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Abstract
Major depression is a serious mental illness frequently associated with devastating consequences for
those affected. Suicide rates are significantly elevated, creating a sense of urgency to identify
effective yet safe treatment options. A plethora of antidepressants available on the market today,
designed to act on different neurotransmitter systems in the brain, provides the clinician with several
treatment strategies. There is, however, very little guidance as to which antidepressant may be most
successful in a certain individual. Biomarkers that can predict treatment outcome would thus be of
great value, shortening the time until remission and reducing costs for the healthcare system by
reducing unsuccessful treatment attempts. The proven contribution of heredity to major depression
risk suggests that genetic markers may be good biomarkers for treatment outcome. The Sequenced
Treatment Alternatives to Relieve Depression (STAR*D) study and a large ancillary
pharmacogenetic study on 1953 STAR*D participants constitute the largest effort to date to identify
genetic predictors of antidepressant treatment outcome. In this review, results of candidate gene
studies carried out so far are summarized and discussed, and some future directions are proposed.

1. Introduction
Depressive disorders account for up to 80% of all psychiatric hospitalizations, and play a role
in a substantial portion of hospital admissions in general.[1,2] Individuals affected by
depression are more likely to experience comorbidity with other medical conditions.[3]
Furthermore, depression is reported to increase the risk for suicide attempts and suicidal
ideation by at least 4–6 fold.[4] Besides the personal cost for afflicted individuals, which is
often devastating, the total cost to society is immense. Identification of disease causing factors,
along with new and more efficient treatment options, are therefore highly relevant.

Heritable factors have consistently been shown to play an important role in susceptibility to
depressive disorders (for review, see[5]), but little data exist regarding heritability of treatment
response or adverse effects of medication. So far, few genetic predictors of treatment response
or adverse events have been identified, and fewer still have been replicated consistently (for
review, see[6]).

Over the past decades there has been an impressive increase in the availably of treatment
options. A number of psychotherapies (talk-therapies, behavior therapies) and pharmacologic
agents are now available to treat depression.[7,8] However, today’s treatments are not curative.
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Clinical observations have shown that a substantial proportion of depressed patients will fail
to respond to the first-line antidepressant treatment. Often, a second choice of treatment or
addition of a second agent (augmentation) is needed to achieve response, and full remission of
symptoms can be difficult to achieve quickly.[7,9–11] Although most will eventually recover
from the index episode, affected individuals often need a lifetime course of treatment to prevent
recurrence. In addition, some reports raise the question of whether antidepressants can actually
increase suicidal thinking or behavior in some patients.[12,13]

In light of all this, clinicians encounter a very difficult task when treating patients suffering
from depressive disorders. Which initial treatment should be used? If this fails, what is the next
best choice? Is there a need for combination therapy? Which dosage and duration of treatment
should be used for achievement of full functional recovery, while minimizing adverse events?
[7,10] Existing clinical data provide few answers, leading most clinicians to employ a trial-
and-error strategy, albeit enhanced by their own clinical judgment. Genetic tests that help guide
treatment decisions would be a great advance.

The general aim of the STAR*D study was to help the clinician with such difficult treatment
decisions by elucidating which treatment options offer the greatest efficacy and tolerability.
An important aim of the study was to identify alternative treatment strategies for the estimated
two thirds of patients with major depression who do not achieve full remission after the initial
treatment. Priority was given to identification of individual patient characteristics related to
successful treatment outcomes in real-world clinical situations.

In addition, the STAR*D team joined forces with several teams of geneticists. While the
approaches have varied, the goal of every team has been the identification of genetic markers
of treatment outcome, including both remission and adverse events. Results from these efforts
have been published in several reports[14–19] and are summarized in this review.

