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Duchenne muscular dystrophy (DMD), 
one of the most prevalent pediatric 

genetic disorders (1 in 3,500 newborns), 
is caused by point mutations or deletions 
in the gene encoding dystrophin, a major 
component of the cytoskeleton of muscu-
lar fibers. Disruption of dystrophin results 
in structural instability within cardiac and 
skeletal muscle and accelerates turnover 
of the myogenic stem cell pool, ultimately 
leading to death in afflicted individuals.1 
Gene transfer approaches to treat DMD 
are hampered by the very large size of the 
dystrophin locus (2.4 Mb) and the limited 
penetration into muscle by therapeutic vi-
ral vectors carrying the mini-dystrophin 
gene or exon-skipping constructs. Fur-
thermore, obtaining autologous myogenic 
progenitors for use in DMD patients pres-
ents a particularly difficult challenge for 
the development of cell-based therapies.

Since the discovery of the dystrophin 
gene, several investigators have attempted 
to exploit adult stem cells and gene trans-
fer as therapeutic approaches to DMD. In 
an important step toward that end, as de-
scribed in this issue of Molecular Therapy, 
Kazuki et al. deftly combined two recent 
innovations so as to provide an unprec-
edented opportunity to overcome the ob-
stacles facing DMD therapy2: the use of 
a human artificial chromosome (HAC) 
to express full-length dystrophin (DYS) 

and induced pluripotent stem (iPS) cells 
derived from a DMD patient’s own fibro-
blasts to provide the autologous cellular 
resource (Figure 1).

Several vector systems have been de-
veloped to express defective genes for gene 
therapy, including retro-, lenti-, adeno-, 
and adeno-associated viruses.3 The ap-
plication of adenovirus has been success-
ful, but the duration of gene expression is 
limited, whereas adeno-associated virus is 
characterized by a restricted DNA pack-
aging capacity, such that it can carry only 
a mini-dystrophin gene or small exon-
skipping constructs. Retro- and lentiviral 
vectors have the capacity to deliver a gene 
of greater length, but their use can lead to 
adverse events due either to the integra-
tion of vector constructs into endogenous 
chromosomes or to the induction of an 
immune response stimulated by viral gene 
expression. To overcome the limitations 
encountered when using such vectors and 
to allow expression of the complete dystro-
phin gene in an endogenous context, the 
Oshimura laboratory developed an HAC 
vector that carries the whole genomic locus 
of dystrophin (DYS-HAC).4 In addition, 
a gene encoding green fluorescent pro-
tein was inserted into the vector to allow 
the presence of the latter to be monitored 
within cells, and a suicide gene encoding 
thymidine kinase was also introduced into 
the vector so as to allow negative selection 
against the transduced cells if necessary.

Forced expression of four transcription 
factors (Oct4, Sox2, Myc, and Klf4) dedif-
ferentiates somatic cells and induces them 
to become iPS cells that possess the critical 
features of embryonic stem (ES) cells: self-
renewal and pluripotency.5,6 Regaining the 

potential to differentiate into all three germ 
layers of the body, these iPS cells provide a 
powerful resource for cell-based therapy 
for DMD patients who require cellular 
regeneration of their muscle.7 Because iPS 
cells are derived from the patient’s own 
cells, they do not induce immune rejection 
when transplanted back into patients—a 
huge obstacle for strategies that make use 
of allogeneic transplantation.

In their experiments, Kazuki et al. 
generated iPS cells from fibroblasts har-
vested from mdx mice—a murine model 
of DMD—by expressing only three re-
programming factors; they excluded the 
potentially oncogenic Myc. Using mi-
crocell-mediated chromosome transfer, 
the DYS-HAC vector was transferred to 
the mdx-iPS cells, where it restored dys-
trophin expression in the teratomas that 
grew from the cells, as well as in chimeric 
mice derived from such cells, demonstrat-
ing the potential of the combined therapy 
for DMD. Transferring DYS-HAC into 
human DMD-iPS cells proved more chal-
lenging because of the intrinsic difficulty 
of performing single-cell cloning of hu-
man ES and iPS cells. DMD-iPS cells were 
generated only when DYS-HAC was first 
transferred into the DMD fibroblasts be-
fore iPS cell generation. Subsequent in vivo 
differentiation of a teratoma confirmed the 
functional expression of dystrophin from 
the DYS-HAC-iPS cells.

