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Abstract

Basic helix-loop-helix (bHLH) proteins are a class of transcription factors found throughout eukaryotic organisms.
Classification of the complete sets of bHLH proteins in the sequenced genomes of Arabidopsis thaliana and Oryza sativa
(rice) has defined the diversity of these proteins among flowering plants. However, the evolutionary relationships of
different plant bHLH groups and the diversity of bHLH proteins in more ancestral groups of plants are currently unknown.
In this study, we use whole-genome sequences from nine species of land plants and algae to define the relationships
between these proteins in plants. We show that few (less than 5) bHLH proteins are encoded in the genomes of
chlorophytes and red algae. In contrast, many bHLH proteins (100-170) are encoded in the genomes of land plants
(embryophytes). Phylogenetic analyses suggest that plant bHLH proteins are monophyletic and constitute 26 subfamilies.
Twenty of these subfamilies existed in the common ancestors of extant mosses and vascular plants, whereas six further
subfamilies evolved among the vascular plants. In addition to the conserved bHLH domains, most subfamilies are
characterized by the presence of highly conserved short amino acid motifs. We conclude that much of the diversity of

plant bHLH proteins was established in early land plants, over 440 million years ago.
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Introduction

The basic helix-loop-helix (bHLH) domain is a highly con-
served amino acid motif that defines a group of transcrip-
tion factors. It was originally described in animals (Murre
et al. 1989) and soon discovered in all the major eukaryotic
lineages. Proteins that contain a bHLH domain (referred to
as bHLH proteins) are involved in a myriad of regulatory
processes. Their functions include regulating neurogenesis,
myogenesis, and heart development in animals (Massari
and Murre 2000; Jones 2004); controlling phosphate uptake
and glycolysis in yeast (Robinson and Lopes 2000); or
modulating secondary metabolism pathways, epidermal
differentiation, and responses to environmental factors
in plants (Ramsay and Glover 2005; Castillon et al. 2007).

The bHLH domain consists of 50-60 amino acids that
form two distinct segments: a stretch of 10-15 predomi-
nantly basic amino acids (the basic region) and a section of
roughly 40 amino acids predicted to form two amphipathic
a-helices separated by a loop of variable length (the helix-
loop-helix region). Structural analyses of mammalian and
yeast bHLH proteins showed that the basic region forms
the main interface where contact with DNA occurs,
whereas the two helices promote the formation of homo-
or heterodimers between bHLH proteins, a prerequisite for
DNA binding to occur (Jones 2004).

Phylogenetic analyses have classified the diversity of
bHLH proteins into a number of distinct groups. Over
50 bHLH proteins are encoded in the genomes of most an-

imals (metazoans) and are typically classified into six major
groups (A-F), based on their ability to bind DNA (Atchley
and Fitch 1997; Ledent and Vervoort 2001; Jones 2004). De-
tailed analyses using whole-genome sequences showed
that animal bHLH could be further classified in several
smaller subfamilies that are highly conserved across major
metazoan lineages (Ledent and Vervoort 2001; Simionato
et al. 2007). Phylogenetic analyses indicate that 44 of these
subfamilies were present in the common ancestor of all bi-
laterians, which is thought to have existed sometime before
600 million years ago (Ma) (Simionato et al. 2007). The ge-
nomes of Arabidopsis thaliana and Oryza sativa (rice) en-
code even more bHLH sequences than animals. Different
phylogenetic studies proposed the classification of plant
bHLH into 15-25 subgroups (Buck and Atchley 2003; Heim
et al. 2003; Toledo-Ortiz et al. 2003; Li et al. 2006b). How-
ever, the origin and evolutionary history of these groups
cannot be understood using A. thaliana and O. sativa se-
quences alone. The characterization of the evolution of
plant bHLH diversity requires the phylogenetic analysis
of bHLH proteins from a more diverse selection of plants,
including algae, bryophytes, and different lineages of vascu-
lar plants.

In this study, we characterized the evolution of bHLH
proteins in plants, defined here as the organisms that
are likely to have been derived from the primary endosym-
biotic event that gave rise to the red algae, chlorophytes,
and land plants (Rodriguez-Ezpeleta et al. 2005). We show
that the plant bHLH family is monophyletic and underwent
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a major radiation before the evolution of the mosses. The
bHLH groups established in the early land plants over 400
Ma were conserved during subsequent plant evolution,
although there were many gene duplications and losses
within these groups. Our analysis defines 26 subfamilies
that represent deep evolutionary relationships between
plant bHLH proteins.

Materials and Methods

Sequence Retrieval

The A. thaliana bHLH reported by Bailey et al. (2003), Heim
et al. (2003) and Toledo-Ortiz et al. (2003) were retrieved
from The Arabidopsis Information Resource (http://www.
arabidopsis.org/). A clear bHLH domain was not found in
At1g31050 (AtbHLH111) and At1g22380 (AtbHLH152), so
they were not further used in this study; we could not find
At2g20095 (AtbHLH133) and At4g38071 (AtbHLH131) in
any database. A data set of predicted O. sativa L. ssp. japon-
ica bHLH proteins was retrieved from the Plant TFDB (Guo
et al. 2008) and combined with the bHLH protein sequen-
ces reported by Li et al. (2006b), retrieved from the Rice
Genome Annotation Project (http://rice.plantbiology.msu.
edu/). Eleven new proteins were numbered following the
nomenclature style of Li et al. (2006b), whereas a clear
bHLH was not found in Os01g65080 (OsbHLH033),
0s04g35000 (OsbHLH145), Os11g02054 (OsbHLH160),
and Os12g02020 (OsbHLH161). A data set of predicted
Physcomitrella patens bHLH was retrieved from the Plant
TFDB (Guo et al. 2008). A direct search of genes annotated
as bHLH was performed on the genome assembly of
Selaginella moellendorffii v1.0 (http://www.jgi.doe.gov/).
HMMsearch (Eddy 1998) was used to screen the genome
assemblies of Cyanidioschyzon merolae (Matsuzaki et al.
2004), Chlamydomonas reinhardtii v3.0 (Merchant et al.
2007), Ostreoscoccus tauri v2.0 (Palenik et al. 2007), Thalas-
siosira pseudonana v3.0 (Armbrust et al. 2004), and the
draft assemblies of Chlorella vulgaris C-169 and Volvox car-
teri (http://www.jgi.doe.gov/) with the PFAM profile hid-
den Markov model (pHMM) HLH_ls.hmm (http://pfam.
sanger.ac.uk/).

