
Electronic su
10.1098/rsif.2

*Author and
Medicine, Ca
Cambridge,
(mb556@cam

Received 19 J
Accepted 27 F
Control of equine influenza: scenario testing
using a realistic metapopulation model

of spread

M. Baguelin1,2,*, J. R. Newton1, N. Demiris3, J. Daly4, J. A. Mumford2

and J. L. N. Wood2

1Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
2Department of Veterinary Medecine, Cambridge Infectious Disease Consortium,

University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
3MRC Biostatistics Unit, Institute of Public Health, Cambridge CB2 0SR, UK

4Viral Brain Infections Group, 8th Floor Duncan Building, Daulby Street,
Liverpool L69 3GA, UK

We present a metapopulation model of the spread of equine influenza among thoroughbred
horses parametrized with data from a 2003 outbreak in Newmarket, UK. The number
of horses initially susceptible is derived from a threshold theorem and a published statistical
model. Two simulated likelihood-based methods are used to find the within- and between-
yard transmissions using both exponential and empirical latent and infectious periods. We
demonstrate that the 2003 outbreak was largely locally driven and use the parametrized
model to address important questions of control. The chance of a large epidemic is shown
to be largely dependent on the size of the index yard. The impact of poor responders to
vaccination is estimated under different scenarios. A small proportion of poor responders
strongly influences the efficiency of vaccine policies, which increases risk further when the
vaccine and infecting strains differ following antigenic drift. Finally, the use of vaccinating in
the face of an outbreak is evaluated at a global and individual management group level. The
benefits for an individual horse trainer are found to be substantial, although this is influenced
by the behaviour of other trainers.
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1. INTRODUCTION

Equine influenza, as all mammalian influenza viruses, is
transmitted by close contact, including via aerosoliza-
tion (Turkington & Ashby 1998). Transmission at the
population level is therefore determined by contact
patterns within and organization of the host popu-
lation, and these vary markedly between species
(e.g. pig, horse, humans). Important drivers of trans-
mission in horse populations include demographic
structure and movements of horses; these are associated
with exercise and competition requirements as well as
sale and purchase of horses.

To date, models for equine influenza have studied
different, but generally small-scale aspects of equine
influenza transmission including the spread of influenza
in a non-vaccinated population (Glass et al. 2002), the
pplementary material is available at http://dx.doi.org/
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extension to realistic seasonal demographic variations
(Park et al. 2003) and the consequences of strain
heterology (i.e. the antigenic difference between the
infecting strains and the strain in the vaccine) on
epidemics (Park et al. 2004). However, these models
have been largely restricted to the study of single
premises, even though the dynamics of between-yard
transmission are obviously extremely important in the
understanding of larger scale influenza outbreaks.

An important underlying reason for increased risk
of outbreaks, as in humans, is the phenomenon of
antigenic drift of the influenza virus (Potter 2002; Daly
et al. 2004; Park et al. 2004). Indeed, compulsory equine
vaccination policies, although offering benefit, fail to
prevent outbreaks, due to the emergence of antigeni-
cally distant strains of virus from those contained in
vaccines (for a description of that issue for equine
influenza see Daly et al. (1996), for a way of quantifying
and visualizing these ‘antigenic’ distances in humans
see Smith et al. (2004)).

The antigenic drift of viral strains drives the risk of
epidemics and thus has to be constantly monitored
doi:10.1098/rsif.2009.0030
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(Mumford 1999), but at any particular time point, with
a population reasonably well protected by vaccination,
other factors are also important in determining
population-level susceptibility. In particular, the
structure of the population and the contact and mixing
patterns are of primary importance. The work pre-
sented here includes development of metapopulation
models to represent the transmission of equine influ-
enza among a population of thoroughbred racehorses.
Such models are useful in the development of risk
assessments and definition of optimal vaccine policies,
and are important because it is not possible to conduct
experiments at a population level.

The aim of this work was to design a metapopulation
model that incorporates complex population structures.
We then developed methods to parametrize this model
using epidemiological data from an outbreak that
occurred during the spring of 2003 in Newmarket, UK,
where a large number of racehorses were affected
(Newton et al. 2006). The model was then used to
address a series of applied questions related to the control
of outbreaks.
2. MATERIAL AND METHODS