Thus, the laborious collaborative ef-
forts of stem cell and gene therapy scien-
tists have allowed the development of the 
materials necessary for DMD treatment. 
However, the cure for DMD or other ge-
netic muscular dystrophic diseases is far 
from imminent. Figure 1 depicts a popu-
lar model of pluripotent stem cell–based 
DMD cell therapy in a sequential manner. 
The derivation of a patient’s specific iPS 
cells and the genetic rescue are performed 
in vitro, and they can currently be routine-
ly achieved despite the need to improve on 
the reprogramming approach. The current 
methods used to derive iPS cells—using 
retro- or lentiviruses to overexpress re-
programming genes—raise the concern of 
potential tumorigenicity.8 However, new 
approaches for reprogramming that avoid 
genetic alterations should be refined with-
in the near future thanks to the pioneering 
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efforts of a fairly large number of stem cell 
scientists. Indeed, nonintegrating viruses, 
multiple transient transfections, and pro-
tein transduction have all been used to pro-
duce iPS cells, albeit at a low efficiency.9–12 
Key issues that must yet be addressed are 
how to (i) maximize the utility of iPS cells 
through the identification and isolation of 
specific cell populations that can efficiently 
generate myogenic cells and repair dam-
aged tissue and (ii) optimize the cellular 
delivery method to preserve the function 
of the transplanted cells.

Candidate myogenic cells can be se-
lected from differentiated ES and iPS 
cells using methods developed to isolate 
adult stem cells of a particular muscular 
lineage,13 such as satellite cells,14 muscle-
derived stem cells,15 side-population 
cells,16 bone marrow–derived stem cells,17 
mesoangioblasts,18 pericytes,19 and muscle-
derived CD133+ stem cells.20 Established 
knowledge of cell surface markers used to 
prospectively isolate the above adult stem 
cells facilitates the identification of the de-
sired cell types from iPS cells. For example, 
cells expressing markers of satellite cells 
(CD56), side-population cells (CD34), 

myoendothelial cells (CD34, CD114), 
pericytes (CD146, PDGFRβ), mesoangio-
blasts (NG2+), and CD133+ cells can be 
isolated during iPS cell differentiation and 
then tested for their myogenic potential. 
However, because most of the cell surface 
markers are shared by adult stem cells of 
other lineages, isolating candidate cells 
with multiple markers will enhance the 
likelihood of obtaining a pure myogenic 
cell population. Barberi and colleagues’ 
2007 report exemplifies how to successful-
ly isolate engraftable skeletal muscle from 
human ES cells in two steps, using a mes-
enchymal stem cell marker (CD73) and 
a myoblast marker (CD56).21 The genetic 
approach based on the overexpression 
of known genes (e.g., Pax3) essential for 
myogenic commitment will be very useful 
in developing therapeutic approaches for 
DMD, because this method drives differ-
entiating cells to become myogenic, there-
by reducing the portion of uncommitted 
or nonmyogenic populations of cells.22

In addition to the difficulties associat-
ed with isolating the optimal cell types that 
have myogenic potential for transplanta-
tion, the iPS cell–based DMD therapy will 

confront the same barriers that hinder 
the successful application of adult stem 
cell–based approaches23,24: poor survival, 
limited self-renewal, and limited hom-
ing and migration after transplantation. 
Recent reports of myogenic functional 
recovery after the intra-arterial injection 
of mesoangioblasts and pericytes under-
score the therapeutic potential of systemic 
delivery of myogenic cells.18,19 Continuous 
efforts to optimize the use of adult stem 
cells in treating muscular dystrophy will 
be essential to the future application of 
myogenic cells derived from iPS cells. In 
addition, a completely new cell popula-
tion distinct from known adult stem cells 
may yet be isolated from pluripotent stem 
cells, providing a population more closely 
resembling early embryonic multipotent 
cells with the capacity to be systemati-
cally transplanted.25 Meanwhile, we should 
maintain our search for novel approaches 
to DMD therapy. Toward this end, Kazuki 
and colleagues have pioneered a unique 
therapeutic approach to the treatment of 
DMD by harnessing gene correction with-
in pluripotent ES or ES-like iPS cells.
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As with the development of thera peutics 
based on RNA interference and tradi-