2. Background
2.1 Depression

According to the World Health Organization (WHO) major depression is one of the most
disabling diseases worldwide.[20] It is predicted to be the second most disabling disease
worldwide in the year of 2020.[21–23] The lifetime prevalence, according to these reports, is
estimated to be 16–20%, the highest prevalence among the psychiatric diseases.[24,25] Women
are 1.5–3.0 times more likely to be affected than men,[25,26] and MDD is more prevalent in
younger people[27] and among those with other psychiatric disorders.[28]

There is a wealth of studies that have addressed the course of the disease, all varying between
short and long term follow-up periods. The results give a fairly consistent picture of a chronic
recurrent disorder with an average of one depressive episode every 5 years[29,30] but as many
as 30% of the patients may experience a chronic course.[29,31]

Randomized clinical trials have consistently shown that most antidepressants available on the
market are more effective than placebo, at least when treating more severe forms of depression
in adults.[32–34] Nevertheless, a substantial minority of patients (about 20–40%, depending
on initial severity) show a placebo response. Recent studies have drawn a distinction between
response (usually measured as >50% improvement from baseline), where patients can still be
quite impaired by their symptoms, and remission, where symptoms are essentially gone and
there is no residual impairment. Remission rates are lower than response rates for both active
drug and placebo, but sustained remission of moderate or severe depression is rare with placebo
alone.[34–37] When treating depressive disorders, response without remission is associated
with continuing disability and early relapse.[38,39]
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Some reports favor particular types of antidepressants[36] whereas other reports find only
marginal differences.[32] Certain forms of psychotherapy may compare favorably with
pharmacological treatment, especially for less severe cases.[35] Approximately one third of
patients achieve full remission when treated with antidepressants; while many of the others
will continue to experience ongoing symptoms and considerable levels of disability. We clearly
need new treatment strategies that maximize remission.

2.2 Suicide and Suicidal Ideation
Depression has remained the main psychiatric disorder associated with suicide, at least from
the 1960’s through 1999 – 2003.[40,41] Suicide remains a leading cause of death among young
people,[42] and one of the major causes of death among patients with mood disorders in all
age groups.[43,44] Effective treatment of depressive disorders is the best way to prevent
suicide. Paradoxically, antidepressant treatment may also provoke (or exacerbate) suicidal
thoughts and behavior, especially during the early phase of treatment in young people.[12,
13,45] Concern about treatment-emergent suicidal ideation led the US Food & Drug
Administration to issue Black Box warnings of the risk of suicidal thoughts and behavior in
adolescents and young adults treated with antidepressants.

However, doubts have persisted as to whether antidepressants are a real risk factor for suicide,
even in certain subgroups of patients.[46–48] Some studies report a protection from suicidal
thinking with the use of antidepressants.[49] Not all studies have taken into account the
previous history of suicidal behavior[46] and many studies rely on meta-analyses with a mixed
origin of the underlying data. There are important distinctions between attempts, ideation and
thoughts of suicide, and actual death by suicide,[50] but many studies fail to discriminate
clearly among these.

A genetic test able to predict which patients develop suicidal thinking during antidepressant
treatment would be a great aid for the clinician: Those at risk could be put into special treatment
regimes, and the vast majority of remaining patients would not be wrongfully advised against
using the antidepressant. However, it is not clear what role, if any, genes might play in the
etiology of treatment-emergent suicidal ideation. Family and twin studies certainly
demonstrate that suicidal thoughts and behavior that occur outside of the context of
antidepressants are both familial and heritable,[50–52] but no data exist as to the heritability
of treatment-emergent suicidal thoughts or behavior, and such data would be nearly impossible
to obtain.

2.3 The pharmacogenetic approach
Today pharmacogenetics refers to the study of individual differences in drug response due to
genetic variation among individuals, whereas the term pharmacogenomics tends to emphasize
the technologies used in the development of new drugs based on the knowledge of all genes
in the human genome.[53] In practice, the two terms are often used interchangeably. Whether
pharmacogenetics is an old discipline or was born after the completion of the Human Genome
Project is still a matter of debate.[54,55]

