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Abstract
Oxidative injury to cells such as the retinal pigment epithelium (RPE) is often modeled using
H2O2-treated cultures, but H2O2 concentrations are not sustained in culture medium. Here medium
levels of H2O2 and cytotoxicity were analyzed in ARPE-19 cultures following H2O2 delivery as a
single pulse or with continuous generation using glucose oxidase (GOx). When added as a pulse,
H2O2 is rapidly depleted (within 2 hr); cytotoxicity at 24, determined by the MTT assay for
mitochondrial function, is unaffected by medium replacement at 2 hr. Continuous generation of
H2O2 produces complex outcomes. At low GOx concentrations, H2O2 levels are sustained by
conditions in which generation matches depletion, but when GOx concentrations produce cytotoxic
levels of H2O2, oxidant depletion accelerates. Acceleration results partly from the release of contents
from oxidant damaged cells as indicated by testing depletion after controlled membrane disruption
with detergents. Cytotoxicity analyses show that cells can tolerate short exposure to high H2O2 doses
delivered as a pulse but are susceptible to lower chronic doses. The results provide broadly applicable
guidance for using GOx to produce sustained H2O2 levels in cultured cells. This approach will be
specifically useful for modeling chronic stress relevant for RPE aging and have wider value for
studying cellular effects of sub-lethal oxidant injury and for evaluating antioxidants that may protect
significantly against mild but not lethal stress.
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INTRODUCTION
Hydrogen peroxide (H2O2) treatment of cultured cells is a commonly-used model to test
oxidative stress susceptibility or antioxidant efficiency in cell types that are at high risk for
oxidative damage in vivo, such as cells of the retinal pigment epithelium (RPE). The RPE is
located adjacent to the outer retina where it performs functions essential for photoreceptor
survival. Oxidative stress to the largely non-mitotic RPE cell layer over time is theorized to
produce tissue dysfunction that contributes to the development of age-related macular
degeneration (AMD) [1–3].
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The RPE is at high risk for oxidative stress since it resides in an environment of high oxygen
tension and is exposed to phototoxic blue light [4,5]. Among the reactive oxygen species to
which the cells are exposed is hydrogen peroxide. As in most cells, H2O2 is generated during
normal oxygen metabolism in mitochondria. In the RPE, H2O2 is also produced during daily
phagocytosis of shed photoreceptor outer segments [6] and is generated as a consequence of
light irradiation of the pigment melanin [7,8].

H2O2 has been used in many investigations of oxidative stress to the RPE in which the agent
was added to the culture medium of the immortalized human RPE cell line ARPE-19 followed
by various measures of cytotoxicity [9–16]. Since H2O2 is a small, non-charged molecule, it
easily crosses cell membranes and localizes in multiple sub-cellular compartments (for review
see [17]). The intrinsic chemical reactivity of H2O2 is relatively low, but on exposure to redox-
active metal ions, H2O2 decomposes to the very reactive hydroxyl radical (OH•) [18,19], which
is presumed to be responsible for hydrogen peroxide’s cytotoxicity.

Although H2O2 addition to cell cultures is a common model of stress induction, its
concentration in the medium over the period of cell treatment is usually not determined or
controlled. Concentration is of significance since the effects of H2O2 are concentration
dependent and range from physiological signaling [18,20–23] to overt cell death. H2O2 is
typically added to culture medium as a single pulse at empirically-determined concentrations
but the availability of H2O2 to cells changes over time as the agent is depleted from the medium.

The kinetics of H2O2 decomposition over short time frames (1–2 hr) has been examined in
cultures of several monolayer cell types [24,25] including the RPE [10]. In the analysis using
RPE cells, H2O2 concentration was examined in cultures under serum-free conditions and the
agent was found to be largely depleted from the culture medium within an hour of addition
[10]. H2O2 concentration was not, however, the major focus of this investigation and the assay
that was employed, which is based on the oxidation of o-dianisidine dihydrochloride [26], is
sensitive to the presence of oxygen. Here therefore we re-evaluated the time course of H2O2
availability to RPE cultures using a modification of an alternative, oxygen-insensitive method
that can be used to quantify H2O2 in biological samples [27]. By the addition of catalase to the
assay, the contribution of H2O2 can further be distinguished from organic hydroperoxides
[27,28]. Using this technique, we quantified changes in the concentration of hydrogen peroxide
over time in the culture medium of ARPE-19 cells and compared the results for oxidant
delivered by two methods: as a single-addition pulse, or by continuous enzymatic generation
using glucose/glucose oxidase. For the latter, H2O2 was determined over a long time course
(24 hr). Measurements of H2O2 depletion in culture medium were coupled with analyses of
ARPE-19 cell cytotoxicity.