2.1. Data

The latent and infectious periods for influenza in
individual horses were derived from published results
of experiments carried out previously at the Animal
Health Trust in Newmarket (Park et al. 2004). The
remaining data, including horse demography and
location, were from an outbreak of equine influenza
that occurred in spring 2003 in Newmarket, UK, and for
which a good description was available (Newton et al.
2006). Demographic data came from various specific
sources, including trainer-targeted questionnaires and
Bell (2003). Data also included the results of laboratory
tests performed on samples collected during the 2003
epidemic, including serological data on pre-outbreak
antibody levels for horses in some of the yards,
estimates of the total number of infected horses at the
end of the epidemic in some yards and vaccine
histories. A statistical model describing predictors for
individual horses becoming infected was also used
(Barquero et al. 2007). Data are summarized in
appendix A (tables 1 and 2) and a yard level movie of
the recorded epidemic is provided in the electronic
supplementary material 2.
2.2. Definition of the model

As for previous models of the spread of equine influenza
(Glass et al. 2002; Park et al. 2003, 2004), the approach
adopted here was based on the classical susceptible–
exposed–infectious–recovered (SEIR; Allman & Rhodes
2004) model. Owing to the relatively small sizes
(in terms of number of horses) of the yards that the
horses were kept in (medianZ30, highestZ190; Bell
2003), it was necessary to incorporate stochasticity into
the development of an epidemic as, when the virus
enters a yard, there is a non-zero probability that the
virus dies out without transmitting (Renshaw 1991).
J. R. Soc. Interface (2010)
Such stochasticity also underlies the fact that, in real
outbreaks, only a proportion of the yards get affected
during any outbreak.
2.2.1. Metapopulation structure of the model. Two
important assumptions of the SEIR model are that
the population is ‘well mixed’ (equal probabilities of
making contacts for all horses) and homogeneous
(same response to infection). Scaling up the model to a
multiple yard training centre with a geographically frag-
mented population, different qualities of vaccination and
shared training facilities invalidates both assumptions.

To tackle this issue, the model groups animals
with the same behaviour in the epidemic under the
same index, representing animals, for example, in
the same training yard or animals with the same
vaccine history, etc. Then, the S, E, I and R sections of
the population break down in vectors SZ(Si)0!i%n,
EZ(Ei)0!i%n, IZ(Ii)0!i%n and RZ(Ri)0!i%n, where,
within each value of the index i, the populations are
homogeneous and well mixed. The total number of
horses indexed by i is represented by NiZSiCEiCIiCRi.

In the simplest case, the index matches the different
yards and n is equal to the total number of these yards.
However, in more complex cases, such as heterogeneous
response to vaccination, n can be bigger (see §2.4.2).
2.2.2. Protection afforded by antibody. Protection
against influenza infection through inactivated vaccines
in use in 2003 was largely antibody mediated, as
evidenced experimentally (Mumford et al. 1983) and
epidemiologically (Newton et al. 2000a). To increase
the level of antibodies in horses and thus improve
population-level protection against the virus, vaccination
has been compulsory among racehorses in Great
Britain since 1981. There is considerable variation in
individual response tovaccination and, particularlywhen
less than four doses have been given, a rapid exponential
decline in antibody levels after vaccination (Newton et al.
2000a). Other factors such as vaccine type can also have
an impact (Barquero et al. 2007). The choice of product
and schedule varies between trainers, and so, at the
start of any epidemic, not all yards are protected equally.

Extending the studies of Park et al. (2003), in order
to represent the variability between yards, we defined a
level of susceptibility ai for each yard. Then, the level
of initially susceptible horses is given by Si(0)ZaiNi

and the initially removed (protected) horses by
Ri(0)Z(1Kai)Ni.
2.2.3. Contact matrix and transmission. The meta-
population structure implies that we have to consider
the way the animals ‘mix’, i.e. the structure of infectious
contacts between animals from different yards. For
this, we defined the matrix TZ(Tij)0!i, j%n, which
summarizes how the animals mix with each other. Tij

is the transmission rate from yard i to yard j, and thus is
a measure of the intensity of contacts between the
two yards. The different forces of infection are given by
DZ(di)0!i%nZTI. Thus, a horse passes from Si to Ei

with a rate diZ
Pn

jZ1 TijIj .
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2.2.4. Latent and infectious periods. The latent and
infectious periods (respectively, the time spent by a
horse in classes E and I ) are often modelled
with exponential distributions with transition rate ai
(from class Ei to class Ii) and gi (from Ii to Ri); such an
approach has convenient mathematical properties.
Park et al. (2004) demonstrated that this was inap-
propriate given experimental data especially as the
infectious period appeared to be bimodal (see figure 1
in the electronic supplementary material 1). Here, both
the exponential distributions and the empirical
distributions (as adopted in Park et al. 2004)
were used. The distributions corresponding to vac-
cination with heterologous viruses, rather than those
homologous with epidemic strains, were used (Park
et al. 2004).
2.3. Fitting the model with available data

The aim of parametrizing the model is to enable
reproduction of epidemics similar to the outbreak seen
in Newmarket in 2003 and then to explore various
options for control.