In pharmacotherapy of psychiatric patients, clinicians have to try to help the substantial
proportion of patients who do not respond sufficiently or suffer adverse effects during
treatment. Of course, variable response and adverse effects may be explained by genetic
variability in pharmacodynamic and pharmacokinetic pathways, but also by many other non-
genetic factors, including, e.g., misclassification of disease or subtype, cultural forces, or
environmental factors.[56,57]
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Pharmacogenetics holds a great promise for future clinical practice to use genetic markers for
prediction of treatment outcome.[56,58,59] Numerous studies have been carried out in the
field, but sample sizes for most studies have so far been fairly small. Association findings in
the field have recently been reviewed in detail by others.[60]

It is hoped that pharmacogenetics will lead to the development of ”personalized medicine”,
with better safety and efficacy than is currently possible for many drugs.[53,61,62] But many
challenges remain: How can adequate sample sizes be collected for study? What is the best
way to establish robust findings? Which pharmacogenetic markers will have the greatest
clinical utility? How can robust, clinically useful markers be translated most efficiently to
clinical use?

2.4 The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Study
As part of a larger initiative aimed at promoting large-scale, non-industry funded clinical trials,
the National Institutes of Health awarded a multi-million dollar contract to study the optimal
treatment strategy for major depression in outpatients. The resulting STAR*D study included
over 4000 out-patients with non-psychotic DSM-IV major depressive disorder, aged between
18 and 75, treated at 14 regional psychiatric and primary care clinics across the US over a
period of 7 years[63,64]. STAR*D is by far the largest study of its kind.

Ascertainment was aimed at enrolling a representative sample of outpatients with a typical mix
of race, ethnicity, and socioeconomic status. There were few exclusion criteria, and adjunctive
treatment with benzodiazepines and hypnotics was allowed when needed. All participants
received active treatment, since placebo randomization tends to select for an unrepresentative
subset of mildly depressed patients. Many study participants were indeed quite ill: 75%
experienced two or more prior episodes, or a sustained episode, of depression during the two
years prior to study entry, and two-thirds reported comorbidity with another psychiatric
disorder.[65]

Treatment was organized into “levels,” each with a limited number of treatment options offered
for up to 12 weeks. Participants who responded well moved into follow-up; the others had the
option to move on to the next level of treatment. All participants began in Level 1 with
citalopram, 10–60 mg/day, as tolerated, for up to 12 weeks. Citalopram is a typical selective
serotonin reuptake inhibitor (SSRI).

In order to enable future pharmacogenetic studies, STAR*D participants were asked to donate
a blood sample for DNA extraction. About half agreed, and blood samples were drawn from
close to 2000 participants. These samples are now available to researchers through the Rutgers
Cell and DNA Repository in Piscataway, NJ (http://www.rucdr.org/).

STAR*D is now the largest pharmacogenetic study of mood disorders carried out to date. It
has provided and continues to provide a tremendous opportunity to elucidate genetic
determinants of treatment outcome. Some of the published pharmacogenetic findings from the
first level of treatment will be described below.

3. Results from candidate gene studies
3.1 Treatment response and remission

3.1.1 HTR2A and GRIK4—One large-scale candidate gene association study of the
STAR*D sample was aimed at investigating the outcome phenotypes ’remission’ and
’response.’ Response refers to improvement in depressive symptoms, while remission refers
to complete or nearly-complete recovery (for details regarding the experimental design, see
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[17]). A split-sample design was utilized in order to address the multiple testing problem
(subsequent work suggested alternative approaches to this problem[66]).

This first study included 68 genes, based on known gene function or previously reported
involvement in depressive disorder or treatment outcome. Accordingly, after stringent criteria,
768 genetic markers (SNP’s) were selected. Results from the primary analysis have been
published in two reports.[17,18] Two markers showed significant association that was
reproduced in both split samples: One marker was located in the gene HTR2A and one was
located in the gene GRIK4.

HTR2A codes for the type 2A serotonin receptor, which has been implicated in a large number
of association studies in schizophrenia, depression and treatment response.[67] However, the
markers that showed association in the McMahon et al study were different from, and
uncorrelated with, those previously implicated.[68–70] Thus, although this study provides
further evidence for involvement of the HTR2A gene in antidepressant outcome, no direct
replication of results from previous studies could be established.