MATERIALS AND METHODS
Reagents

Iron (II) ammonium sulfate hexahydrate (Mohr’s Salt) was from Fisher Scientific (Fair Lawn,
NJ, USA). Bovine Serum Albumin (BSA), Butylated Hydroxytoluene (BHT), catalase,
digitonin, glucose oxidase (from Aspergillus niger), 3-[4,5-dimethylthiazo-2-yl]-2,5-diphenyl
tetrazolium bromide (MTT), and xylenol orange disodium salt were from Sigma-Aldrich
ChemieGmbh (Steinheim, Germany). Hydrogen peroxide was from Standard Company
(Lublin, Poland). Dimethyl Sulfoxide (DMSO) and methanol were from Polish Chemical
Reagents (POCh; Gliwice, Poland). Penicillin and streptomycin were from Polfa Tarchomin
S.A. (Warsaw, Poland).
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Hydrogen peroxide treatment of cell cultures
ARPE-19 cells (American Type Culture Collection, Rockville, MD) were propagated using
twice weekly feedings of Minimal Essential Medium (MEM) containing 10% fetal bovine
serum (FBS) and antibiotics (penicillin 150 U/ml and streptomycin 0.1 mg/ml). For H2O2
treatment experiments, cells were plated in MEM containing 10% FBS in 24-well plates at a
density of 100×103 cells/cm2 to produce confluency on day 1 post-plating when exposure to
H2O2 was initiated. Two H2O2 treatment protocols were used: pulse delivery of a range of
concentrations of H2O2, or addition of glucose oxidase to initiate continuous enzymatic
generation of the oxidant.

For pulse delivery, culture medium was first removed and cells were rinsed twice with
phosphate-buffered saline (PBS) containing calcium and magnesium ions (PBS-Ca/Mg).
Cultures were fed with MEM, plus or minus 10% FBS, containing either no H2O2 (control) or
a range of concentrations of H2O2 to 400 μM, freshly prepared in deionized water. After
incubation with the oxidant for intervals to 3 hrs, cells were rinsed twice with PBS-Ca/Mg then
re-fed with fresh MEM plus 10% FBS.

For continuous enzymatic generation of H2O2, the cultures were first re-fed with fresh MEM
containing 10% FBS. Glucose oxidase (GOx) was then added to the medium to initiate the
generation of H2O2 by oxidation of the glucose contained in MEM (1 mg/ml D-glucose). Stock
solutions of GOx were pre-prepared by solubilizing the enzyme in 50 mM sodium acetate
buffer, pH 5.1, at a concentration of 10 kU/ml and storing aliquots at −20 °C. Just prior to use,
stock solutions were thawed, diluted and added to the culture medium to produce final
concentrations of 3–10 mU/ml. GOx was also added to medium in culture wells lacking cells
to determine H2O2 production in the absence of culture monolayers.

After addition of H2O2 (pulse delivery) or of GOx (to initiate continuous H2O2 generation),
aliquots of culture medium were retrieved at intervals to determine H2O2 levels and cells were
harvested after 24 hr to assay for cytotoxicity by the methods described below.

In some experiments membrane disrupting agents were added to cultures to determine whether
release of cellular contents such as antioxidant enzymes affected H2O2 decomposition in the
culture medium. For these experiments, release was titrated using digitonin as previously
described [29,30]. Briefly, digitonin was prepared by dissolving the agent in water at 100 mg/
ml with heating (98° C), then cooling to room temperature and adding to culture medium with
serum to generate a concentration of 1.0 mg/ml. To produce a graded disruption of membrane
compartments, serial dilutions of digitonin in medium were prepared in the range of 0.0001–
1.0 mg/ml for addition to ARPE-19 cultures. Complete membrane disruption was achieved by
the addition of 0.1% Triton X-100 [29,30,31] in culture medium containing serum. Fifteen
minutes after the addition of digitonin or Triton X-100, H2O2 was added as a pulse or glucose
oxidase was added at a final concentration of 10 mU/ml to initiate H2O2 generation. Medium
H2O2 was determined following a 1 hr incubation as described below.