To be able to use the data, assumptions regarding
the contact structure had to be made.

The yard-level susceptibility levels were derived by
scaling up the risk predicted by the horse-level
statistical model from Barquero et al. (2007) using the
relationship between final size, local transmission and
susceptibility levels from the threshold theorem
(Andersson & Britton (2000), see equation (2.1) for
details). The last two parts of this section describe the
methods used to numerically estimate the local and
global transmissions parameters from data.
2.3.1. Choice of the contact structure. Previously
observed patterns of transmission of influenza virus in
Newmarket suggested that the geographical location
of the yards probably had an impact on the way that
the infection spreads (J. L. N. Wood, J. R. Newton &
J. A. Mumford 1990–2005, unpublished data). However,
estimation of the spatial effects on transmission
would need some knowledge of the pathway of viral
transmission or at least some clear patterns identified at
the end of the epidemics. Analysis of the final picture of
and the data during the epidemic in 2003 did not
reveal any clear pattern (see movie in the electronic
supplementary material 2).

In the absence of any clear way of incorporating
geographical data, we considered whether the epidemic
could be explained by two levels of mixing averaging
both local (within yard) and global (between yard)
transmissions. It is thus assumed that the ‘density’ for
all yards is the same, i.e. the contact intensity is the
same for each combination of two yards. As there is no
information to model it differently, and as the range of
contact between yards is similar (with some variations
for yards sharing training for example), it is a
reasonable approximation. This model is very similar
to the one used for human households (Ball et al. 1997),
although we consider that the transmission within the
yard follows a true mass action law, as the transmission
J. R. Soc. Interface (2010)
between horses should be dependent on the density of
infectious horses present in the yard and not on the size
of the yard (for a discussion on the use of a pseudo or a
true mass action, see de Jong et al. 1995).

The contact matrix T has thus the following form:

Tij Z

lL

Ni

C
lG

N
; if iZ j;

lG

N
; otherwise;

8>>>><
>>>>:

with lL the local transmission; lG the global trans-
mission; NZ

Pn
iZ1 Ni, Ni the number of horses in yard

i; and n the number of yards on the site.
We assumed that the epidemic started with an

individual horse that was infected in the yard where the
disease was first detected during the 2003 outbreak.
2.3.2. Estimation of yard-level susceptibility. Previous
models estimating susceptibility levels used results
from challenge experiments to assess the probability of
a horse seroconverting (viewed as a significant increase
in antibody) as a function of its antibody level prior to
infection (Park et al. 2004). However, for the 2003
outbreak in Newmarket that we consider here, antibody
levels were not sufficient to explain differences in risk
(Barquero et al. 2007), and six variables (sex, age of first
vaccination, date and type of last vaccination, first time
a N/1/93 strain was administered and level of N/1/93
antibodies) were necessary to predict the probability
that a given horse would get infected if its yard
was infected.

From this statistical model, it is thus possible to
derive the mean expected numbers of infected horses in
a yard if the epidemic kicks off. The susceptibility levels
can then be estimated by scaling up the means
produced by the statistical model using a version of
the threshold theorem approximation (Andersson &
Britton 2000) for a vaccinated population. It gives a
relationship between the transmission rate, the mean
infectious period, the susceptibility level and the final
number of infectious horses (which can be predicted by
the model) inside a single yard for a sufficiently large
population (unpublished simulations show that the
approximation is reasonably precise even for small-size
populations such as the ones considered here). If we call
gi the final proportion of infected animals predicted by
the model inside the yard i (as an average of the
individual probabilities to get infected), we then have
gizait with t being the non-trivial solution of
1KeKaitlL=giZt, with ai the proportion of fully suscep-
tible horses; lL the local transmission rate; and gi the
local recovery rate. This can be rearranged to express ai
as a function of lL as

aiðlLÞz
gi

1KeKgilL=gi
: ð2:1Þ

The protection induced by vaccination affects the
dynamic aspects of the disease. For example, for a
single yard with a transmission rate (S/E ) following
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a true mass action law lSI/N and a level of suscep-
tibility of a, the progression of the disease is equivalent
to a model with a fully susceptible initial population
S(0) and a transmission rate l0Zal. The removal of
some of the susceptible animals through vaccination is
thus effectively equivalent to a reduction in the
transmission parameter.
2.3.3. Estimation of local and global transmissions
(first method). For a grid of values of the local and
global transmissions, it is possible to simulate epi-
demics and count the occurrences of:

(i) the number of times the overall size of the final
simulated epidemic is in the range of the actual one
(between 24 and 25% of the total population), and

(ii) the number of times this epidemic involves the
same number of yards as in the real epidemic
(infected horses were detected in 21 yards, see
Newton et al. 2006).

