
PyEPL: A cross-platform experiment-programming library

Aaron S. Geller
University of Pennsylvania, Philadelphia, Pennsylvania

Ian K. Schleifer
Brandeis University, Waltham, Massachusetts

Per B. Sederberg
Princeton University, Princeton, New Jersey

Joshua Jacobs and Michael J. Kahana
University of Pennsylvania, Philadelphia, Pennsylvania

Abstract
PyEPL (the Python Experiment-Programming Library) is a Python library which allows cross-
platform and object-oriented coding of behavioral experiments. It provides functions for displaying
text and images onscreen, as well as playing and recording sound, and is capable of rendering 3-D
virtual environments for spatial-navigation tasks. It is currently tested for Mac OS X and Linux. It
interfaces with Activewire USB cards (on Mac OS X) and the parallel port (on Linux) for
synchronization of experimental events with physiological recordings. In this article, we first present
two sample programs which illustrate core PyEPL features. The examples demonstrate visual
stimulus presentation, keyboard input, and simulation and exploration of a simple 3-D environment.
We then describe the components and strategies used in implementing PyEPL.

The proliferation of personal computers (PCs) during the past three decades and their ability
to control both input and output devices have made them the standard tool for experimentation
in the psychological laboratory. Unlike the early days of the PC, when researchers had to write
their own low-level code to control experiments, there now exist numerous software tools that
enable researchers with relatively modest programming skills to develop sophisticated
experiments. Broadly speaking, these tools either take the form of function libraries used in
conjunction with scripting languages (e.g., the Psychophysics Toolbox used with the
MATLAB scripting language; Brainard, 1997; Pelli, 1997) or they take the form of graphical
experiment creation tools that allow users without any formal programming skills to develop
experiments (e.g., the E-Prime1 package sold by Psychology Software Tools, Inc.).

PyEPL (pronounced ‘pĪ-ē-pē-el) is an experiment programming library, written for, and mostly
in, the Python programming language. It uses only cross-platform software components, and
thus may be used on both Mac OS X and Linux. PyEPL offers several advantages over existing
programming libraries and graphical development tools (Table 1). PyEPL adds facilities for
recording vocal responses and for the creation of desktop-based virtual reality experiments to
the standard suite of tools commonly available in other packages (e.g., timing, stimulus control,
response acquisition, etc.). PyEPL also offers tools for synchronizing behavioral and
electrophysiological data. Additional features include screen-refresh synchronization,

Copyright 2007 Psychonomic Society, Inc.
Correspondence concerning this article may be addressed to M. J. Kahana, University of Pennsylvania, 3401C Walnut Street, Room
302C, Philadelphia, PA 19104 (e-mail: kahana@psych.upenn.edu)..
1See MacWhinney, St. James, Schunn, Li, and Schneider (2001).

NIH Public Access
Author Manuscript
Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

Published in final edited form as:
Behav Res Methods. 2007 November ; 39(4): 950–958.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



automated logging of experimental events, and management of participant data hierarchies.
Finally, the Python language itself may be considered an additional feature. Python has a very
simple syntax, which makes programming minimally daunting for the novice but provides
advanced software-engineering features, such as inheritance and polymorphism, for the
initiate.

USAGE
Here we present some of the main aspects of experiment coding in PyEPL, by examining two
simple experiment programs.

Sample Experiment 1: EasyStroop
The first sample experiment demonstrates the use of PyEPL for simple (screen) output and
keyboard input. Specifically, it does the following:

1. Shows the instructions to the participant;

2. Presents a textual stimulus on screen; this is a single trial of a forced choice Stroop
task, so the participant must choose between two possibilities for the text's color;

3. Waits for the participant's response;

4. Decides whether the response was correct, and gives correct/incorrect feedback with
the response time.

We first present the Python code in Listing 1 and explain it. Note at the outset, though, that
lines beginning with “#” are comments and are ignored by the Python interpreter. Also note
that the line numbers are provided for convenience and are not part of the code.