Five Homo sapiens and four Amphimedon queenslandica
(demosponge) representative sequences of the major
metazoan groups of bHLH proteins (based on Jones
2004; Simionato et al. 2007) were retrieved from GenBank;
group F proteins are not clearly alignable to other bHLH
(Ledent et al. 2002) and so they were not used in this study.
The Saccharomyces cerevisiae bHLH proteins reported by
Robinson and Lopes (2000) were retrieved from http://
www.yeastgenome.org/.

For simplicity, all sequences were renamed according to
the supplementary table S1 (Supplementary Material on-
line). The complete amino acid sequence of all proteins
can be found in supplementary data 1 (Supplementary Ma-
terial online).

Alignment and Phylogenetic Analysis
Protein sequences were prealigned using HMMalign (Eddy
1998) and the pHMM HLH_Ilshmm from PFAM (http://

pfam.sanger.ac.uk/). The bHLH region was then extensively
manually aligned in BioEdit (http://www.mbio.ncsu.edu/
BioEdit/BioEdit.html). Unambiguous aligned positions
were used for the subsequent phylogenetic analyses (sup-
plementary fig. S1, Supplementary Material online). The
Jones, Taylor, and Thorton (JTT) model was selected as
the best-fitting amino acid substitution model with the
Akaike information criterion implemented in ProtTest
(Abascal et al. 2005). The maximum likelihood (ML) anal-
yses were done with the program PhyML version 3.0.1
(Guindon and Gascuel 2003) using the JTT model of amino
acid substitution, an estimated gamma distribution
parameter and an Shimodaira-Hasegawa-like approximate
likelihood ratio test. The PHYLIP package version 3.67 (Fel-
senstein 1989) was used to perform 100 bootstrap replicas
of a neighbor joining (N)) tree based on a JTT distance ma-
trix. PAUP* version 4.0b10 (Swofford 2003) was used to per-
form 100 bootstrap replicas of a maximum parsimony (MP)
tree. The Bayesian analysis was performed with MrBayes
version 3.1.2 (http://mrbayes.csit.fsu.edu/): two indepen-
dent runs were computed for 10 million generations, at
which point the standard deviation of split frequencies was
less than 0.01; one tree was saved every 100 generations,
and 75,000 trees from each run were summarized to give
rise to the final cladogram. All trees were visualized using
the program Figtree (http://tree.bio.ed.ac.uk/software/
figtree/).

Alignments of the bHLH domain of related sequences
were used to build pHMMs with HMMbuild (Eddy
1998). The pHMMs were used to classify proteins not used
in the phylogenetic analyses in the plant bHLH subfamilies.
The pHMMs were visualized with HMM Logo (Schuster-
Bockler et al. 2004).

Detection of Conserved Motifs

The MEME and FIMO software (Bailey and Elkan 1994)
were used to discover patterns in the complete amino acid
sequences of plant bHLH proteins. Each motif was individ-
ually checked so that incorrect or insignificant matches
were discarded. The complete plant amino acid sequences
were also screened against the PFAM 23.0 database (http://
pfam.sanger.ac.uk/).

Results

All the Major Groups of Land Plants Have Large
Numbers of bHLH Proteins

Previous phylogenetic analyses of plant bHLH proteins
were based on the genome sequences of A. thaliana and
O. sativa (Buck and Atchley 2003; Heim et al. 2003;
Toledo-Ortiz et al. 2003; Li et al. 2006b). This provided a use-
ful, but limited, phylogenetic framework for the classifica-
tion of bHLH proteins in flowering plants (angiosperms).
Nevertheless, it provided no insight into the diversity of this
family in the earlier diverging groups of land plants. To de-
termine if these subfamilies were angiosperm specific or if
they arose earlier in plant evolution and to understand the
deeper evolutionary history of this family in plants, we
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Species Number of bHLH

Monocots

S TR e
Vascular plants Eudicots Arabidopsis thaliana 158

Land plants Lycophytes Selaginella moellendorffi 103
Mosses Physcomitrella patens 98
Chlorophyceae Volvox carteri 3
4‘—: Chlamydomonas reinhardltii 3
Plants Chlorophyta Trebouxiophyceae Chlorella vulgaris 4
Prasinophyceae Ostreococcus tauri 1
Red algae Cyanidioschyzon merolae 1
Diatoms - Thalassiosira pseudonana 5
Fungi Saccharomyces cerevisiae 8?

Sponges

W Amphimedon queenslandica 16°
Mammals 118°

Homo sapiens

Fic. 1. Phylogenetic relationships of the species used in this study. The total number of bHLH proteins found in the genome of each species is
indicated. The cladogram is based on the current view of plant and eukaryotic phylogeny (Baldauf 2003; Lewis and McCourt 2004; Rodriguez-
Ezpeleta et al. 2005); “Robinson and Lopes (2000); bSimionato et al. (2007).

searched for bHLH protein coding sequences in the com-
plete genome of the lycophyte S. moellendorffii, the moss P.
patens, the chlorophytes V. carteri, C. reinhardtii, C. vulgaris,
and O. tauri, and the red alga C. merolae. These sequences
were combined with the previously reported A. thaliana
and O. sativa sequences to generate a primary data set con-
sisting of 544 bHLH sequences representing the major evo-
lutionary lineages of plants (fig. 1). We then extended this
data set to include proteins from selected eukaryotic
groups: the full set of bHLH proteins encoded in the ge-
nomes of the diatom T. pseudonana and the fungi S. cer-
evisiae, plus representative bHLH sequences from the
sponge A. queenslandica and H. sapiens (fig. 1).

