 100,000 spins
diffusing inside the model for 10 ms with a time-step of 100 µs (impermeable membranes and
diffusion coefficient of 1×10−3 µm2/µs). Simulated motion probability propagators were
estimated for each of the cardinal axes (Figure 7B).

5 Discussion
There has been a great deal of effort invested in understanding the biological underpinnings
of the diffusion MR signal. Early studies of diffusion in normally unmyelinated garfish nerves
showed that the axonal membrane is sufficient to cause significant diffusion anisotropy (2).
Several current models appear to explain observed behaviors in specific disease models, but
general biophysical interpretation of diffusivity remains an unsolved problem, in part due to
the complex geometry of white matter. Nevertheless, ADC is often abnormal in disease and
represents a clinically useful tool for diagnosis and disease monitoring (1,2,49,50).

Our results demonstrate that the empirical probability distributions (i.e., those that would be
observed with q-space or diffusion-spectrum imaging) can be reliably estimated, using Monte
Carlo simulations, for both traditional cylindrical and complex three-dimensional geometric
models of the restriction environment. The sampling variation due to random nature of
simulation experiments (i.e., 30–70 dB, 30–3200:1) was much was much less than typical noise
levels in empirical studies (less than 30 dB, 30:1). Furthermore, the PSNR could be readily
increased by approximately 3 dB (i.e., a factor of ) simply by doubling the number of spins
(and, in turn, the simulation time), which would remain practical and feasible on consumer
hardware. Thus, it is readily feasible to use simulations of complex geometries to evaluate what
real signals can actually distinguish. We emphasize that the PSNR statistics provide a means
to quantify the sampling variation independent of the measure of interest (e.g., tensor FA,
generalized anisotropy, etc.). In continuing work, these types of simulations may be used to
study and optimize the manner in which diffusion MRI methods can be used to can
disambiguate restriction environments and improve the specificity of diffusion MRI
interpretation. These results can be used to investigate and design contrast mechanisms that
maximize specificity and sensitivity to changes of biological interest using a minimum number
of acquisitions.

RWS supports the SGP and arbitrary waveform (discretized) gradients. The system could be
readily extended (at the cost of additional computational complexity) to include continuously
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varying and parametric gradients via extension of the finite duration gradient waveform
interface. Since the full system is available in open source, anyone may use or adapt this system
as desired.

Monte-Carlo simulation of individual, three-dimensional axons provides a powerful
framework for evaluating potential biophysical underpinnings of diffusion. Additionally, it
presents exciting opportunities layering complexity into models to recapitulate various stages
of axon degeneration. For example, little is known about the content within the bulges so it
would be interesting to simulate different possible events and then see which ones correlate
with our observations in models. Additionally, at what scale are microscopic simulations
relevant to DTI at the present clinical resolution (in which we are not looking at individual
axons)? Finally, how many axons per voxel would have to demonstrate a similar pathology to
become detectable, and how would distributions of similarly, but non-identically, damaged
axons appear? The demonstrated RWS tool provides the numerical tools to quantitatively
pursue these questions for complex geometrical models, which will present fascinating areas
of continuing investigation.

In summary, RWS enables efficient, quantitative comparison of diffusion in biologically
relevant restriction geometries that are not analytically accessible. This simulation framework
may aid in the interpretation DTI, q-space, and higher order DWI methods as well as the
optimized development of new higher-order analysis techniques targeted to specific white
matter injuries.
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Figure 1.
Simulations of free diffusion. Error between theoretical and simulated diffusion probability-
density functions was minimized with 5–10 time-steps when the number of spins × the number
of time-steps was held constant. Curves show mean error ± standard error for three diffusion
times.
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Figure 2.
Simulations of restricted diffusion. Plots illustrate the mean estimated motion-probability
propagator perpendicular to the long axis of a cylinder with diameter 10 µm after 1 ms (A), 5
ms (B), and 25 ms (C) using three time-step durations. (The 5 ms time-step results are not
shown in (A) because a 1 ms time-step cannot be accomplished with an integer number of 5
ms steps.) PDFs computed with different time-steps result in similar findings when at least five
time-steps are performed. Note that simulated PDFs broaden with increased diffusion time.
Error bars, which are smaller than the data points, indicate examples of the standard error at
nine equally spaced distances.

Landman et al. Page 18

NMR Biomed. Author manuscript; available in PMC 2010 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Simulations of restricted diffusion in permeable cylinders with diameter 8 µm. The estimated
motion-probability propagators were consistent when the step size was much smaller than the
cylinder diameter for both permeability models. Table 1 summarizes quantitative differences.
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Figure 4.
Simulated axon damage. Four geometrical models of axon damage (A) were simulated for 2
ms (B) and 20 ms (C) with 25 repetitions each. The resulting motion-probability propagators
are shown as overlaid individual lines for parallel and perpendicular diffusivity. Note that the
differences in simulated probability and kurtosis excess (D and E) depend on geometric model,
diffusion time, and the displacement direction (i.e., diffusion perpendicular (⊥) or parallel (‖
to the long axis of the “axon”). Error bars in D and E show the standard deviation in kurtosis
excess, and * indicates significance at the p<0.01 level.
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Figure 5.
Reproducibility of simulated axon damage. Plots A–D show the 10th, 50th, and 90th percentile
isosurfaces of the motion-probability propagators estimated in each of the 25 repetitions.
Nested surfaces are constructed so that local color and position of vertices indicate the distance
corresponding to the indicated quantile of the probability of motion along the each direction.
Repetitions of each set of surfaces are nearly identical, so the isosurfaces from the separate
repetitions are difficult to distinguish except as slightly blurred lines. The spatial scales for the
figures corresponding to the two diffusion times are constant across panels but are different
from each other. Quantitative comparisons of the mean PSNR are shown for radial distance
(E) and angular orientation (F).
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Figure 6.
Simulation of finite duration diffusion encoding gradients. For each of 30 diffusion encoding
directions, the mean simulated attenuation was calculated with a finite gradient model
(horizontal axis) and the SGP model was compared with each Monte Carlo simulation (vertical
axis). Symbols indicate the mean difference while error bars indicate the standard deviation of
the observations.
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Figure 7.
Simulation of a bent axon using a mesh model. To demonstrate the ability to use arbitrary
meshes, a model of a bent axon was created (A). Note that a single element of the lattice is
shown and that the upper and lower square openings are continuous with the interiors of the
adjacent axon elements. Plots (B) show the simulated projections of the motion probability
propagator (for SGP, 10 ms diffusion time, and impermeable membranes) along x, y, and z.
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Table 2

Simulation Benchmarks

2 ms Diffusion Time 20 ms Diffusion Time

Axon Model Spin×Steps /s [× 105] Collisions/Step [%] Spin×Steps /s [× 105] Collisions/Step [%]

Healthy 1.11 ± 0.03 10.4 ± 0.01 0.79 ± 0.02 33.0 ± 0.02

Bulge 0.86 ± 0.02 6.7 ± 0.02 0.62 ± 0.01 21.1 ± 0.02

Crimped 0.67 ± 0.02 11.7 ± 0.01 0.43 ± 0.01 37.0 ± 001

Broken 0.73 ± 0.02 11.5 ± 0.01 0.49 ± 0.01 36.3 ± 0.01

All values shown mean ± standard deviation.
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