

NIH Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2011 February 17.

J Am Chem Soc. 2010 February 17; 132(6): 1802–1803. doi:10.1021/ja910831k.

Annulation of Thioimidates and Vinyl Carbodiimides to Prepare 2- Aminopyrimidines, Competent Nucleophiles for Intramolecular Alkyne Hydroamination. Synthesis of (−)-Crambidine

Nicholas R. Perl, **Nathan D. Ide**, **Sudeep Prajapati**, **Hahdi H. Perfect**, **Sergio G. Durón**, and **David Y. Gin***

Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, and the Department of Chemistry, University of Illinois, Urbana, IL 61801

> Certain members of the crambescidin natural products, $1-5$ derived from the marine sponge *Crambe crambe*, have exhibited remarkable biological properties, including anticancer, anti-HIV, antifungal, and Ca^{2+} ion channel blocking activities. Many compounds within this class are characterized by a polycyclic guanidine core linked to a hydroxyspermidine moiety by a linear ω-hydroxy fatty acid. Crambidine (1 Figure 1) is atypical within this family of alkaloids in that it possesses a fused *pyrimidine* heterocyclic core, while most of its other congeners exist in more highly reduced forms. Several elegant strategies have been reported for the synthesis of crambescidin alkaloids.6–⁹ However, only a single reported synthesis of crambidine (**1**) has appeared,¹⁰ involving dihydropyrimidine construction via Biginelli condensation, followed by oxidation. We report herein a synthesis of (−)-crambidine that capitalizes on two key processes, including a [4+2] annulation of thioimidates with vinyl carbodiimides and a hydroamination of alkynes with 2-aminopyrimidine nucleophiles.

> Vinylcarbodiimides derived from pyrimidine-diones have been shown to converge with *O*methyl imidates to furnish 2-aminopyrimidines.¹¹ However, when this annulation process was applied to vinylcarbodiimides and *O*-imidates more appropriate to the synthesis of **1**, the reaction was inefficient. For example, heating a mixture of *O*-methyl imidate **2** (Scheme 1A) with benzylvinylcarbodiimide **4** at elevated temperature in C_6D_6 for 24 h provided only 24% conversion to the 2-aminopyrimidine **5**. By contrast, when the corresponding thiomethyl imidate **3** was exposed to carbodiimide **4** under otherwise identical conditions, conversion to the pyrimidine **5** was accomplished with marked improvement (59%). Addition of the thiol scavenger AgOTf further enhanced the efficiency of the thioimidate annulation, allowing for the preparation of a variety of bicyclic 2-aminopyrimidines (Scheme 1B, **8**–**10**).

> Extension of this [4+2] annulation reaction to access a complex substrate more suited to the synthesis of **1** commenced with the synthesis of a fully elaborated vinyl carbodiimide **14** (Scheme 2). Silyl ether **11**, obtained in enantiopure form according to the procedure of Campagne and coworkers,¹² was acylated with allyl chloroformate to afford the propargylic ester **12**. This intermediate was subjected to conjugate addition with azide to afford a separable *E*/*Z* mixture (2:1) of the corresponding β-azidoacrylate **13**. Reduction of the azide in *(E)*-**13** with PPh₃, followed by condensation with TBSOCH₂N=C=O, provided the vinyl carbodiimide **14**. Importantly, advancement of *(Z)*-**13** under analogous conditions also led to the formation of the *(E)*-isomer of **14** in similar yield, wherein stereochemical convergence occurs at the iminophosphorane stage.

gind@mskcc.org.

Supporting Information Available: Experimental details (PDF). This information is available at<http://pubs.acs.org>.

Synthesis of an initial crambidine-relevant thioimidate employed methyl thioimidate **15**¹³ (Scheme 3). This served as a suitable acylation agent for the alkyl lithium species derived from the homoallylic iodide **16**, prepared in a manner similar to that described by Overman.14 The resulting keto-thioimidate **17** was then heated with vinyl carbodiimide **14** to effect [4+2] annulation. Unfortunately, the bicyclic pyrimidine **18** was not observed; instead, the sole isolable product was pyrimidine **19**, presumably a result of C9–C10 β-elimination of the heterocycle in **18**. 7

Given that the fragmentation (**18**→**19**) and concomitant destruction of the C10 stereoconfiguration could not be avoided, attention turned to thioimidate **26** (Scheme 4) as an alternate annulation substrate in which the internal alkyne would serve as a less acidic ketone surrogate. Thus, *Z*-selective Wittig olefination of (*S*)-2-(*t*-butylsilyloxy)butyraldehyde (**20**) with the phosphonium ylide derived from 4-(triphenylphosphonium)but-1-yne bromide (**21**) afforded enyne **22**. Following iodination of the terminal alkyne, the alkynyl iodide **23** was subjected to a sequence involving: (1) Cu-mediated coupling with pyrrolidinone **24** to afford internal alkyne **25**; (2) a two step conversion of the lactam **25** to the thioimidate **26** via carbonyl thionation and *S*-alkylation; (3) [4+2] annulation with vinylcarbodiimide **14** to furnish bicyclic pyrimidine **27**; and (4) chemoselective *N*-deprotection to provide the free 2-aminopyrimidine **28**, a substrate poised for intramolecular alkyne hydroamination.

Transition metal catalyzed hydroamination of alkynes^{15, 16} is a powerful reaction in synthesis; $17-19$ however, the paucity of guanidine or 2-aminopyrimidine nucleophiles engaging in this reaction is notable. After extensive experimentation, this transformation was validated by treatment of alkyne 28 (Scheme 4) with 10 mol% $\mathrm{AuCl_3}^{20}$ at $40\ ^\circ\mathrm{C}$, leading to efficient production of the tricyclic pyrimidine **29** as a single isomer (78%).