There are large numbers of bHLH proteins in all species of
land plants (embryophytes) sequenced to date. A. thaliana
and O. sativa have over 150 bHLH sequences in their ge-
nomes, making it the second largest family of transcription
factors in angiosperms (Xiong et al. 2005). Approximately
100 bHLH proteins are encoded in the genomes of the
lycophyte S. moellendorffii and the moss P. patens (fig. 1).
In contrast, we found less than five bHLH-encoding sequen-
ces in the genome of each chlorophyte and red alga exam-
ined. Other unicellular eukaryotic organisms such as the
diatom T. pseudonana and S. cerevisiae also have small num-
bers (less than 10) of bHLH proteins (fig. 1, Robinson and
Lopes 2000). In animals, the sponge A. queenslandica has
16 bHLH-encoding genes, whereas most bilaterians have
over 50 genes (Simionato et al. 2007).

Animals and land plants have considerably more bHLH
sequences than other eukaryotic organisms. This suggests
that the increase in the number of bHLH proteins occurred
independently during the evolution of plants and animals.

Key Amino Acid Residues Are Highly Conserved
Between Plant and Metazoan bHLH Proteins

To characterize the molecular evolution of plant bHLH pro-
teins, we aligned the retrieved amino acid sequences in the
conserved bHLH region (fig. 2, supplementary fig. S1, Sup-
plementary Material online). The first 10-15 amino acids
correspond to the basic region, where most interactions
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with the DNA are made (Ferré-D’Amaré et al. 1993). Most
animal bHLH proteins bind to hexanucleotide sequences
(5'-CANNTG-3") known as E-boxes. All E-box-binding
bHLH proteins have a glutamic acid (E) residue at position
9 that directly contacts the DNA at the CA nucleotides of
the hexanucleotide sequence (Ferré-D’Amaré et al. 1993;
Atchley et al. 1999). In plants, the critical E residue is pres-
ent in 74% of the proteins analyzed (supplementary fig. 51,
Supplementary Material online). Other positions of the ba-
sic region allow a better discrimination of the target DNA
sequences and are easily distinguishable in the major ani-
mal bHLH groups (Atchley and Fitch 1997; Ledent and Ver-
voort 2001; Jones 2004; Atchley and Zhao 2007). Animal
group A proteins bind the CAGCTG (or CACCTG) E-
box configuration and have a diagnostic arginine (R) at po-
sition 8. Animalgroup B proteins havea lysine (K) or histidine
(H) residue at position 5and an R at position 13 and bind the
CACGTG (or CATGTTG) E-box configuration. In plants, 53%
of the bHLH proteins have the characteristic animal group B
configuration Hs-E9-R;3 and only 8% have the typical Rg-Eq
foundinanimal group A. This suggests that most plant bHLH
proteins also bind to E-boxes. Indeed, a number of plant
bHLH proteins have been shown to bind the CACGTG se-
quence (e.g, Martinez-Garcia et al. 2000; Toledo-Ortiz
et al. 2003; Qian et al. 2007), which is classically known in
plants as a G-box motif (Giuliano et al. 1988). Group E animal
proteins, that bind N-boxes (CACGCG or CACGAG), have
the same Hs-Eo-R;3 configuration as group B and a proline
(P) at position 6. This configuration is absent in all the
544 plant bHLH proteins analyzed. The remaining animal
bHLH groups C and F proteins contain extra PAS and
COE domains, not found in plant bHLH proteins, whereas
group D proteins are atypical bHLH without a basic domain;
11% of the plant proteins have a conserved Qs-Aqo-R5 motif
(supplementary fig. S1, Supplementary Material online), not
present in animals. This raises the interesting possibility that
these proteins bind to a novel target DNA sequence. Other
frequent basic amino acids in animal bHLH, such as R in po-
sitions 10and 12, arealso highly conservedin plants (73% and
90%, respectively).
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Hs Max KRAHH- NALERKRRDHIKDSFHSLR DSVP----SLOG-EK-ASRAQILDKATEYIQYM
AtbHLHO67 —RINH-TAVERNRRROMNEHINSLR-ALLP----PSYI-QR-GDQASIVGGAINYVKVL
PpbHLHO048 —RENH-IWSERQRRKGMNYLFSTLR-SLLP--—-— HPT-SK-TDKSTVVGEIIKYIESL
PpbHLH092 RGVNH-FATERQRREYLNEKYQTLR-SLVP-———-—-— NP-TK-ADRASIVADAIEYVKEL
AtbHLHO17 EPLNH-VEAERQRREKLNQRFYALR-SVVP—————— NI-SK-MDKASLLGDAISYIKEL
AtbHLH116 PAKN--LMAERRRRKKLNDRLYMLR-SVVP-=—-~-~ KI-SK-MDRASILGDAIDYLKEL
OsbHLHO12 SIKNH-VMSERRRWEKLNEMFLTLK-SLVP-————-— SI-DK-VDKASSLAETIAYLKEL
AtbHLHO32 ASKSH-SEAERRRRERINTHLAKLR-SILP-===-= NT-TK-TDKASLLAEVIQHMKEL
PpbHLHO046 PRSKH-SATEQRRRSKINDRFQMLR-DLVP-—-—-— HSD-QOK-RDKASFLLEVIEYIQVL
OsbHLH025 NQLQH-MISERKRREKLNDSFLALK-AVLP—————— PG-SK-KDKTSILIRAREYVKSL
AtbHLH125 KEKMKH-RDIERQRRQEVSSLFKRLR-TLLP---FQYIQ-GK-RSTSDHIVQAVNYIKDL
AtbHLHO15 AAEVH-NLSERKRRDRINERMKALQ-ELIP-———--— RC-NK-SDKASMLDEAIEYMKSL
PpbHLHO0Z22 —-QD-H-IMAERKRREKLSQRFIALS-AIVP-——----— GL-KK-MDKASVLGDAIKYVKTL
PpbHLHO042 VRKVHKADREKLRRDRLNEQFGELAGVLDP—————— DR-PK-NDKATILGDSVQVVKDL
PpbHLHO014 GGAGNKACREKMRRDRLNDRFLELGAILEP-----— GRPPK-TDKATILSDAVRILTQL
SmbHLHO001 ASKN--LVSERKRRKKLNERLYSLR-AIVP-———-—-— KI-SK-MDKASIVADAIDYVQEL
SmbHLHO042 ATDPQ-SIYARQRRERINERLRALQ-GLVP-——---— NG-AK-VDIVTMLEEAINYVKFL
AtbHLHO049 ATNSH-SLAERVRREKISERMKFLQ-DLVP—————— GC-NKVTGKAVMLDEIINYVQSTL
AtbHLHO082 ATDPH-SIAERLRRERIAERMKSLQ-ELVP-——---— NT-NK-TDKASMLDEIIEYVRFL
PpbHLHO027 SKDPQ-SVAARHRRERISDRIRVLO-RLVP-——--- GG-TK-MDTASMLDEAIHYVKFL
PpbHLHO074 SVEPQ-SVAARHRRKKISERIRVLE-KLIP-————-— GG-NK-MDTATMLDEAIEYVKFL
SmbHLH103 ANDPQ-SIAARQRRERISQRLKILQ-DLVP-——-—-— NG-SK-VDLVTMLEKAINYVKFM
AtbHLH144 GSASS-SNNDGKGRKKMKKMMGVLR-RIVP-———-—— GG-EQ-MNTACVLDEAVQYLKSL
PpbHLH094 ATHPR-SIAERVRRGKISERMKKLQ-ELVP—————— NS-DRQTNTADMLDDAVEYVKQL
AtbHLH134 RSRQA-SSSSRISDDOITDLISKLR-QSIPEIRONRRS-NT-VSASKVLOETCNYIRNL
OsbHLHO066 AATTT-NKRPRVRRERLGERITALQ-QLVS-——---— PF-GK-SDTASVLHEALGYIRFL
AtbHLH155 =PGES-SRPRPRDRQLIQDRIKELR-ELVP-——--~- NG-SK-CSIDSLLERTIKHMLFL