Interestingly, it was found that the frequency of the treatment response associated variant was
lower in Black patients than in Whites. The clinical STAR*D study had shown a poorer
response of Black participants to the citalopram treatment.[71,72]

This finding highlights one of the problems with using an ethnically mixed group of patients:
Any polymorphism that shows a large difference in frequency between populations will show
association with treatment response if such response differs greatly between these populations.
In order to exclude that the observed association with citalopram treatment was an artifact
induced by such stratification, McMahon et al. tested association in Whites only, which still
remained highly significant. This indicates that it is unlikely that the observed association was
an artifact caused by the inclusion of participants of mixed ethnical backgrounds.

The associated marker, rs7997012, has a modest effect on treatment outcome in the STAR*D
sample. Patients homozygous for the response-associated allele had an 18% lower absolute
risk of non-response, compared to those homozygous for the other allele (Figure 1).
Interestingly, the frequency of the response-associated allele was 42% in white participants
and 6% in black participants, suggesting that this allele may contribute to the known racial
differences in outcome of antidepressant treatment. The markers reside within the second intron
of HTR2A, and have no clear functional consequences. This finding now awaits replication in
an independent sample and functional characterization.

The second marker significantly associated with antidepressant outcome in the STAR*D
sample was located in the GRIK4 gene, coding for a kainic-acid type glutamate receptor
(Paddock et al. 2007). The effect of the GRIK4 allele was also modest, but homozygote carriers
of the response-associated marker alleles of both GRIK4 and HTR2A were about half as likely
to experience non-response to treatment with citalopram as those who did not carry any of
these alleles (Figure 1). This finding was the first direct human evidence that the glutamate
system plays an important role in response to an antidepressant. Glutamate signaling and post-
synaptic 5-HT signaling are known to interact via the post-synaptic complex DARRP-32
(reviewed in Svenningsson et al 2004[73]), so the additive effects of HTR2A and GRIK4 on
treatment outcome may work via this pathway. GRIK4 had previously been implicated in a
translocation event in a patient with schizophrenia,[74] and the marker identified in STAR*D
had been associated with schizophrenia in another sample.[74] This suggests that GRIK4 may
contain variants involved in several psychiatric traits. Large samples will likely be needed for
replication testing.[75]
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3.1.2 The serotonin transporter gene (SLC6A4)—The development of SSRIs as anti-
depressant drugs has mainly been based on knowledge gathered during use of the first and
second line of antidepressant medications (tricyclics and monoamine oxidase inhibitors). All
of these regulate concentrations of several synaptic monoamines unselectively. The selective
serotonin reuptake inhibitors were designed to block reuptake of serotonin from the synapse
by the serotonin transporter. SSRIs quickly became the most widely prescribed antidepressants
in Western countries, mainly due to their wide acceptability, with fewer adverse effects and
greater drug safety. Since all SSRIs bind the serotonin transporter, the gene encoding this
protein has become an obvious candidate for pharmacogenetic studies in depression.

The 5-HT transporter gene, SLC6A4, is modulated by a functional polymorphic promoter
region, known as the linked polymorphic region or LPR, which is located upstream of the
transcription start site. This polymorphism consists of a complex repeat polymorphism with
many alleles, which are typically grouped into short (S) and long (L) allele sets.[76]

In vitro studies in human cell lines have shown that the LPR is associated with changes in
5HTT translation.[77] L-alleles produce higher levels of 5HTT mRNA, for review see.[78]
Nakamura and collaborators have argued that a single nucleotide variant (A→G) within the
LPR should to be considered when evaluating 5-HTT function.[79] Subsequent studies of these
variants on the functional levels mRNA of HTTLPR also showed the importance of the single
base mutation (G) in the long allele. The LG polymorphism was associated with decrease of
function almost equivalent to S-allele carriers.[80]

The LPR has been reported to be associated with a large number of psychiatric and behavioural
phenotypes. These include the personality trait of novelty-seeking,[81] various measures of
depression and anxiety,[82] depression that follows adverse life events,[83] and lifetime risk
of major depression.[84] The S-allele is often – but not always – more common in cases.