Hydrogen peroxide determination
Hydrogen peroxide concentration in culture medium was determined by a modified Ferrous
Oxidation – Xylenol Orange (FOX2) assay [27,28,32]. Concentrated FOX reagent contained
1 mM xylenol orange disodium salt and 2.5 mM ammonium ferrous sulfate (Mohr’s salt) in
250 mM H2SO4. Just prior to use, one volume of concentrated reagent was added to 9 volumes
of methanol containing 4.4 mM butylated hydroxytoluene (BHT) to produce complete FOX
reagent.

For the assay, an aliquot of medium retrieved from ARPE-19 cultures (100 μl MEM, plus or
minus 10% FBS), was mixed with 900 μl complete FOX reagent. Samples were incubated for

Kaczara et al. Page 3

Free Radic Biol Med. Author manuscript; available in PMC 2011 April 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



30 min at room temperature and centrifuged for 10 min at 20,200 × g. Absorbance of the
supernatant was read spectrophotometrically at 560 nm against methanol as background
control. Preliminary experiments were conducted to confirm that the presence of serum did
not affect H2O2 measurement. As shown (Fig. 1), hydrogen peroxide determinations did not
differ for a range of concentrations of H2O2 added to MEM either lacking serum or containing
10% FBS.

Since oxidation of ferrous to ferric ions in biological samples could also result from the
interaction of ferrous ions with organic hydroperoxides, H2O2 specificity was confirmed by
measuring absorbance in samples without and with catalase as previously described [28] using
catalase at a final concentration of 220 U/ml in the assay mix.

Cytotoxicity assay—Cytotoxicity was determined by the MTT assay for mitochondrial
redox function 24 hr after treatment of ARPE-19 cultures with H2O2 or GOx. According to
the protocol, a stock solution of MTT (5.0 mg/ml in PBS) was diluted with MEM/10% FBS
to a final concentration of 0.5 mg/ml and added to cells in control (untreated) or H2O2-treated
culture wells. After incubation for 90 min at 37° C, the resulting blue precipitate was solubilized
in DMSO:ethanol (1:1). Absorbance at 560 nm was determined and results are reported as a
percent of untreated controls.

RESULTS AND DISCUSSION
Pulse delivery of H2O2

The response of cultured cells to chemical oxidants such as H2O2 is likely determined by both
the concentration of the agent and the time of exposure. The most common method for
delivering H2O2 to cultures is as a single addition (pulse) into the medium, but the time of
exposure is not well controlled using this protocol because the initial concentration is not
sustained (Fig. 2). In the absence of cells, H2O2 concentration in culture medium declines
slowly with time (Fig. 2A). As illustrated for an initial concentration of 200 μM, the depletion
rate is similar over 2 hr at 37° C in the absence and presence of serum (Fig. 2A). It is not clear
which component(s) of MEM is responsible for the slow but measureable decomposition of
H2O2 in medium, which is nearly an order of magnitude higher than in PBS (data not shown).
Perhaps amino acids present in MEM, such as methionine, cysteine and tryptophane, interact
with H2O2, leading to its consumption [33,34]. Serum, however, has little effect on H2O2
stability.

In the presence of cells, H2O2 concentration in culture medium undergoes a much more rapid,
exponential decrease with incubation time in both the absence and presence of serum (Fig.
2B). As shown for a starting H2O2 concentration of 200 μM, the half time of depletion is 35
minutes. By 2 hr the concentration of H2O2 in culture medium had diminished more than 10-
fold. Similar outcomes are obtained for starting H2O2 concentrations across the range of 100–
400 μM (Fig. 2C). A rapid depletion of H2O2 from serum-free medium exposed to RPE cultures
was previously obtained using another method [10]. An apparent linear loss was shown
(although kinetics were not discussed), while we observed an exponential decline. Exponential
decay is consistent with results observed for other cell types [24] and indicates a first order
reaction with dependence on substrate concentration. Regardless of the kinetics, from the
pragmatic point of view, the significant observation is that H2O2 is not sustained at the added
concentration when the agent is delivered as a pulse.