Fic. 2. Alignment of the bHLH domain of representative plant proteins. A representative of each of the 26 subfamilies of plant bHLH is shown,
together with the human protein Max, a well-characterized bHLH protein. The shaded boxes indicate the position of the DNA-binding basic
region, the two a-helixes, and the variable loop region (Ferré-D’Amaré et al. 1993). The numbering of the amino acids follows (Atchley and
Fitch 1997). This is a subset of the full alignment with all the proteins used in this study (supplementary fig. 1, Supplementary Material online).

The a-helices promote the formation of homo- or het-
erodimeric complexes between bHLH proteins. The struc-
ture of a dimer is stabilized by the hydrophobic amino acids
isoleucine (1), leucine (L), and valine (V) in conserved posi-
tions in the bHLH domain (Ferré-D’Amaré et al. 1993).
These positions are highly conserved in animals (Atchley
et al. 1999) and in plants (fig. 2). An L residue is present
in sites 23 and 64 in 99% and 96% of the plant proteins
and in 98% and 80% of the animal proteins, respectively.
Sites 54 and 61 have an |, L, or V in 99% and 93% of
the plant proteins and in 98% and 93% of the animal pro-
teins, respectively. A conserved P breaks the first helix and
starts a loop of variable length (usually six to nine residues
in plants). Some loop residues are also conserved: site 47 is
K or R in 88% of the plant proteins (supplementary fig. S1,
Supplementary Material online) and 82% of the animal
proteins (Atchley et al. 1999).

The high degree of sequence similarity between the
bHLH domain of plant and animal proteins, particularly
in key DNA-interacting basic amino acids and in helix-sta-
bilizing hydrophobic amino acids, indicates that the molec-
ular structure and transcription factor activity of bHLH
proteins are conserved between animals and plants.

Twenty bHLH Subfamilies Found in Flowering
Plants Were also Present in Early Land Plants
To understand the evolutionary relationships between
plant bHLH proteins, we used conserved regions of the
alignment shown in supplementary figure S1 (Supplemen-

tary Material online) to compute phylogenetic trees. An
ML analysis shows that proteins from different species clus-
ter together in compact clades with high support values
(fig. 3, supplementary fig. S2, Supplementary Material on-
line). MP and NJ analyses support the existence of most of
these clades (supplementary fig. S2, Supplementary Mate-
rial online). Based on the topology of the trees, clade sup-
port values, branch lengths, and visual inspection of the
bHLH amino acid sequences, we defined 26 subfamilies
of bHLH proteins (fig. 3, supplementary fig. S2, Supplemen-
tary Material online). These subfamilies are mostly consis-
tent with the groups proposed by previous phylogenetic
analyses of plant bHLH using A. thaliana and O. sativa se-
quences alone (Buck and Atchley 2003; Heim et al. 2003;
Toledo-Ortiz et al. 2003; Li et al. 2006b). We adopted
the A. thaliana bHLH group nomenclature proposed by
Heim et al. (2003) to label these subfamilies, with some
modifications, for example, Ib was divided in 1b(1) and
Ib(2), and llla and lllc were combined into lli(a + c).
We also defined three new groups (XIIl, XIV, and XV) that
include 28 A. thaliana sequences not present in the analysis
by Heim et al. Of the 544 proteins analyzed, 10% do not
clearly fall in any of the 26 subfamilies and were classified
as “orphans” (supplementary fig. S2, Supplementary Mate-
rial online). These proteins often have a high degree of se-
quence divergence from other bHLH: This may be due to
lineage-specific specializations or, alternatively, they may
correspond to pseudogene sequences. One of the A. thali-
ana groups proposed by Heim and colleagues (group VI,
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Fic. 3. Twenty subfamilies of bHLH were already established in the common ancestral of vascular plants and mosses. Maximum likelihood
analysis of 544 plant bHLH, shown as an unrooted cladogram. The blue balloons delineate the 26 subfamilies of plant bHLH proteins. Colored
dots symbolize the species to which the proteins in each group belong (yellow: Oryza sativa [monocot]; red: Arabidopsis thaliana [eudicot];
green: Selaginella moellendorffii [lycophyte]; blue: Physcomitrella patens [moss]; purple: Volvox carteri, Chlamydomonas reinhardtii, Chlorella
vulgaris, Ostreococcus tauri, and Cyanidioschyzon merolae (chlorophytes and red algae). A full tree with protein names, proportional branch
lengths, and clade support values is given in supplementary fig. S2 (Supplementary Material online).

consisting of only two proteins) falls in this “orphan”
category.