It is then possible to estimate lL and lG by
considering that the frequency of occurrences respect-
ing both conditions is a simulated likelihood of the
given pair of parameters, in a similar way as for
approximate Bayesian computation (Beaumont et al.
2002; Marjoram et al. 2003). From this, it is possible to
estimate the local and global transmissions as the
means of these simulated samples.

As the data necessary to evaluate the risk inside
yards were available only for a small proportion of the
site, we needed to approximate the risk in the site to
be the average one in the available samples (400
horses in 10 yards), we had set gZ0.7287 for all
yards, the corresponding levels of susceptibility in
each yard being derived for each level of lL following
equation (2.1).

This method provides a first approximation and
allows us to quantify how much of the transmission is
local and global. If the transmission appears to be
largely local, it would thus be possible to estimate also
the local and global transmissions by using the
available data (yard and overall proportions of
infected horses) for 10 individual yards in the site
(see appendix A, table 2).
2.3.4. Estimation of local and global transmissions
(second method). We use a similar simulated likelihood
approach here, but we also assume that epidemics
are mainly driven locally (i.e. lG/lL). It is then
possible to consider the 10-yard final sizes from the
epidemic and predicted sizes from the statistical
model to estimate the likelihoods of the different
values of the local transmission for each of these
yards—and then go on to estimate lG based on
these lL estimates. A more precise value of local
transmission can then be worked out by considering
the likelihood of the event where all the 10 yards
simultaneously end with the same number of infected
horses as in the actual outbreak data.

It is theoretically possible to derive, knowing the
level of protection of the yard, the probability that an
J. R. Soc. Interface (2010)
outbreak of a certain size occurred as a function of the
contact rate (l) and of the infectious period distribution
(I). This can be done through the recursive resolution
of a set of triangular equations (see Andersson &
Britton 2000). Unfortunately, the evaluation of these
probabilities numerically breaks down because of the
appearance of terms smaller than the precision of
standard programming. One solution was to increase
the precision of the calculations (Demiris & O’Neill
2006), but limits were met very quickly when increas-
ing the size of studied yards. We tackled this
issue by estimating these probabilities through
repeated simulations.

If, for a given infectious period distribution I , we call
PN,Z,a(lL) the probability that an epidemic of size Z
occurs in a yard of size N with a level of susceptibility a

as a function of the transmission rate lL, then the
probability that a set of yards with known sizes Ni and
known levels of susceptibility ai endure exactly sub-
epidemics of different sizes Zi is

PðlLÞZ
Y10
iZ1

PNi ;Zi ;ai
ðlLÞ:

lestL is then estimated as

lestL ZEðlLÞZ
ÐN
0 lLPðlLÞdlLÐN
0 PðlLÞdlL

:

Once the level of local transmission (lL) has been
estimated, assuming the structure of contacts pre-
sented in §2.3.1, for any global transmission parameter
(lG), there corresponds a probability Q(lG) that the
model yields the actual final proportion of infected
horses (estimated to be between 24 and 25%). The
global transmission parameter, lG, is then given by

lestG Z

ÐN
0 lGQðlGÞdlGÐN
0 QðlGÞdlG

:

2.4. Exploration of different control measures
and epidemic seeding pattern

2.4.1. Quantifying the impact of the size of the seeding
yard. The previous simulations in this paper were all
seeded from the yard believed to be where the virus was
introduced in 2003.

In a series of numerical experiments, we wanted to
quantify the impact of the size of the yard where the
virus entered. For this, we plotted distributions of
series of epidemics for different values of Ni from the
smallest yard (NminZ7) to the biggest one (NmaxZ190),
using both exponential and empirical distributions for
latent and infectious periods. We also plotted the
probability that an epidemic is larger than 10 per cent
of the total population, as well as the mean size of such
large epidemics, as a function of the number of horses in
the index yard.
2.4.2. The impact of poor responders. In recent studies,
it has been shown than some 7.5 per cent (22 out of 292)
of racehorses present near to zero antibody levels
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Figure 1. Parameter values where overall final epidemic size
matches that observed in 2003 (final sizes between 24 and 25%
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points). These simulations used empirical distributions for the
latent and infectious periods. For each of the 6400 points in
the grid, 5000 simulations were run.
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(Daly et al. 2004). This could be the result of horses
responding weakly to vaccination, poor compliance or
inadequate attention to optimal vaccine administration
(e.g. bad storage of the vaccines). The model was used
to test the consequences of incorporating a proportion
of animals that we assumed to be unvaccinated among
the vaccinated ones; scenarios that differed in how this
unvaccinated population was distributed between
yards were then explored.