tional messenger RNA (mRNA) targeting 
with antisense, it is a liver-specific target 
RNA—microRNA-122 (miR-122)—that 
has emerged as the lead candidate for a 
microRNA therapeutic that could have the 
first meaningful clinical impact. miR-122 
is by far the most abundant microRNA in 
the liver, and possibly in the entire hu-
man microRNA repertoire.1,2 This early 
realization has spawned several inves-
tigations of the function of this tissue-
specific microRNA. These show it to be 
important for liver cell identity,2–4 lipid 
metabolism,3,5 and, perhaps curiously, 
hepatitis C virus (HCV) replication.6 Giv-
en the sheer abundance of this microRNA 
and the multitude of mRNAs that are de-
repressed following its inhibition,3 it is 

possible that more functions will emerge. 
Because the liver is the organ that is most 
amenable to the delivery of oligonucle-
otides following systemic administration, 
antisense-targeting experiments in both 
mice and nonhuman primates contrib-
uted quite early and very significantly 
to the functional definition of miR-122, 
especially its role in maintaining choles-
terol levels3,5,7 and in HCV replication in 
a chimpanzee model.8 As a result of such 
rapid progress, clinical trials are now un-
der way to investigate the use of miR-122 
as an antisense target for the treatment of 
chronic HCV infection. The phase I safety 
trials are sponsored by Santaris Pharma 
and involve healthy adult volunteers.

Setting the stage for targeting 
miR-122 in chronic HCV infection
It is the fact that this microRNA promotes 
rather than inhibits the function of a non-
cellular target RNA that has rendered 
miR-122 an attractive therapeutic target.6 
Through a combination of microRNA 
inhibition with simple 2′-O-methylated 
antisense molecules and elegant genetic 

studies, Jopling and colleagues determined 
that miR-122 engages two highly conserved 
sites in the 5′ noncoding region (NCR) of 
HCV in a seed-dependent manner, so as to 
facilitate the accumulation of HCV RNA.6 
A reduction of approximately 1 log in gen-
otype I HCV RNA was observed in both 
Huh-7 replicon and transient transfection 
models when miR-122 was sequestered in 
this fashion.

It was around the same time that the 
feasibility of miR-122 inhibition in vivo 
was first demonstrated. Administration of 
relatively large amounts (three doses of 80 
mg/kg on each of 3 consecutive days) of 
cholesterol-conjugated, 2′-O-methylated 
antisense oligonucleotides to C57BL/6J 
mice led to functional miR-122 inhibi-
tion within a week, as demonstrated by an 
approximate 40% reduction in total cholest-
erol and concomitant increased expression 
of predicted target genes, such as Aldoa.3 A 
study published the following year5 showed 
similar effects with a phosphorothioate 
2′-O-methoxyethyl anti-microRNA, which 
produced largely comparable results when 
administered over a more extended period 
of time (4 weeks).

In 2008, Elmén and colleagues dem-
onstrated the feasibility of functional 
miR-122 sequestration in nonhuman 
primates.7 The authors employed an 
unconjugated, 15-nucleotide phosphoro-
thioate DNA-LNA (locked nucleic acid) 
mixmer, SPC3649, that was shorter than the 
previous miR-122 antisense compounds, 
which were complementary to the entire 
length of miR-122. This modification was 
supposed to facilitate cellular uptake, and 
the use of high-affinity LNAs was expected 
to compensate for the shortened base-pair 
complementarity. Indeed, Elmén et al. 
show in their initial exploratory Huh-7 
tissue culture studies that binding affini-
ties correlate with miR-122 functional in-
hibition (via luciferase reporter and HCV 
replication assays) and that SPC3649 
was more potent than the cholester-
ol-conjugated 2′-O-methyl antagomirs in 
a head-to-head comparison in C57BL/6J 
mice. These attributes translated into 
lowering total cholesterol in African green 
monkeys by 30–40% following three intra-
venous injections of 10 mg/kg over 5 days. 
The effect was dose-dependent, maximal 
at 1–2 weeks after administration of three 
doses of 10 mg/kg, and the reduction 
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