Of the 26 plant bHLH subfamilies, 3 include only angio-
sperm proteins and 23 include angiosperm and lycophyte
proteins (fig. 3). Because the last common ancestor of an-
giosperms and lycophytes lived sometime in the Upper Si-
lurian period before 415 Ma (Kenrick and Crane 1997), this
implies that these 23 bHLH subfamilies are at least 415 mil-
lion years (My) old. Interestingly, 20 of these subfamilies
include not only vascular plants but also moss proteins.
Given that the oldest evidence for the existence of vascular
plants is trilete spores in Upper Ordovician sediments
(Steemans et al. 2009), it suggests that these subfamilies
are more than 443 My old. A bHLH protein from the chlor-
ophyte algae O. tauri is a member of subfamily IVc (fig. 3).
This suggests that this subfamily may be over 1 billion years
old (Heckman et al. 2001).

A clade composed of V. carteri, C. reinhardetii, and C. vul-
garis bHLH proteins is sister to the proteins in subfamily Va.
However, we did not include these chlorophyte proteins
into the Va subfamily as this relationship is not strongly
supported. Nevertheless, this relationship suggests that
subfamily Va is phylogenetically closer to chlorophyte pro-

866

teins than to any other land plant proteins. Another group
of V. carteri, C. reinhardtii, and C. vulgaris proteins forms
a clade that is clearly distinct from other plant proteins
(fig. 3); this probably represents a group that evolved
among the chlorophytes or, alternatively, was present in
the common ancestors of the chlorophytes and land plants
but maintained among the chlorophytes and lost in the
ancestors of land plants. The only bHLH-encoding gene
found in the genome of the red algae C. merolae could
not be allocated to any chlorophyte or land plant bHLH
clade.

In summary, the phylogenetic analysis shows that plant
bHLH proteins form 26 distinct subfamilies or evolutionary
lineages; 20 of these subfamilies were already present in
early land plants 443 Ma, by which time the mosses had
diverged from the vascular plants. Despite several rounds
of gene duplications and losses in different plant lineages,
these subfamilies have been highly conserved throughout
plant evolution.

Plant bHLH Proteins Are Monophyletic
The phylogenetic information contained in the 50-60
amino acids of the bHLH allows delimitation of major


supplementary fig. S2

Evolution of bHLH Transcription Factors in Plants -

doi:10.1093/molbev/msp288

evolutionary lineages of proteins in plants but does not al-
low good resolution of deeper nodes that represent the
phylogenetic relationships between different bHLH subfa-
milies; these basal nodes often have low support values
(supplementary fig. S2, Supplementary Material online)
and vary when using N) or MP analyses (data not shown).
Similar poor resolution was observed in previous classifi-
cations of bHLH proteins in other groups of organisms
(Atchley and Fitch 1997; Ledent and Vervoort 2001; Buck
and Atchley 2003; Toledo-Ortiz et al. 2003; Li et al. 2006b).
Thus, the inter-subfamily relationships shown in figure 3
should be interpreted cautiously. We initially tried to in-
corporate non-plant bHLH sequences in the ML analysis.
However, the large number of proteins and the great evo-
lutionary distances (and consequent high degree of se-
quence divergence) caused the non-plant proteins to
form very long branches, nested within plant clades with
no obvious sequence similarity (data not shown). To cir-
cumvent this problem, we opted to perform a phyloge-
netic analysis on a simplified alignment (supplementary
fig. S1, Supplementary Material online) that includes
chlorophytes, red algae, diatom, and yeast proteins plus
representatives of the 26 plant subfamilies and of the
higher order metazoan groups (Atchley and Fitch 1997;
Simionato et al. 2007).

The deep evolutionary relationships between many pro-
teins were still not resolved: most branches in the Bayesian
phylogenetic tree had low support values (fig. 4). However,
some close relationships between different plant bHLH
subfamilies (fig. 3) were supported by this analysis. For ex-
ample, subfamilies IVc and Va were probably established in
the common ancestors of chlorophyte algae and land
plants; subfamily IVb possibly evolved later among land
plants from subfamily IVc proteins. Pairs of subfamilies
such as Vllic(1)/VIlIc(2), XI/XII, and lli(a + c)/lllb seem
to form monophyletic lineages. Interestingly, the five dia-
tom sequences and a sponge group A protein form a well-
supported clade. Closer examination of the amino acid se-
quence of the five diatom bHLH proteins reveals that each
of these proteins have an arginine in position 8 of the bHLH
domain, a defining characteristic of group A proteins
(Atchley and Fitch 1997). Although beyond the scope of
this study, this suggests that group A might predate the
origin of opisthokontes, the eukaryotic lineage that in-
cludes fungi and animals.

No clustering of plant proteins with proteins from other
eukaryotic organisms is found on the Bayesian tree (fig. 4).
The small number of bHLH proteins found in the genomes
of different chlorophytes and red algae (fig. 1) suggests that
the first plants had one or a few bHLH proteins, from which
all modern plant bHLH descended and radiated. This view
is consistent with previous analyses that highlighted the
distant relationship of angiosperm and animal bHLH pro-
teins (Ledent and Vervoort 2007; Buck and Atchley 2003;
Toledo-Ortiz et al. 2003). The lack of discernible phyloge-
netic relationships between bHLH subfamilies in plants and
other eukaryotic organisms supports the hypothesis that
plant bHLH proteins are monophyletic.

la:.’—AthLHOST
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Fic. 4. Plant bHLH do not group with other eukaryote bHLH. A
Bayesian analysis was performed on an alignment of the bHLH
sequence of one representative of each of the 26 subfamilies of
plant bHLH, all the chlorophyte and red algae proteins, 5 proteins
found in diatom Thalassiosira pseudonana, 8 Saccharomyces
cerevisiae proteins, and representatives of 5 major groups of
metazoan bHLH in the sponge Amphimedon queenslandica and
Homo sapiens. The tree is unrooted. The numbers in the clades are
posterior probability values; clades with less than 50% support were
collapsed.
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Fic. 5. Non-bHLH amino acid motifs are highly conserved in each
bHLH subfamily. An idealized representation of a typical member of
each bHLH subfamily is shown, with the bHLH domain and other
conserved motifs drawn as shaded boxes. The diagrams are not
drawn to scale. The sequences of each motif in individual proteins
are given in supplementary table S2 (Supplementary Material
online).