The Experiment class—The first nontrivial line of the script is line 9, which creates an
instance of the Experiment class. The Experiment class manages three functions that pertain
to all experiments. Our simple example relies only on the first of these: creating and maintaining
a directory structure for each participant. The experiment program is run by invoking the
Python interpreter on the experiment script from the command line, and the participant label
is passed to PyEPL as a command-line parameter. For example, if the script in Listing 1 were
saved in a file called easyStroop.py, it could be run from the command line with the
command python easyStroop.py -s sub001. The Experiment object processes the
flag -s sub001 and creates a data directory for participant sub001.

The second function served by the Experiment class is that of parsing the experiment's
configuration file. To facilitate their modification, global experiment variables are typically
separated into a separate file called con-fig.py. The experimenter sets global variables in
con-fig.py as a series of Python assignments, as in num-Trials=12. Upon creation, an
Experiment instance parses the configuration file and makes the settings available to the
experiment program. Maintaining global variables in a separate file has the additional benefit
of modularizing the experiment. That is, a specific configuration file can be associated with a
specific session for a specific participant. Thus, even if config.py should change over time,
the settings used for each participant would be known, because the current version of the
configuration file is copied into the data directory for each participant for whom the experiment
is being run.

The third function served by the Experiment class is that of managing experimental state. As
described in greater detail below, under Implementation, PyEPL provides functions to facilitate
interruption and resumption of experiments. These functions are provided by the
Experiment class in the methods saveState and restoreState.

Geller et al. Page 2

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The Track classes—On lines 14 and 15, the program instantiates two kinds of Track
objects. Tracks, which lie at the center of the PyEPL programming philosophy, entail two
concepts. The first is that any experimental quantity that varies over the course of an experiment
(i.e., all input and output) should be monitored both comprehensively and without explicit
coding by the experimenter. This is a demand for convenient logging of both stimulus
presentations (output) and participant responses (input). The second concept entailed in the
Track philosophy demands that the convenient logging reside inside the stimulus presentation
classes (in the case of output) or the response-processing classes (in the case of input).

Thus, when on line 14 the program creates a VideoTrack instance, it is doing two important
things. First, it sets up the interface by which PyEPL puts images onscreen. That is, it enables
a specific mode of stimulus presentation. Second, it prepares PyEPL to log the visual stimulus
presentations as they occur. Similarly, when on line 15 the program creates a KeyTrack
instance, it does two distinct things. It is instructing PyEPL both to listen for and record any
keyboard inputs.

The only explicit use of either of our Track objects in the program occurs on line 18, where
the VideoTrack instance is used to clear the screen. However, all screen output and all
keyboard input are mediated by the above-mentioned Track objects.

The PresentationClock class—For the class of psychology experiments consisting of a
list of stimulus presentations, two kinds of intervals need to be specified. The first is the duration
of the stimulus presentation, and the second is the duration of empty time between stimuli, or
interstimulus interval (ISI). A third kind of interval, during which the program waits for a
participant's response, will be considered later, because this duration is not controlled by the
experiment program. The PresentationClock class is critical for specifying known
durations—that is, the first two kinds of intervals.

PresentationClocks occur both implicitly and explicitly in several parts of the program.
Here we consider their use on lines 37 and 41 of the program, which constitutes the most
straightforward application. A PresentationClock instance contains the system time and
provides the delay method to introduce ISIs into a program. The delay call (for example, on
line 37) does not actually cause a delay. Instead, it simply increments the time contained by
the PresentationClock instance; it is thus a simple addition and takes less than 1 msec to
execute. Then, when the PresentationClock is passed as an argument to a presentation
function (as it is on line 41), PyEPL waits to execute the function until the system time is greater
than or equal to that contained by the PresentationClock. This arrangement greatly
improves ISI timing, since it decouples presentation times from program execution latencies.
Because ISI delays are executed both as part of the presentation function and in terms of system
time stamps (as opposed to offsets relative to prior presentations), they are not affected by the
execution time of any code between the call to delay and the call to the presentation function.