Two different distributions of the poor responders
were tested. In one, the ‘unvaccinated’ horses are
randomly distributed between the yards, as would be
expected if a proportion of all horses failed to respond
adequately to vaccination. This was achieved through
assigning such animals a different index to others in the
same yards, with the mixing pattern inside the yard
remaining the same, but with different latent and
infectious periods and initial susceptibility in the poorly
vaccinated group. In the other scenario, the unvacci-
nated animals are found in only a few yards, as would be
expected if these animals were due to poor trainer
compliance. To do so, we sequentially and randomly
chose yards until the sum of their horses exceeded the
number of observed poor responders. The last yard was
then divided into two patches in order to have the
appropriate overall proportion of poor responders in the
population. These two scenarios are two extreme
situations representing the case where poor compliance
is totally random or entirely due to human interven-
tion. The real situation probably lies somewhere
between. Both of these two scenarios were also
compared with the ideal ‘perfectly vaccinated’ situation
for different level of vaccine protection.
2.4.3. Vaccination in the face of an outbreak. Vac-
cination in the face of an epidemic is an important
measure in the veterinary armoury for the control of
disease outbreaks. The result of such a measure as
applied to large outbreaks of equine influenza
among previously vaccinated racehorses is unclear.
On the one hand, well-targeted vaccination could
accelerate epidemic extinction by removing
susceptible animals; on the other hand, vaccination
when an epidemic has already started can be a
costly operation implemented too late to prevent the
development of the epidemic due to delayed responses
to killed virus vaccines. In addition, failure to
comply with good biosecurity during the conduct
of mass vaccination programmes may exacerbate
infectious transmission.

To test the role possibly played by revaccinating
horses when an epidemic has already started, we had to
address the fact that the level of susceptibility changes
with the time of the year due to the natural decline of
antibodies after seasonal vaccination (Park et al. 2004).
Thus, all horses were considered potentially susceptible
at the start of the epidemic, but with an antibody level
l(t) attached to each one; this changes in response to
vaccination. When a horse in yard i has been exposed
to the virus, it can at a rate aiEip(l(t)) become infectious
and at a rate aiEi(1Kp(l(t))) be removed as being
protected by its antibody level, with p(l(t)) being the
J. R. Soc. Interface (2010)
probability of seroconverting as a function of mean
antibody level, varying with time (probability of
seroconversion taken from the heterologous case in
Park et al. 2004).

To determine the profile of the mean antibody level,
we used the demographic model from Park et al. (2003)
that integrates the compulsory vaccine schedule
with demographic variation due to the sales and
purchases of young horses. The profile of antibody
levels for a ‘typical yard’ during the course of an entire
year is shown in figure 2 of the electronic supplementary
material 1 (measured with respect to one of the
vaccine strains).

Once an epidemic (associated with a particular
season) has started, it continues unabated until
‘detected’. Detection occurs in the model when a
certain variable number of infectious horses appear in
a 3-day interval (as in Savill et al. 2006). After
detection, a control policy is chosen, each yard being
able ‘to choose’ to vaccinate or not. The epidemic
continues with two types of populations, one in which
antibody continues to decline and the other in
which antibodies are increasing in response to
vaccination. The boosting is represented by a 6-day
delay during which the antibody level of the boosted
horse remains stable and then a linear increase in the
antibody level to reach the peak value after 11 days
(Powell 1988).

We first quantified the impact of vaccination when
80 per cent of trainers boosted following detection.
Then, we studied the impact of varying of the
detection threshold on the final size of the outbreak.
Finally, we analysed the impact of the behaviour
of other trainers on the benefit for individual
trainers vaccinating.
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3. RESULTS

3.1. Estimation of model parameters

The data from the 2003 outbreak (Newton et al. 2006)
were used to estimate the levels of susceptibility in each
yard and the local and global transmission rates.
3.1.1. Local and global transmissions (first method).
The first constraint on the final size of the epidemic
gives a number of possible couples (lL, lG) (see grey
points in figure 3 of the electronic supplementary
material 1; figure 1). For the lowest values of lL, the
epidemic is driven globally by the yard to yard
transmission, thus the set of parameters is hardly
J. R. Soc. Interface (2010)
influenced by the variation of lL. As lL increases, global
transmission has to go down to keep the balance. At
high values of lL, the corresponding potential coupled
values of lG are more variable than when lL is low.

Adding the constraint that the final number of yards
affected should match exactly that observed in 2003
allows discrimination between these scenarios, as
shown by the black points in figure 3 of the electronic
supplementary material 1 and figure 1. The mean of lL
and lG from this simulated likelihood provides an
estimate of the pair (lLZ1.03; lGZ1.5!10K2) for the
exponential distributions and (lLZ0.7; lGZ1.5!10K2)
for the empirical ones.