Conserved Non-bHLH Motifs Are Present in Most
Plant bHLH Subfamilies

The amino acids sequences outside the bHLH region are
generally divergent, even in closely related proteins from
the same species. Nevertheless, it has been reported that
short conserved amino acid motifs are often present in re-
lated plant bHLH proteins (Heim et al. 2003; Li et al. 2006b).
If our plant bHLH classification were correct, then we ex-
pected that such motifs should be conserved within sub-
families. To determine if non-bHLH motifs were conserved
throughout plant evolution, we searched for amino acid
patterns in our data set of plant bHLH proteins. We found
28 motifs that are represented in both angiosperm and
non-angiosperm proteins (supplementary table S2, Supple-
mentary Material online). The relative position of each of
these motifs is conserved (fig. 5): most are located C-ter-
minal to the bHLH domain, which itself is generally located
toward the C-terminal half of plant proteins. Each of these
motifs is only found in members of the same subfamily,
apart from motif 9, which is found in both 1Vb and IVc
proteins (fig. 5). None of the 28 conserved motifs corre-
sponds to known domains in the PFAM database. Motifs
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14 and 15, present in several proteins of subfamily Vli(a +
b), overlap with the active phytochrome binding (APB)
motif, shown to mediate the binding of several A. thaliana
bHLH proteins to phytochrome B (Khanna et al. 2004). Mo-
tif 9 (present in IVb and IVc proteins) has a typical leucine
zipper (LZ) conformation. The LZ is a dimerization domain
that occurs in several regulatory proteins and consists of
a periodic repetition of leucine followed by six other res-
idues (Bornberg-Bauer et al. 1998). Several animal bHLH
proteins also have an LZ immediately C-terminal to the sec-
ond helix (Atchley and Fitch 1997). However, its presence
in unrelated bHLH proteins suggested a multiple origin of
the LZ domain in animal bHLH proteins (Atchley and Fitch
1997; Morgenstern and Atchley 1999). We could not find
similarities between the bHLH sequences of IVb/IVc pro-
teins and animal bHLH-LZ proteins. Therefore, it is likely
that the acquisition of an LZ motif in bHLH proteins oc-
curred independently in plant and animals. The occurrence
of conserved domains outside the bHLH domain strongly
supports the classification made on the basis of alignments
of the bHLH sequence.

We also queried the PFAM database of protein domains
with the 544 plant bHLH proteins and found significant
matches to an ACT domain in several unrelated proteins
(OsbHLHO036, VcbHLHO001, CrbHLH002, OsbHLH170,
VcbHLH002, and PpbHLH097). The ACT is a regulatory li-
gand-binding domain found in a diverse group of proteins,
mostly metabolic enzymes (Chipman and Shaanan 2001).
The occurrence of the ACT domain in plant bHLH proteins
was previously reported (Anantharaman et al. 2001), and
an ACT-like domain was found to mediate homodimeriza-
tion of the maize R protein (Feller et al. 2006). Feller et al.
also found ACT-like domains in over 30 A. thaliana pro-
teins using low-stringency structure-based searches, but
we could not confirm this using our stringent motif-based
search methods. The occurrence of the ACT domain in
a few proteins from different bHLH subfamilies suggests
that the ACT-bHLH association occurred multiple times,
possibly through domain-shuffling processes. Such mecha-
nisms have been proposed to play an important role in the
evolution of several metazoan bHLH proteins (Morgen-
stern and Atchley 1999; Ledent and Vervoort 2001).

The presence of highly conserved motifs among proteins
of the same subfamily supports the phylogenetic relation-
ships inferred from the bHLH domain sequence alone. The
conservation of these extra domains during plant evolution
suggests that they are essential for the function of the
bHLH proteins in the respective subfamilies. Nevertheless,
the presence of the ACT domain in a few unrelated pro-
teins also indicates that domain-shuffling processes may
have played a small role in plant bHLH evolution.

Discussion

Our analysis shows that most of the major subfamilies of
plant bHLH transcription factors were already present in
early land plants, before the divergence of mosses and vas-
cular plants. The recent advent of large-scale sequencing
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projects has shown that many of the gene families that
control angiosperm development were present in early
land plants (Floyd and Bowman 2007). However, unlike
the bHLH family, many of these families (such as the MIKC®
MADS-box and TCP transcription factors) diversified after
the divergence of lycophytes from the other vascular plants
(Floyd and Bowman 2007). We envisage two major alter-
native hypotheses that would explain the early radiation of
the bHLH proteins in plants. The first is that the radiation
occurred in parallel with the evolution of multicellularity,
before the transition of plants to terrestrial environments.
The increase in the number of cell types and morphological
complexity brought about by multicellularity would have
been programmed by increasingly elaborate gene regula-
tory networks. bHLH proteins, with their ability to hetero-
dimerize and differentially control gene expression, might
have become an ideal tool to assemble such complex reg-
ulatory pathways. Consistent with this view is the observa-
tion that the first large radiation of the bHLH family in
metazoans may have accompanied the evolution of mul-
ticellularity (Simionato et al. 2007). A second hypothesis is
that the diversification of plant bHLH proteins accompa-
nied the colonization of the land. The challenges faced by
plants in a dry terrestrial environment led to the evolution
of many novel structures and physiological mechanisms,
orchestrated by versatile gene regulatory networks. Distin-
guishing between these alternatives will require knowledge
of the number of bHLH proteins encoded in the genomes
of multicellular algae. The sequence of a charophycean
(multicellular aquatic algae, sister group to land plants) ge-
nome would allow the testing of these hypotheses, but un-
fortunately only a handful of expressed sequence tags are
currently available.