Geller et al. Page 3

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 1.
Because no delay is introduced before the call to flashStimulus on line 56, the use of a
PresentationClock on that line is not entirely straightforward. In this instance, we take
advantage of the fact that presentation functions not only use PresentationClock for timing
but also update them in the course of executing. flashStimulus increments the
PresentationClock to reflect the duration of the stimulus presentation (in this case by 1,000
msec, the default duration), but does not block execution for the full duration. Therefore, if the
call to flashStimulus were the last call before the end of the program, the termination of
the program would prematurely cut off the stimulus. We prevent this by calling clk.wait,

Geller et al. Page 4

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



which actually blocks execution until the actual time catches up with the time on the
PresentationClock.

The use of clk on line 27 is similar, in that the PresentationClock does not constrain the
visual presentation. Here the instruct function displays the instructions for the experiment
to the participant. These are shown onscreen indefinitely, in a pager environment capable of
scrolling backward and forward through the instruction text. Instead of controlling this
presentation, the PresentationClock is passed as an argument so that it has a fresh time
stamp once the program leaves the instruct function. Consider the following example: A
participant begins the experiment at time t (and therefore the clk reads approximately t) and
spends 30 sec reading the instructions. Unless the time in clk is updated after instruct has
returned, the call to delay will not work at all. This is because it will increment a “stale” time
value: that is, the time in clk will be incremented from t to t+1, but the current time is
approximately t+30. Because the current time exceeds that contained in clk, no delay will
occur. Thus, even output functions that are not constrained by Presentation-Clocks accept
them as arguments and increment them by the duration of the output. Passing a
Presentation-Clock into these functions keeps its time stamp fresh—that is, useful for
timing control later in the experiment.

The ButtonChooser class—Although the Key-Track instance created on line 15 is
necessary for processing keyboard input and sufficient for logging of all keystrokes, the
keystrokes themselves are not available to the experiment program without further coding.
That is, a PyEPL experiment with just a KeyTrack will record keystrokes but will not be
aware of them as they occur in order to respond to them. The program must expl icitly expose
the keystroke events by creating an object to listen for them. The ButtonChooser object
created on line 34 does just this. The ButtonChooser groups a specific set of keys that may
then be monitored as potential stimulus responses. In the example program, the keys “R” and
“G” are potential responses and are grouped in a ButtonChooser called bc. When bc is
passed as an argument to the present function, as it is on line 43, the stimulus is presented
only until one of the keys in bc is pressed or until the duration passed as the duration
argument elapses.

As seen on line 41, the present function returns a list of 3 values when used to elicit a keyboard
response. The first element of the list is the time of stimulus presentation, the second is the
Key of the response, and the third is the time of response. This is how an experiment is made
interactive with keyboard input in PyEPL.

Experiment output and logs—By default, PyEPL runs in full-screen mode (Figure 1). As
mentioned in the section on Tracks, all screen and keyboard events are automatically logged.
Thus, for example, after the experiment has run, the file key.keylog (generated automatically
by the KeyTrack) contains the text found in Listing 2.

The first column of the log contains the time of each event. The second column contains
imprecision values for the time stamps in the first column. The motivation for, and
implementation of, recording imprecision values is described in the Implementation section,
under Timing. The third column codes a key-down event with a “P” (press) and a key-up event
with an “R” (release). The fourth column gives the kind of key event.

Sample Experiment 2: TinyCab
This program is a stripped-down version of the virtual-navigation task employed by Ekstrom
et al. (2003). The program does the following:

Geller et al. Page 5

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



1. Simulates a trivial 3-D environment, with a floor, four walls, and sky;

2. Simulates navigation of the environment as the participant drives around it with a
joystick;

3. Presents a sprite (a 2-D image always facing the user) at a specific location in the
environment;

4. Quits when the participant drives into the sprite.

Again, we present the code (in Listing 3) and then explain it. Because this experiment is
substantially more complex than the preceding one, our exposition emphasizes the high-level
organizing concepts. We begin with an overview of the program and its underlying strategy.

Listing 2.
The programming paradigm differs substantially between Sample Experiments 1 and 2.
Whereas Experiment 1 completely specifies a finite sequence of stimuli and their durations,
Experiment 2 merely simulates a virtual environment, which is left to the participant to explore.
The paradigm therefore shifts from enumerating a stimulus sequence to configuring the virtual
environment and the participant's possible interactions with it. With this configuration done,
we start PyEPL's renderLoop function to allow those interactions to occur—in principle
indefinitely.