It is well established that H2O2 added to the medium of ARPE-19 cells as a single pulse
produces an oxidant dose-dependent cytotoxicity that can be detected by the MTT assay 24 hr
after treatment [9,13,35] (Fig. 3). Since H2O2 is largely depleted from culture medium within
2 hr (Figs. 2B, C), one would expect similar cytotoxicity whether the medium is replaced with
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fresh medium at 2 hr after oxidant addition or remains unchanged until the time of assay. As
shown, similar outcomes are in fact obtained (Fig. 3).

Continuous enzymatic generation of H2O2
Since H2O2 is labile in culture medium, sustained exposure to a given concentration is difficult
to achieve when the agent is delivered in a single pulse. An alternative method for sustained
H2O2 treatment of cultures is to continuously generate the product from medium glucose using
glucose oxidase (GOx). This approach has been used for short-term treatment of cultured cells
[30,36,37] including, recently, ARPE-19 cells [38]. However, the concentrations of H2O2 that
are achieved or sustained in culture over longer time frames (to 24 hr) have not been determined,
nor has cytotoxicity under these conditions of continuous exposure been evaluated.

The addition of GOx to culture medium (MEM) produces a linear rate of accumulation of
H2O2 as a function of enzyme concentration during the first hour of incubation in both the
absence and presence of ARPE-19 cells (Fig. 4A and B, insets), although the rate of
accumulation in the absence of cells is approximately twice as great as when cells are present.
In the absence of cells, H2O2 concentration continues to increase over 24 hr, albeit at a lower
rate than during the first hour (Fig. 4A and Table 1), perhaps because of partial GOx inhibition
by glucose oxidation products such as hydrogen peroxide [39,40].

In the presence of cells (Fig. 4B), the concentration of H2O2 in the culture medium over time
after GOx addition is strikingly different than in the absence of cells, and the pattern differs
with enzyme concentration. With lower amounts of GOx (e.g., 3 mU/ml) H2O2 concentration
in the medium is nearly stationary in the presence of cells, at least during the first 8 hrs after
GOx addition. This outcome probably results from conditions in which the rates of H2O2
production and decomposition are approximately equal. With higher GOx amounts (e.g., 8 or
10 mU/ml), H2O2 concentration exhibits a complex dynamic. The concentration continues to
rise after the first hour of enzyme addition, peaks at approximately 5 hrs, then decreases
thereafter. Using 8 mU/ml GOx delivery to the ARPE-19 cultures as an example, H2O2
concentration achieved a maximum concentration of 70 μM at 5 hr and then declined to 40
μM by 24 hr (Fig. 4B). (The possible mechanisms underlying these changes in medium content
of H2O2 are discussed in the next section.)

As for delivery of H2O2 in a single pulse (Fig. 3), GOx addition to culture medium also produces
a dose-dependent cytotoxic response in confluent ARPE-19 cultures quantified by the MTT
assay at 24 hr post addition (Fig. 5). Low amounts of added enzyme (e.g., 3 mU/ml) had little
effect, but cytotoxicity was substantial at higher concentrations (e.g., 8 and 10 mU/ml) (Fig.
5A). This observation is noteworthy because the peak concentrations of H2O2, achieved at 5
hr post addition of higher concentrations enzyme (Fig. 4B), were relatively low as compared
to peak concentrations that produced cytotoxicity when H2O2 was added in a single pulse (Fig.
3). Using 8 mU/ml GOx again as an example, the peak concentration of 70 μM H2O2 produced
by this amount of enzyme reduced MTT by more than 60% at 24 hr (Fig. 5B), yet 250–300
μM H2O2 was required to produce comparable MTT reductions when the oxidant was delivered
as a pulse (Fig. 3). Clearly, however, the dynamics of oxidant exposure to cells differ under
the two conditions. When delivered as a pulse, H2O2 is depleted fairly rapidly (Fig. 2) while
the GOx-treated cells were exposed to more sustained moderate concentrations over the full
24 hr incubation time (Fig. 4B).