All sequenced genomes of chlorophytes and red algae
encode few bHLH proteins (fig. 1). We detected three dis-
tinct evolutionary lineages in chlorophytes (fig. 3). One lin-
eage includes both chlorophytes and land plants
(subfamilies IVc and 1Vb), implying that it predates the di-
vergence of chlorophytes from the ancestors of land plants,
over 1 billion years ago (Heckman et al. 2001). Interestingly,
a characteristic of these two subfamilies is the presence of
an LZ motif associated with the bHLH domain. This asso-
ciation has also occurred, independently, in animals. A sec-
ond lineage of chlorophyte proteins is more similar to
subfamily Va than to any other bHLH subfamily, although
support for monophyly is poor. A third lineage is distinct
from all other plant bHLH proteins and possibly evolved
only in chlorophytes. The only bHLH protein found in
red algae could not be clearly allocated to any clade. This
suggests that none of the 26 subfamilies of plant bHLH pro-
teins was established at the time of divergence of red algae
from other plants, 1.5 billion years ago (Yoon et al. 2004).
Alternatively, these protein lineages were lost in a C. mer-
olae ancestor but are still present in other red algae; the
availability of additional whole-genome sequences from
red algae will help to clarify this. However, the small num-
ber of bHLH found in all the chlorophytes and red algae
examined (fig. 1) and the lack of clear phylogenetic rela-

tionships with other eukaryotic bHLH proteins (fig. 4) al-
lows us to confidently deduce that all bHLH proteins found
in plants evolved after the primary endosymbiotic event
that led to the evolution of plastids and are not repre-
sented in other eukaryotic groups.

Plant transcription factor families usually have high ex-
pansion rates compared with metazoan families, caused by
elevated rates of retention of duplicated genes (Shiu et al.
2005). Accordingly, there are usually many (1-12) proteins
per species in each of the 26 plant bHLH subfamilies (sup-
plementary fig. S2, Supplementary Material online), in con-
trast with the small number (1-4) of genes found in each of
the 44 metazoan subfamilies (Ledent and Vervoort 2007;
Simionato et al. 2007). Members of the same plant bHLH
subfamily are frequently involved in the same biological
process (table 1). Usually the functions of these proteins
overlap, causing them to be partially or totally redundant
(e.g, HEC or BEE proteins). A striking exception comes from
three A. thaliana subfamily la proteins, MUTE, SPEECH-
LESS, and FAMA: they play nonoverlapping roles in control-
ling sequential cell fate specification during stomatal
differentiation, in a pathway surprisingly similar to meta-
zoan bHLH proteins controlling muscle and neural devel-
opment (Nadeau 2009; Serna 2009). Interestingly, the
function of these proteins seems to be mostly conserved
in rice and maize homologs, despite these species having
considerably different stomata morphology and differenti-
ation patterns (Liu et al. 2009). Other examples of members
of the same bHLH subfamily regulating similar processes in
different species are currently known (table 1). A new chal-
lenge will be to understand how the function of bHLH pro-
teins has changed during plant evolution. An interesting
glimpse comes from subfamily VIlic(1), where the P. patens
proteins PpRSL1 and PpRSL2—the only moss bHLH pro-
teins that have been characterized so far—were shown
to be required for the development of rhizoids (Menand
et al. 2007). Rhizoids were lost during vascular plant evo-
lution but the two representatives of subfamily VIllic(1) in
A. thaliana (AtRHD6 and AtRSL1) are required for the for-
mation of root hairs, analogous structures to rhizoids with
a similar rooting function (Menand et al. 2007). This sug-
gests that these proteins were independently recruited to
fulfil similar functions during land plant evolution.

The presence of highly conserved motifs (such as the
APB motif in PIF proteins) in the different plant bHLH sub-
families (fig. 5) indicates that the partners of molecular in-
teractions are also conserved. This is particularly exciting
because it suggests that protein interactions that are at
the base of gene regulatory networks are highly conserved
across plants. Several plant bHLH proteins are known to
form transcription complexes with MYB proteins (Ramsay
and Glover 2005). Although the early evolution of MYB
proteins in plants has not been characterized, we found
over 30 MYB sequences in the genome of C. reinhardtii
and more than 150 sequences in P. patens (data not
shown). Given the large number of both bHLH and
MYB proteins in mosses, it is appealing to hypothesize that
the bHLH-MYB complex had evolved early in land plant
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Table 1. Functionally Characterized bHLH Proteins from Different Plant Species.

Name bHLH Number Function Reference
Subfamily la
AtMUTE AtbHLHO045 Control sequential cell fate Nadeau (2009); Serna (2009)
AtFAMA AtbHLH097 specification during stomatal differentiation
AtSPCH AtbHLH098
OsMUTE OsbHLHO055 Control stomata development Liu et al. (2009)
OsFAMA OsbHLHO051
OsSPCH2 OsbHLHO053
Subfamily 1b(1)
RGE1/ZHOUPI AtbHLH095 Regulates embryonic development Kondou et al. (2008);
and endosperm breakdown Yang et al. (2008)

Subfamily I1b(2)
OsIRO2 OsbHLHO056 Regulates genes involved in Fe uptake Yuko et al. (2007)
under Fe-deficiency conditions
Subfamily lll(a + ¢)
FIT AtbHLH029 Required for the up-regulation of Bauer et al. (2007)
responses to iron deficiency in
Arabidopsis roots
RERJ1 OsbHLHO006 Involved in the rice shoot growth inhibition Kiribuchi et al. (2004)
caused by jasmonic acid

Subfamily 1lib
ICE/SCRM AtbHLH116 Control stomatal development; implicated in Chinnusamy et al. (2003);
ICE2/SCRM2 AtbHLHO033 the cold acclimation response and freezing Kanaoka et al. (2008);
tolerance Fursova et al. (2009)
TalCE41 Wheat® Potential activators of the cold-responsive genes Badawi et al. (2008)
TalCE87
Subfamily llI(d + e)
MYC2/JAI1/)JIN1 AtbHLHO006 Involved in abscisic acid, jasmonic acid and light Abe et al. (2003);
signalling pathways Lorenzo et al. (2004);
Yadav et al. (2005)
AIB AtbHLHO17 Involved in abscisic acid signalling Li et al. (2007)
PsGBF Pea® Regulates phenylpropanoid biosynthetic pathway Qian et al. (2007)
Subfamily Ilif
TT8 AtbHLH042 Partially redundantly regulate anthocyanin Nesi et al. (2000);
GL3 AtbHLH001 biosynthesis, trichome and root hair development Payne et al. (2000);
EGL3 AtbHLH002 Bernhardt et al. (2003);
Zhang et al. (2003)
Ra/OSB1 OsbHLHO013 Regulate the anthocyanin biosynthetic pathway Ludwig et al. (1989);
Rb OsbHLH165 Burr et al. (1996);
Rc OsbHLH017 Hu et al. (2000);
0SB2 OsbHLHO016 Spelt et al. (2000);
Lc Maize® Sakamoto
IN1 Maize® et al. (2001); Sweeney
An1 Petunia® et al. (2006)
Subfamily 1Va
NAI1 AtbHLHO020 Required for the formation of an ER-derived Matsushima et al. (2004)