Subsequent spiroaminal formation at C8 in enamine **29** was conducted under carefully controlled acidic conditions, being mindful of the possibility of undesired C10-*N* bond rupture via potential C8-iminium reactivity. This liability was precluded by treatment with TsOH, effecting TBS removal and spirocyclization to provide the tetracyclic pyrimidinium **30** (77%). ²¹ The final stages of the synthesis involved conversion of the allyl ester **30** to its Cscarboxylate. This nucleophile, obtained from carboxylic acid **31**, was amenable to selective alkylation with iodide **32**. ¹³ The resulting ester **33** was then subjected to *t*-butylcarbamate removal to afford (−)-crambidine (**1**).

A convergent synthesis of crambidine has been described, showcasing a $[4+2]$ thioimidatevinyl carbodiimide annulation and an intramolecular alkyne-guanidine hydroamination. This strategy should not only prove useful for preparing other members of the crambescidins, but also provide an attractive means with which to access complex *N*-heterocycles in general.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by the NIH (GM57859) and Merck, Inc. We thank Prof. Larry Overman for providing a copy of a 13C NMR spectrum of synthetic **1**.

References

- 1. Heys L, Moore CG, Murphy PJ. Chem Soc Rev 2000;29:57–67.
- 2. Jareserijman EA, Sakai R, Rinehart KL. J Org Chem 1991;56:5712–5715.
- 3. Ohtnai I, Kusumi T, Kakisawa H, Kashman Y, Hirsh S. J Am Chem Soc 1992;114:8472–8479.

Perl et al. Page 3

- 4. Berlinck RGS, Braekman JC, Daloze D, Bruno I, Riccio R, Ferri S, Spampinato S, Speroni E. J Nat Prod 1993;56:1007–1015. [PubMed: 8377012]
- 5. Jareserijman EA, Ingrum AL, Carney JR, Rinehart KL, Sakai R. J Org Chem 1993;58:4805–4808.
- 6. Snider BB, Shi ZP. J Am Chem Soc 1994;116:549–557.
- 7. Coffey DS, McDonald AI, Overman LE, Rabinowitz MH, Renhowe PA. J Am Chem Soc 2000;122:4893–4903.
- 8. Nagasawa K, Georgieva A, Koshino H, Nakata T, Kita T, Hashimoto Y. Org Lett 2002;4:177–180. [PubMed: 11796044]
- 9. Moore CG, Murphy PJ, Williams HL, McGown AT, Smith NK. Tetrahedron Lett 2003;44:251–254.
- 10. Overman LE, Rhee YH. J Am Chem Soc 2005;127:15652–15658. [PubMed: 16262433]
- 11. Wamhoff H, Schmidt A. Heterocycles 1993;35:1055–1066.
- 12. Petry N, Parenty A, Campagne JM. Tetrahedron-Asymmetry 2004;15:1199–1201.
- 13. See supporting information.
- 14. Coffey DS, McDonald AI, Overman LE, Stappenbeck F. J Am Chem Soc 1999;121:6944–6945.
- 15. Pohlki F, Doye S. Chem Soc Rev 2003;32:104–114. [PubMed: 12683107]
- 16. Muller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem Rev 2008;108:3795–3892. [PubMed: 18729420]
- 17. McGrane PL, Livinghouse T. J Am Chem Soc 1993;115:11485–11489.
- 18. Crawley SL, Funk RL. Org Lett 2003;5:3169–3171. [PubMed: 12943379]
- 19. Kadzimirsz D, Hildebrandt D, Merz K, Dyker G. Chem Commun 2006:661–662.
- 20. Fukuda Y, Utimoto K. Synthesis 1991:975–978.
- 21. This and subsequent aminopyrimidine intermediates were purified by RP-HPLC (water/MeCN/TFA).

Figure 1.

Scheme 1.

Scheme 2a. *^a*Reagents and conditions: (a) *n*-BuLi, THF, −78 °C; AllylOCOCl, 90%; (b) (Me₂N)₂C=NH₂N₃, CHCl₃, 23 °C, 69% (2:1, *E:Z*); (c) PPh₃, CH₂Cl₂, 23 °C; add TBSOCH₂N=C=O, PhH, 80 °C, 49% from (E) -13, 43% from (Z) -13.

Perl et al. Page 7

Scheme 3a.
"Reagents and conditions: (a) **16**, *t*-BuLi, Et₂O, Hexanes, −78 °C; add **15**, −78 → 23 °C, 67%; (b) **14** (2 equiv), $(CH_2Cl)_2$, 60 °C, 70%.

Scheme 4a.

*^a*Reagents and conditions: (a) **21**, *n*-BuLi, THF, −78 → 0 °C; add **20**, −78 → 23 °C, 85%; (b) NIS, AgNO3, Me2CO, 23 °C, 91%; (c) **24**, Zn, DMF, 0 °C; CuCN, LiCl, THF, DMF, −40 → 23 °C; add **23**, −40 → 23 °C, 54% (d) Lawesson's Rgt, THF, 0 °C, 94%; (e) MeI, K₂CO₃, THF, 23 °C, 95%; (f) **14** (2 equiv), $(CH_2Cl)_2$, 23 °C, 65%; (g) NH₄F, MeOH, 23 °C, 79%; (h) AuCl₃, MeCN, 40 °C, 78%; (i) *p*-TsOH·H₂O, MeCN, 23 °C, 77%; (j) Pd(PPh₃)₄, pyrrolidine, MeCN, 23 °C, 81%; (k) Cs₂CO₃, DMF, 23 °C, 88%; (l) HCl, Et₂O, 0 °C, 77%.