Cytotoxicity and H2O2 depletion in ARPE-19 cell cultures
As discussed above, the depletion of H2O2 added to culture medium is accelerated, and the
accumulation of H2O2 generated enzymatically is suppressed, in the presence of ARPE-19
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cells as compared to their absence. Cell dependent factors are therefore a major determinant
of H2O2 availability to cultures over time.

When H2O2 is delivered to or generated outside cells, a gradient is established across the cell
membrane [30] that depends not only on the extracellular concentration of the oxidant, but also
on plasma membrane permeability to H2O2 [17,24,25] and on the amount and availability of
enzymes that decompose H2O2, which include glutathione peroxidase (GPx) and catalase
[24,25]. Experiments described above involving GOx administration to ARPE-19 cultures
suggested that the moderate fluxes of H2O2 produced by low amounts of enzyme (e.g. 3 mU/
ml) yield conditions in which the generation of oxidant is in balance with its removal from
medium such that H2O2 does not continue to accumulate after the first hour (Fig. 4B). However,
at enzyme levels above 5 mU/ml a different dynamic occurs in the ARPE-19 cultures; H2O2
concentration transiently increases (to 5 hrs) then decreases. Since cell toxicity also occurs at
the higher enzyme amounts (Fig. 5A), we theorized that H2O2-induced cellular damage
mediated the late fluctuations in medium oxidant concentration. Specifically, we hypothesized
that release of cellular contents due to oxidant-induced cell membrane damage contributes to
H2O2 medium depletion.

To test this hypothesis, ARPE-19 cells were subjected to detergent treatment to solubilize cell
membranes, followed by analysis of medium H2O2 concentration. As shown (Fig. 6),
disruption of cell membranes with Triton X-100 or high concentrations of digitonin (1.0 mg/
ml) elicits rapid depletion of H2O2 added to culture medium. To further evaluate the effects of
membrane disruption, membrane damage was titrated by treatment with a range of digitonin
concentrations using methods developed to elicit a sequential release of contents from sub-
cellular compartments [29,30]. For these experiments, H2O2 was generated by GOx addition
to the ARPE-19 cultures after digitonin treatment; preliminary experiments confirmed that
detergent did not inhibit GOx activity (not shown). H2O2 concentration in the culture medium
was measured after 1 hr of incubation and expressed as a ratio of the H2O2 concentration after
full membrane disruption (with Triton treatment) to partial membrane disruption (with varying
digitonin levels) (Fig. 7). The ratio (approximately 0.3) was found to be nearly constant in
lower concentrations of digitonin (to 0.05 mg/ml), but increased biphasically, initially to 0.4
at intermediate digitonin levels (0.1 to 0.3 mg/ml), and then to 1.0 at high levels (0.3 – 1.0 mg/
ml). A similar pattern of ratios was obtained for additional GOx concentrations and incubation
times (not shown).

These results suggest that cytotoxic levels of H2O2 sufficient to cause membrane leakiness in
cultured cells, which could occur as a consequence of H2O2–induced oxidation of unsaturated
membrane lipids [41–43], contributes to the depletion of medium H2O2. The released cellular
contents that produce accelerated H2O2 depletion on detergent treatment were not identified,
but it is likely that contributors include H2O2–degrading enzymes GPx and catalase. The
biphasic depletion effects resulting from digitonin treatment may also be attributed to these
two enzymes, which are differentially compartmentalized within cells; GPx is cytosolic
whereas catalase is largely confined to peroxisomes. Lower concentrations of digitonin are
expected to disrupt plasma membranes releasing largely GPx, while higher concentrations
sufficient to disrupt organellar membranes [29,30] could release catalase from peroxisomes.
Regardless of the mediators of H2O2 depletion following membrane disruption, an important
contributor to the dynamic changes in H2O2 availability to cultures over time appears to be the
extent to which cells remain intact.