A number of pharmacogenetic studies have asked whether genetic variants in 5HTT could
predict antidepressant treatment outcome. These studies are quite heterogeneous with regard
to study design, sample characteristics, ethnicity, and intervention strategies (reviewed by
Smiths KM et al.[85]), which complicates an overall interpretation of the results. For example,
people of Asian origin differ in LPR allele frequencies.[86] In sum, previous literature suggests
that the S/S genotype may be associated with risk of depression and reduced response to SSRI
treatment.

5-HTT was also studied in the primary outcome candidate gene study of STAR*D. A dense
set of SNP markers spanning the SLC6A4 coding region were genotyped. However, no
significant association with treatment outcome was observed.[17] The LPR was investigated
directly in a second study of the STAR*D sample.[14] No association was detected between
treatment outcome and the L/S alleles of the LPR. There was also no significant association
with treatment outcome when the LPR was treated as a tri-allelic polymorphism, based on the
SNP noted above. However, a significant association of the tri-allelic polymorphism with
overall side effect burden was observed. This is consistent with an earlier study that had
detected a strong association between the S-allele and SSRI side effects in a geriatric sample.
[87] It is possible that an association between the LPR and SSRI side effects may have
influenced other, smaller pharmacogenetic studies that did not account for drug tolerability,
since medication-intolerant patients would be able to tolerate only a low dose, and may be
under-medicated.

Despite the rather exhaustive investigation of the serotonin transporter in the STAR*D study,
there was no evidence of a role in treatment outcome. This shows that even an obvious candidate
gene coding for the drug target itself and previously implicated in treatment response can render
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negative results in a well-powered sample. It remains to be seen whether the association
between 5-HTT and side effects observed in STAR*D will prove more robust than that with
treatment outcome.

3.1.3 FKBP5—Homeostatic response to stress is under strong influence of the hypothalamic-
pituitary-adrenal axis (HPA-axis).[88,89] Agents such as adrenocorticotrophin (ACTH),
arginine vasopressin (AVP), and corticotrophin-releasing factor (CRF) appear to have
important stress-regulatory functions as well.[90] Abnormalities in HPA-axis function have
been reliably detected in stress-related disorders and it has been proposed that dysregulation
in this neuroendocrine axis, mainly by altered secretion of cortisol, is a major mechanism for
developing depressive disorders.[91,92] This has led to the hypothesis that drugs which target
the HPA-axis may be beneficial for treating depressive disorders.[93,94] Such drugs might
normalize cortisol levels or modulate glucocorticoid receptor (GR) function.[93,95]

Animal studies suggest that the glucocorticoid receptor acts as a prominent regulator of the
HPA axis.[96–98] Furthermore, some genetic studies have found that polymorphisms in the
GR-gene may be associated with susceptibility to depression[99,100] as well as treatment
response.[99]

Possible involvement of glucocorticoid receptor function in the HPA-axis regulation and
depression and response to antidepressant treatment was studied by Binder and collaborators.
[101] No association with depression was observed for markers in the GR-, AVP-, CRH-genes
or five chaperones (BAG1, STUB1, TEBP, FKBP4 and FKBP5) of the glucocorticoid receptor,
in hospitalized patients of European ancestry diagnosed major depression. However, a highly-
significant association was observed between treatment response and a marker located in
FKBP5, which encodes one of the chaperone molecules. The response phenotype was
associated with the homozygous state of the T-allele of the functional polymorphism
rs1360780. These same individuals had also experienced more lifetime episodes of depression.

Small studies did not replicate these findings in outpatients of Chinese ancestry,[102] or in an
independent European sample.[103] However, these non-replications could be due to the low
power of small sample sizes. The large STAR*D cohort, therefore constituted an excellent
opportunity to investigate association of markers in the FKBP5-gene.