Simulations show (figure 2) that when a yard becomes
infected, less than 2 per cent (0.63% on average) of cases
will come from reintroduction (from another yard), while
the rest is due to local transmission. Unsurprisingly,
reintroduction peaks when the number of infectious
horses in the overall population peaks (median of
47 animals) and is also more common in larger yards.
Epidemics are thus largely locally driven.
3.1.2. Local and global transmissions (second method).
Given estimated levels of susceptibility, the prob-
abilities of the observed final sizes in the 10 yards for
different values of lL were derived and are shown in
figure 3. The distribution of P(lL) for the exponential
and empirical distributions are both shown. The
estimated values of the intra-yard transmission lL
were 0.78 for the exponential distribution and 0.69 for
the empirical distribution.

The probability of matching the 2003 data, given
different rates of lG, is shown in figure 3 of the
electronic supplementary material 1, using lL derived
from both infectious period distributions. The estimates
of the global transmission rates are lGZ1.7!10K2 for
the exponential distribution and 1.6!10K2 for the
empirical distribution.
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3.2. Practical issues

For the rest of the simulations, we have used the values
of lL and lG yielded by the second method (see §3.1.2;
with the corresponding distributions), as there was
greater uncertainty about the number of finally affected
yards due to the difficulty of detecting yards in which
some horses were infected but the virus did not take off.
3.2.1. Impact of index yard size and control measures.
The distribution of the final sizes of the simulated
global epidemic for both the exponential and experi-
mental distributions is shown in figure 4. The bimodal
aspect of the distribution is more evident for
the exponential distribution, with a higher risk of
large epidemics.
J. R. Soc. Interface (2010)
The probability of a large epidemic (defined as an
epidemic involving more than 10% of the population)
increases with the size of the initial index yard (figure 5).
By contrast, the mean sizes of these epidemics remain
approximately similar (mainly driven by the value of lL
and lG), and, after reaching a peak around the median
yard size, the mean size even slightly decreases when the
size of the seeding yard increases (figure 6). Indeed,
epidemics starting frombigger yards aremore ‘explosive’,
thus lasting for a shorter duration of time, and leaving
consequently more susceptible horses remaining.
3.2.2. Poor responders. A number of different scenarios
were compared when considering the impact of poor
responders on the risk of a large epidemic. We chose
10 per cent of the overall population affected to be the
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threshold at which epidemics are considered as being
large. This value is rather arbitrary but corresponds
approximately to the least frequent final epidemic size
between bimodal peaks (figure 4). A ‘fully’ vaccinated
population provided a baseline against which
randomly spread poor responders, poor responders
concentrated in a few yards and concentrated poor
responders acting as the index yard were compared.
Two series of simulations were run, one corresponding
to the 2003 epidemic with a population 86 per cent
susceptible and the other with a 50 per cent susceptible
population, corresponding to a situation where
vaccination is heterogeneous (Park et al. 2004).

There is a substantial increase in risk of an epidemic
when part of the population is not protected and
the impact depends on the level of susceptibility in the
vaccinated population. For example, when 86 per cent
of the population were susceptible, the probability that
the epidemics involve more than 500 horses is 20 per cent
for the fully vaccinated population, 22 per cent for
the concentrated poor responders, 27 per cent for the
randomly spread poor responders and 44 per cent if
the index yard had concentrated poor responders.
When the vaccine is more efficient (50% susceptibility),
the probability of large epidemics is reduced but risks of
having medium (between 50 and 150 horses) outbreaks
remain and again are very sensitive to the presence
of poor responders. In contrast to the first scenario,
a concentration of poor responders is more detrimental
than a random distribution, mainly due to large
local epidemics.

Given the substantial impact of poor responders
on the risks of epidemics and the sensitivity to the
initial proportion susceptible (figure 7), we explored
the impact of population susceptibility level further.
Susceptibility level increases with time since seasonal
vaccination and alsowith viral antigenic drift. The effects
J. R. Soc. Interface (2010)
of population-level susceptibility on the probabilities
of final epidemic sizes more than 10 per cent of the
population were compared between the same different
poor responder scenarios as above (see figure 5 in
the electronic supplementary material 1). To reach a
5 per cent chance of an epidemic size more than
10 per cent, susceptibility needs only to be 53 per cent
where the index yard and others have a concentration
of poor responders, it needs to be 66 per cent for both
the random distribution and where poor responders
are concentrated and 71 per cent if all horses respond
to vaccination.
3.2.3. Vaccination in the face of an epidemic. The likely
impact of vaccinating 80 per cent of the yards following
detection of influenza and the benefits for an individual
trainer alone revaccinating were explored. Finally, the
consequences of changing the diagnosis or detection
threshold were considered.