Technical and biological ramifications
H2O2 has multiple cellular effects ranging from cell signaling [18,20–23] to cell killing that
are investigated using in vitro systems in which the oxidant is delivered via the culture medium.
H2O2 concentration and time of exposure are difficult to control, however, because of the
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multiple dynamic mechanisms that affect H2O2 availability. As shown here, sustained exposure
over long periods to known concentrations of H2O2 can be achieved by enzymatic generation
using glucose oxidase. These conditions are arguably more physiologically relevant than those
resulting from a single addition of a high H2O2 concentration, especially for modeling chronic
oxidative stress, but the enzyme must be titrated carefully since fluxes that produce prominent
cytotoxicity also produce accelerated depletion. The outcomes obtained here for ARPE-19
cells likely apply to other cultured cell types as well, although experimental conditions would
require adjustment to accommodate cell type differences in membrane permeability to H2O2
[17,24,25] or concentrations of H2O2-degrading antioxidant enzymes. The RPE has notably
high activities of GPx and catalase [44,45].

Here we evaluated cytotoxicity at a late time point (24 hr) after onset of H2O2 treatment and
used reductions in mitochondrial redox function (MTT assay) as a toxicity measure. In
ARPE-19 cells, other time points and other toxicity measures have been used [9–16,35,46–
48]. Although H2O2 concentration changes dynamically over time especially after pulse
addition, outcomes are typically determined at a fixed post-treatment interval. Comparison of
concentrations of H2O2 that produce cytotoxicity at 24 hr in ARPE-19 cultures after pulse
delivery versus continuous generation suggest that some cells in the culture population can
tolerate short term exposure to high concentrations; it takes a high pulse dose to produce
cytotoxicity comparable to a lower chronic dose. Little is known, however, about when cell
death begins after initiation of H2O2 exposure, but this is relevant because it is during the
window between initial exposure and cell death that antioxidants could function to increase
the fraction of surviving cells. Cell death is clearly not immediate, and different antioxidants
may be effective at different times following exposure. Identifying such effective agents in the
future may require both well controlled H2O2 concentrations, perhaps using methods described
here, and dynamic measures of cytotoxicity, such as those we have recently used to evaluate
the effects of photic stress [49].

One goal in conducting this study was to determine whether H2O2 could be used to model
chronic oxidative stress that is sub-lethal for the RPE. There is growing interest in sub-lethal,
stress-induced injury to the RPE [35,44,48,50], which is considered relevant for RPE aging
and ultimately for understanding how RPE stress contributes to retinal degenerations like
AMD. Sustained enzymatic generation of moderate levels of H2O2, perhaps spiked with
transient higher levels of added oxidant, may be a useful model to identify tissue-specific
dysfunctions elicited in the RPE by sub-lethal oxidative stress. Sub-lethal stress models may
also be required to identify therapeutically-important agents that are competent to protect
against cumulative injury, but not against the overt cell death that is typically induced in models
of acute stress involving agents such as hydrogen peroxide.
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AMD Age-related Macular degeneration

FBS Fetal Bovine Serum

FOX Ferrous Oxidation Xylenol orange assay

GOx Glucose Oxidase

GPx Glutathione Peroxidase
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MEM Minimum Essential Medium