The results,[16] supported association of markers in the FKBP5-gene with disease status as
well as antidepressant treatment outcome. No association with number of prior lifetime
depressive episodes was detected, however. Effect sizes were clearly smaller than those
reported by Binder et al. This may be reflect differences in the samples (the STAR*D enrolled
outpatients with unipolar depression rather than hospitalized patients with unipolar and bipolar
disorders). The ’Winner’s Curse’ also predicts that the initial study reporting an association
often over-estimates effect sizes.[104,105]

Further studies are needed, but these findings appear to constitute an independently replicated
association between a functional genetic polymorphism and antidepressant treatment outcome.
The relative importance of this association in predicting treatment outcome prospectively
remains to be determined.

3.1.4 TREK1—As a complementary approach in order to identify genetic risk factors for
psychiatric disorders, Roy Perlis and collaborators[106] used findings from animal studies to
generate hypotheses for genetic association testing. Four brain expressed genes were
investigated, all previously involved in treatment response in a mouse model: TREK1
(KCNK2), SLC18A2 (VMAT2), S100A10 and HDAC5. When the corresponding four
genomic loci where tested for association with treatment outcome based on the level 1
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population, non of the markers in any of the genes provided p-values that survived correction
for multiple testing. However, it should be mentioned that analysis of further levels, which is
not subject of this review, yielded positive results: based on the 751 participants entering the
next step of treatment, out of four markers in the TREK1-gene with nominal p-values ≤ 0.01,
three markers were still significant associated with treatment response after correction with
multiple testing. The TREK1 gene encodes a potassium channel and has been shown to be an
important target for antidepressant drugs in mouse models.[107] Mice lacking this gene are
insensitive to SSRI treatment.[108]

3.2 Treatment-Emergent Suicidal Ideation
3.2.1 GRIK2 and GRIA3—Laje et al.[15] used a candidate-gene approach in the same 68
candidate genes that were investigated in the primary outcome analysis (see above). They
defined treatment-emergent suicidal ideation as the absence of suicidal thoughts at the first
clinical visit followed by onset of suicidal thoughts at any later visit during the 12 weeks of
Level 1. By this case definition, 120 patients were considered to display treatment-emergent
suicidal ideation, although the majority of these reported only passive death wishes. The rest
of the sample reported suicidal thoughts at baseline or denied suicidal thoughts throughout
level 1, and was treated as “controls” (n=1742).

The analysis revealed two markers which, after correction for multiple testing, were
significantly associated with treatment-emergent suicidal ideation. The markers resided in the
ionotrophic glutamate receptor genes GRIK2 and GRIA3. Both markers reside within introns,
and have no obvious functional significance. The GRIK2 marker, rs2818224, conferred a rather
high odds ratio of about 8 in the homozygous state, but this genotype was uncommon (12%).
The risk-allele in GRIA3, while more common, conferred a more modest OR of 1.9. This was
the first study to demonstrate a significant, overall association between TESI and genetic
markers, although a study published earlier that same year found suggestive evidence of
association with alleles in another gene -- CREB1 – in males,[109] discussed below.

Although these findings have evoked substantial interest in the scientific community and the
media,[110] a clinically useful genetic test for TESI does not seem to be imminent. Replication
in an independent sample is the essential next step. Independent replication will not only verify
true positive associations, but will also give a better estimation of thetrue effect size, free of
the Winner’s Curse. If such a test should emerge in the future, it might offer a useful tool for
clinicians who wish to identify patients in need of closer monitoring or alternative treatments.

4. Discussion
We have reviewed some of the early pharrmacogenetic findings from the STAR*D trial. Some
previously well-established findings (5HTT) were not supported, such as the association
between 5-HTT and treatment outcome, but several previous association findings received
direct (FKBP5) or indirect (HTR2A) support. Several novel findings also emerged, which will
need to be tested in independent samples. So far we have examined only a small fraction of
the known common genetic variation and of the possible outcome phenotypes and adverse
events. Outcomes and adverse events in treatment levels beyond level 1 remain to be studied,
although sample sizes fall rapidly as patients move through the levels. Genome-wide
association studies in the STAR*D cohort may provide further answers.