Vaccination of 80 per cent of the yards. The impacts of
revaccinating 80 per cent of yards following detection
of influenza on the distribution of epidemic final sizes
for two different times of a year are shown in figure 8.
The diagnostic threshold of 10 horses infected in 3 days
was chosen for these simulations. The population
is relatively protected in March, but in October is
rendered relatively susceptible by the seasonal ingress
of young horses. In March, 23 per cent of introductions
take off and in October this increases to 44 per cent. In
both cases, the impact of vaccination in the face of the
outbreak considerably reduces the risk of a large
epidemic. The efficiency of the measure is smaller in
mid-October than in March, where very large
epidemics are quite unlikely. Vaccination in October
reduces median epidemic size from 1643 to 379 horses
(mean sizes: 1570 to 411).
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Benefits of vaccination for an individual trainer. We
considered the impact in the largest yard (190 horses) of
boosting following diagnosis to maximize the detection
of any effects of individual trainer behaviour. The
individual benefits for a trainer boosting (figure 9) are
highly dependent on the behaviour of other trainers.
The chances of an outbreak in the yard are substantially
reduced when other yards revaccinate, but the size of the
within-yard outbreak remains large when the trainer
does not boost. While the probability of an outbreak
in the yard is not much reduced when the trainer alone
boosts, the likely size of that outbreak is almost halved.
Theoptimal situation iswhen there isboosting in theyard
in question as well as in 80 per cent of others.
Change in the detection threshold. Finally, we explore
the importance of surveillance and early detection by
exploring the relationship between the mean size of the
overall epidemic and the threshold of detection
(figure 10). The efficiency of the vaccination measure
is very sensitive to the threshold, with the mean final
sizes of epidemics increasing almost linearly with the
threshold being set at up to 15 horses. Comparing
thresholds of 5, 10 and 15 horses, the mean epidemic
sizes are 215, 411 and 557 horses, respectively. The
slope of the curve flattens slightly above 15 horses.
These results demonstrate the use of surveillance
(and response to diagnosis) in reducing the severity of
the outbreak.
J. R. Soc. Interface (2010)
4. DISCUSSION

This paper describes a realistic model that captures the
essential characteristic of the spread of an epidemic of
equine influenza in a multi-yard scenario as in centres
such as Newmarket where young racehorses are often
concentrated. Being based on and parametrized from
real data, it captures the demographic details of horse
populations, the spread of the virus and its control and
thus provides a reasonably realistic tool to study equine
influenza control at the population level. The results of
simulations using this model provide several important
pointers for control, at both the training yard and
the vaccine development levels. The results also
strongly support the use and importance of sensitive
disease surveillance when considering control of epi-
demic diseases.

Although practiced for several decades based on
empirical evidence, this work quantifies the likely
benefits of trainers revaccinating their horses following
local diagnosis of influenza. While this measure is very
effective at reducing the impact on the trainer’s own
horses, it is greatly enhanced when a significant number
of other trainers revaccinate. Although this may
sometimes be outside of the standard dosing schedule
of the vaccine, this study provides clear evidence of the
benefits of trainers acting together in this way.
Although the extent of the benefits can vary between
seasons, there are always benefits of reboosting at the
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population level. Unsurprisingly, the strength of this
effect was sensitive to the level of influenza surveillance.
Respiratory disease is common in young racehorses
(Burrell et al. 1996; Wood et al. 2005) and trainers will
often ignore the first few cases of disease in their yard
before investigating it. This study demonstrates how
important it can be to differentiate low-level endemic
J. R. Soc. Interface (2010)
disease from an incursion of epidemic disease, as is also
the case when considering control of avian influenza
(Savill et al. 2006).

The results suggest that the proportion of horses
responding poorly to vaccination does have an import-
ant impact on the risks for the population. Thus, all
measures should be taken to try to reduce such
poor responses in individual animals. Newer, better
adjuvanted vaccines seem to reduce the proportion of
such animals (J. A. Mumford 1990–2005, unpublished
data), but further efforts to diminish this subset of the
population further are justified. It has been known for
some time that individual trainers can diminish the
likely impact of epidemics by their general management
(Newton et al. 2000b). It is now also clear that vaccine
programmes associated with a reduced proportion of
poorly responding animals will be of substantial benefit
in the control of disease. Furthermore, any trainer not
fully complying with compulsory vaccination pro-
grammes could have a substantial impact on the risks
of disease in the rest of the population and the results
justify continued efforts to ensure full compliance.