PBS Phosphate-Buffered Saline

PBS-Ca/Mg Phosphate-Buffered Saline containing Calcium and Magnesium ions

RPE Retinal Pigment Epithelium
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Fig. 1.
H2O2 determinations in the presence and absence of serum using the FOX2 assay. Calibration
curves for H2O2 concentrations in the range of 0 – 200 μM were measured immediately after
oxidant addition to MEM without (X; linear regression: y = 0.0041x − 0.0018, r2 = 0.9999)
and with 10% FBS (□; linear regression: y = 0.0042x − 0.0135, r2 = 0.9998).
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Fig. 2.
H2O2 depletion in culture medium incubated alone (A), or incubated in the presence of
ARPE-19 cells (B and C). For A and B, 200 μM H2O2 was added to the medium at time 0 and
aliquots of medium were withdrawn at intervals to 120 min for determination of H2O2. (A)
H2O2 decomposition was similar in culture medium in the absence (▲) and presence (●) of
serum (decay rate constants were kd = 0.0020 min−1 and 0.0027 min−1, respectively). (B)
H2O2 decomposition was more rapid in medium incubated with cells but did not differ in the
absence (▲) and presence (●) of serum; decay rate constants were kd = 0.0228 min−1 and
0.0198 min−1, respectively. Addition of catalase to medium with serum confirms the specificity
of the determinations for H2O2 (O). (C) H2O2 was added to serum-containing medium in a
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range of concentrations: 100 μM (■), 200 μM (●) and 400 μM (◆); decay rate constants were
kd = 0.0192 min−1, 0.0198 min−1 and 0.0211 min−1, respectively.
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Fig 3.
Cytotoxicity in confluent cultures of ARPE-19 cells after addition of H2O2. A range of
concentrations of H2O2 from 0–400 μM was added to serum-containing MEM. Cytotoxicity
was estimated 24 hr after H2O2 addition by the MTT assay in cultures in which the medium
was not replaced (solid bars) or was replaced at 2 hr with fresh, H2O2–free MEM (hatched
bars). Data, expressed as a percent of the untreated control, are from three independent
experiments and are the means of three culture wells per group. Error bars indicate SD.
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Fig. 4.
H2O2 concentration in culture medium generated from D-glucose after addition of glucose
oxidase (GOx). GOx was added to the medium of culture wells without (A) or with (B)
confluent cultures of ARPE-19 cells at the following concentrations: 0 (■) (control, without
GOx), 3 mU/ml (●), 5 mU/ml (▲), 8 mU/ml (▼;), 10 mU/ml (◆). Aliquots of medium were
taken at intervals to 24 hr and H2O2 concentration was determined. Since higher medium
concentrations are achieved in the absence of cells, different y-axis scales are used. Data are
from three independent experiments and are the means of three culture wells per group in each
experiment. Error bars indicate SD.
The insets show the medium concentration of H2O2 at 1 hr post addition of 0 – 10 mU/ml GOx
to illustrate the initial linear accumulation of H2O2 as a function of enzyme concentration and
the more rapid accumulation in the absence (inset A) as compared to the presence (inset B) of
cells.
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Fig 5.
Cytotoxicity in confluent cultures of ARPE-19 cells after addition of glucose oxidase (GOx).
GOx was added to serum-containing culture medium in a range of concentrations (3 [●], 5
[▲], 8 [▼], and 10 mU/ml [◆]), and cytotoxicity was estimated after 24 hr by the MTT assay
with results reported as a percent of the no GOx control (■). Cytotoxicity is shown as a function
of (A) GOx concentration and (B) the peak concentration of H2O2 achieved at 5 hr post GOx
addition. The H2O2 concentrations were determined from the results of the paired experiment
shown in Figure 4B. Data, expressed as a percent of the untreated control, are from three
independent experiments and are the means of three culture wells per group in each experiment.
Error bars indicate SD.
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Fig. 6.
H2O2 depletion in serum-containing culture medium incubated in the presence of intact
ARPE-19 cells (●) or ARPE-19 cells disrupted by a 15 min pre-incubation in 0.1% Triton
X-100 (O) or 1 mg/ml digitonin (X). H2O2 (200 μM) was added to the medium and aliquots
of medium were withdrawn at intervals thereafter to 120 min for determination of H2O2.
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Fig. 7.
H2O2 in serum-containing culture medium incubated with ARPE-19 cells disrupted by
detergent treatment. Cells were pre-treated for 15 min with a range of concentrations of
digitonin (0.0001 – 1.0 mg/ml) to produce partial cell disruption, or 0.1% Triton X-100 to
produce full disruption. Glucose oxidase (10 mU/ml) was added to the culture medium to
initiate H2O2 generation and medium concentrations of H2O2 were determined after 1 hr. Data
are means of two culture wells in two independent experiments and are reported as the ratio
of the H2O2 concentration in fully disrupted (Triton X-100) to partially disrupted (in digitonin)
cells. Error bars indicate SD.
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Table 1

Rates of H2O2 production by oxidation of D-glucose in MEM measured in culture medium without cells at
intervals after GOx addition.

Glucose oxidase
(GOx) [mU/ml]

Rates of H2O2 production in medium without cells (μM × h−1 )

during hr 1 hrs 1–8 hrs 8–24

2 18.6 4.8 5.6

3 29.2 9.2 8.1

5 51.3 20.2 15.2

8 76.1 42.3 22.8

10 96.4 56.1 26.0
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