As seen so often in the field of complex genetics, we learn from the STAR*D pharmacogenetic
approach that having a large sample is good, but having an even larger sample is better. Most
of the effect sizes detected in the STAR*D genetics studies so far are small – and the only large
effect (GRIK2 and TESI) was seen for an uncommon genotype. Thus very large samples will
be needed in order test these findings for replication in other samples. Recent successful
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replication studies in type-2-diabetes[111–114] have demonstrated the value of very large
sample sizes, probably an order of magnitude larger than what was available in the STAR*D
cohort.

Clinical tests will likely require information from a panel of many genetic markers, the majority
of which still remain to be identified. If there are strong interactions among the markers, then
many specific multi-allele combinations will need to be considered. The numbers of patients
who carry any particular multi-allele combination will thus be necessarily low, leading to a
test with low sensitivity. On the other hand, if there is strong heterogeneity of effects, with
some alleles being important in only some populations, then test specificity may prove a
problem.

5. Future Directions: Moving pharmacogenetics findings from the bench to
the bedside

There is a sense of urgency to use pharmacogenetic information to inform treatment decisions.
[115] Patients might benefit from being matched with medications to which they are likely to
respond well without serious side effects. Health care systems might benefit from more efficient
treatment selection and consequent more rapid recovery of patients. Society might benefit from
decreased costs related to reduced health care utilization, recouped productivity by more
treatment-responsive patients, and decreased use of unnecessary expensive treatments and
polypharmacy.

However, a too-rapid movement from laboratory to clinic poses significant risks. Poorly-
validated tests might actually mislead physicians into prescribing less than optimal treatments.
[116] Inadequate data on the range of appropriate treatment-contexts and target populations
may lead to the misapplication of particular tests, reducing their value in clinical decision-
making. Even valid tests, properly used, may not really affect the choice of treatments or
dosages, especially when treatment alternatives are limited or other clinical factors take
precedence. The recent report of The Evaluation of Genomic Applications in Practice and
Prevention (EGAPP) working group is a good example: Although CYP450 polymorphisms
can be reliably genotyped and are associated with blood levels of many SSRIs, CYP450
genotyping was found to have little clinical impact and no real utility in clinical decision making
for typical major depressive disorder.[117]

In light of these issues, a consensus seems to be emerging that proposed pharmacogenetic tests
should be required to meet some criteria before widespread clinical application is warranted.
Criteria under discussion include[117]: 1) Analytic validity: is the genetic test to be used an
accurate reflection of the underlying DNA sequence? 2) Clinical validity: is the genetic marker
reliably (reproducibly) associated with the outcome? Is the reported sensitivity and specificity
valid in the targeted clinical population? 3) Clinical utility: Will the results of the test actually
affect clinical decision-making in a way that improves patient outcomes?

Analytical validity is relatively easy to establish in this era of high-throughput genomic
technologies, but should not be taken for granted. Unforeseen variation within the target
sequence of PCR primers, the existence of highly-homologous pseudogenes, and the potential
impact of copy-number variation can all deleteriously affect the accuracy of a particular DNA
assay. Clinical validity is often a major hurdle for pharmacogenetics, since genetic associations
are inherently difficult to replicate and background-genetic and environmental factors can have
a major impact on predictive value in different patient groups.[118] Clinical utility is in many
ways the most difficult hurdle. A test with high clinical utility has a large impact on clinical
decision-making, changing choice of treatment, dosage, etc. To meet this standard, a
pharmacogenetic test must not only be valid, but compelling in its predictive value, and must
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confer unique information that is not adequately captured by the standard clinical history and
physical examination.

A few pharmacogenetic tests – none in the field of psychiatry – may be close fulfilling these
criteria. Such tests may blaze a path to the future. Meanwhile, caveat emptor.
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Figure 1.
Rates of non-response to citalopram among homozygote carriers and non-carriers of response-
associated marker alleles at GRIK4 and HTR2A
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