While the model developed to describe transmission
of equine influenza is very general, the parametrization
was only possible with a very simple structure of
population (two levels of mixing). The question therefore
arises concerning the usefulness of such a sophisticated
model, given that the data were not optimal in providing
information about the structure of contacts and this
is the case for all the sets of data we reviewed in the



Table 1. Data provided by Richard Newton. (For more details
about methods used, see Newton et al. (2006).)

number of yards affected 21
overall population affected 24.44%
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literature. Model improvement should not only depend
on strictly fitting existing data, but it has also a role in
exploring new pathways, even if they remain theoretical.
We believe that this approach, by revealing which data
might be suitable for better understanding the epidemic,
will inform data collection from future outbreaks.
The versatility of the model also allows a broad range
of scenarios to be tested in an exploratory way and is
consequently a potentially useful tool for policy
making. Some of these scenarios will be the subject of
future study.

We used different sources of data for modelling the
effect of vaccination and this means that they do not
always involve the same strains. Our conceptual
approach to the effects of vaccination within groups is
the same as taken byPark et al. (2003, 2004), and is based
on detailed knowledge of responses of horses to vaccines
and the close correlation between circulating antibody
levels and the probability of becoming infected during
heterologous challenge (Park et al. 2004); this has been
validated by field observations (Newton et al. 2000a).
Ideally, models would be based on assessments of
vaccination that do not make assumptions about
transmission between individuals, but would directly
measure overall transmission rates in the context of
specific infectious periods, as was done in experiments in
chickens (van der Goot et al. 2005). However, the aim
here was to estimate epidemiological transmission rates
during an epidemic in the context of specific and
rather predictable antibody levels, so that extrapolation
to other situations might be possible. Furthermore,
stabled horses are typically managed in a very
different manner to experimental animals, management
markedly affecting transmission, and realistic experi-
mental studies are difficult to conceive in large groups
of horses.

Increasingly, infectious disease models are moving
away from assuming exponential distributions for
infection and latent periods (Keeling & Grenfell 1998;
Park et al. 2004). It is noticeable that the area under the
probability curve for the experimental distribution of
infection is larger (2.3 times bigger) than that for the
exponential distribution, which suggests also that
the experimental scenario seems more likely.

One issue concerns the fact that one estimation of
local transmission rates depended on the assumption
that sub-epidemics were considered to be independent.
We went on to estimate the coupling of these different
sub-epidemics when considering the global trans-
mission lG. There is an apparent contradiction in this
reasoning, as we assume something to be zero before
estimating it as non-zero. In fact, the small difference in
values between the estimated values for the two rates
and the fact that only a limited portion of the whole site
is affected at instant t shows that, in a multi-yard
outbreak or epidemic, most of the infectious contacts
occur between horses in the same yards, rather than
between horses in different yards. The assumption of
independence is therefore believed to be a reasonable
approximation. An alternative approach would
consider the random graph framework of Demiris &
O’Neill (2005). That method could be slightly more
accurate but requires assessment of algorithmic
J. R. Soc. Interface (2010)
convergence, and repeated epidemic simulations
would again be necessary for the different scenarios
we consider. Additionally, our method can be viewed as
an approximate Bayesian computation approach with
small 3 (see Beaumont et al. (2002) and Marjoram et al.
(2003) for details).

The coefficients ai will depend strongly, among
other factors, on the match between the antibodies
produced by vaccination and the infecting viral
strain. Owing to the phenomenon of antigenic drift
occurring in influenza viruses over time, protection is
substantially reduced for heterologous (antigenically
different) infecting and vaccinal viral strains (Park
et al. 2004).

From a more theoretical point of view, the model
presented in this paper gives a new insight into the
way we see epidemics and their control. Classic SEIR
models have stressed the importance of the basic
reproductive ratio R0 on predicting the final issues of
epidemics. This number can also be used for assessing
vaccination policies. Our model also confirms that the
existence of this threshold number is also connected
to the structure of the population. Owing to the
simplicity of having such a number (one quantity to
assess the risk or not of an epidemic), some more
complex models appear to have been designed to
make similar threshold numbers evident. In our
metapopulation model, different possible local trans-
mission rates result in different local basic or effective
reproductive ratios. Furthermore, other prospective
simulations, with less restrictive assumptions about
the coefficients describing more complex contact
patterns, can lead to a lot more scenarios than the
binary, small/big epidemics.

This work also paves the way to a population
model that would take into consideration the
evolutionary aspects of influenza viruses. This should
allow us to address questions relating to the process
that gives a certain shape to the phylogenetic trees of
influenza viruses depending on the populations
targeted, but also assess the impact of compulsory
vaccination on the observed change of the nature of
the disease.
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thank three anonymous referees for their extremely
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APPENDIX A. DATA
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