structure, the ER body
Subfamily 1Vc

ILR3 AtbHLH105 Modulate metal homeostasis and auxin-conjugate Rampey et al. (2006)
metabolism
Subfamily Va
BIM1 AtbHLHO046 Implicated in brassinosteroid signaling Yin et al. (2005)
BIM2 AtbHLH102
BIM3 AtbHLH141
Subfamily Vii(a + b)
PIF1/PIL5 AtbHLHO15 Bind to activated phytochromes and mediate Castillon et al. (2007);
PIF3 AtbHLH008 light and gibberellin signaling responses; PIF4 de Lucas et al. (2008);
PIF4 AtbHLH009 was recently shown to also mediate plant architecture Leivar et al. (2008);
PIF5/PIL6 AtbHLH065 responses to high temperatures Koini et al. (2009)
PIF7 AtbHLH072
HFR1 AtbHLH026 Mediate both phytochrome and cryptochrome signaling Duek and Fankhauser (2003)
SPATULA AtbHLH024 Regulator of carpel margin development; mediator of Heisler et al. (2001);
germination responses to light and temperature Penfield et al. (2005)
ALCATRAZ AtbHLH073 Required for the formation of a cell layer necessary for Rajani and Sundaresan (2001)
fruit dehiscence
UNE10 AtbHLHO16 Involved in the fertilization process Pagnussat et al. (2005)
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Table 1. Continued

Name bHLH Number Function Reference

BP-5 OsbHLH102 Involved in the regulation of amylose synthesis Zhu et al. (2003)
in the rice endosperm

Subfamily VIlIb

HEC1 AtbHLH088 Redundantly control the Gremski et al. (2007)
HEC2 AtbHLHO037 development of the transmitting tract
HEC3 AtbHLH043 and stigma; each of these proteins can form

heterodimers with SPATULA
LAX OsbHLH123 Regulator of axillary meristem generation in rice Komatsu et al. (2003)
INDEHISCENT AtbHLHO040 Required for the differentiation, Liljegren et al. (2004)

in the Arabidopsis fruit, of three cell types
involved in seed dispersal
Subfamily VIlic(1)

AtRHD6 AtbHLHO083 Required for the formation of root hairs Menand et al. (2007)
AtRSL1 AtbHLH086
PpRSL1 PpbHLH043 Redundantly required for the Menand et al. (2007)
PpRSL2 PpbHLH033 development of rhizoids and caulonemata
Subfamily Vilic(2)
RSL2 AtbHLHO085 Partially redundant and involved in root hair Yi (2008)
RSL3 AtbHLHO084 development
RSL4 AtbHLHO54
RSL5 AtbHLH139
Subfamily XI
UNE12 AtbHLH059 Involved in the fertilization process Pagnussat et al. (2005)
PTF1 OsbHLH096 Involved in the responses to phosphate Yi et al. (2005)
deficiency stress
Subfamily XII
ZCW32/BPE AtbHLHO31 Controls petal size Szecsi et al. (2006)
BEE1 AtbHLHO044 Redundant positive regulators of brassinosteroid Friedrichsen et al. (2002)
BEE2 AtbHLHO058 signalling
BEE3 AtbHLH050
CiB1 AtbHLH063 Shown to interact with the blue-light receptor Liu et al. (2008)
CIB5 AtbHLH076 CRY2 and promote floral initiation
Subfamily XIII
LHW AtbHLH156 Regulates the size of the vascular Ohashi-Ito and Bergmann (2007)

initial population in the root meristem
Subfamily XIV
SAC51 AtbHLH142 Involved in a spermidine synthase mediated Imai et al. (2006)
stem elongation process
Subfamily XV

PRE1 AtbHLH136 Proposed to act as positive regulators Lee et al. (2006)

PRE2 AtbHLH134 of gibberellin signalling

PRE3 AtbHLH135

PRE4 AtbHLH161

PRE5 At3g28857°

PRE6 At1g26945%

KIDARI At1826945% Represses light signal transduction; interacts Hyun and Lee (2006)
and negatively regulates HFR1

Orphans

AMS AtbHLHO021 Required for correct anther development, Sorensen et al. (2003)

DYT1 AtbHLH022 particularly tapetum development Zhang et al. (2006)

TDR OsbHLH005 Li et al. (2006a)

udt1 OsbHLH164 Jung et al. (2005)

MEE8 AtbHLH108 Required for early embryo development Pagnussat et al. (2005)

Fer Tomato® Controls iron-uptake responses in roots Ling et al. (2002)

Gmyc1 Gerbera® Regulates the expression of an anthocyanin Elomaa et al. (1998)
pathway enzyme

delila Antirrhinum? Regulates the pattern of anthocyanin pigmentation Goodrich et al. (1992)

JAF13 Petunia® Regulates the anthocyanin biosynthetic pathway Quatrochio et al. (1998)

PAR1 At2g42870* Negatively control growth and metabolic shade Roig-Villanova et al. (2007)

PAR2 At3g58850” avoidance responses

NoTe.—ER, endoplasmic reticulum.
? These proteins were not included in our phylogenetic analysis; their classification was based on pHMM scores to subfamily-specific pHMM:s.
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evolution. The picture that emerges from this and other
studies is that much of the complex regulatory machinery
that we are currently dissecting in “higher” plants was ac-
tually invented by very “simple” ones, early in land plant
evolution. The recent reappraisal of algae, bryophytes,
and lycophytes as experimental organisms will be an excel-
lent tool to clarify the molecular and biological foundations
of many of these processes.

Supplementary Material

Supplementary tables S1and S2, figures S1and S2, and data
1 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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