The organization of our program is as follows:

1. Preliminaries (lines 1–16)

2. Configuration of the environment (lines 20–70)

3. Configuration of the avatar (lines 73–89)

4. Configuration of the Eye (lines 92–95)

5. Navigating the environment (lines 99–111)

Preliminaries—The first section of the experiment resembles the beginning of Sample
Experiment 1: The purposes of the Experiment and VideoTrack instances are identical to
those in that example. In this experiment, we also instantiate a VRTrack (line 13) to gain access
to the PyEPL VR application programming interface (API), and a JoyTrack (line 16) to enable
joystick input.

Environment—Currently, only square environments are supported by PyEPL. To make these
environments moderately plausible, we circumscribe these virtual worlds with a visible and
impassable barrier—that is, a square wall. Together with the sky (rendered as a large box
overhead) and the ground (or floor), these boundaries are the first main category that needs to
be configured in our environment.

Geller et al. Page 6

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Listing 3.
This is done in two steps. First (on lines 23–30), we describe the barriers' appearance. Then
(on lines 37–51) we give them virtual physical properties—specifically, the property of
impassability.

The other kind of object requiring configuration in our experiment is the sprite (see Figure 2).
In contrast to the boundaries, whose rendering includes both scaling to convey proximity and
deforming to convey orientation, the sprite is rendered only to convey distance; its display does
not vary with orientation and always faces the Eye (concerning which, see below).

Geller et al. Page 7

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The interface for sprite configuration parallels that for the walls. Its visual component is set up
first (lines 54–56), followed by its (virtual) physical properties (lines 60–70). The sprite
configuration, however, has an added wrinkle, in that the program must do something should
the participant's avatar (concerning which, see below) collide with it: It must quit. To arrange
this, we create a function to be called just in case of such a collision, and register it with the
PyEPL VR module (line 70).

Avatar—The avatar is the participant's virtual body, fixing him or her in a specific location
and endowing him or her with specific traits, such as velocity and mass, and potentially an
appearance (although not in our example). From a programming point of view, the avatar is a
data structure that contains these traits (minimally, the virtual location and velocity) and
continually updates their values on the basis of input from the participant. This experiment
demonstrates creating an avatar (line 73) and configuring it for joystick control (lines 79–89).

Eye—The final component of the VR system that needs to be set up is the Eye. The Eye is
essentially the virtual camera; it picks a specific view of the environment and renders it on
screen. To provide the feeling of exploring the virtual environment, the Eye in our experiment
follows the avatar. That is, the view on screen is updated to reproduce what is viewable at the
current position of, and in the current direction of, the participant. An Eye need not be fixed
with an avatar, however; it is possible, for example, to render the environment as seen from a
fixed position, as in a bird's-eye view.

The Eye is fixed on the avatar by calling the avatar's newEye method on line 92, and its field
of view is set on line 95.

Starting the navigation—The final step in the program is to start the navigation. This has
two parts: displaying the initial view from the Eye (line 99), and calling the renderLoop
function to start the simulation. On line 111, the renderLoop is started, with the function
checkStillGoing as an argument. On each iteration of the renderLoop, PyEPL calls the
function that the loop was given (checkStillGoing in this case); if the function returns
True, the simulation continues. In our experiment, checkStillGoing inspects the global
variable done, which records whether the participant's avatar has collided with the sprite.

Logs—Just as in Sample Experiment 1, the Track instances used in Experiment 2 provide
automated and comprehensive logging. The JoyTrack creates a log called
joystick.joylog, which records the (x, y) displacement of every joystick manipulation.
More importantly, the VRTrack creates a log called vr.vrlog, which records the virtual 3-
D coordinates of the avatar at each iteration of the renderLoop, as well as its virtual yaw,
pitch, and roll.

IMPLEMENTATION
Timing

Timing is perhaps the most basic aspect of any experiment programming library. It is essential
for controlling the duration of stimulus presentation, for measuring the response latencies, and
for synchronizing behavioral and physiological measurements. Because operating systems on
nearly all PCs perform multitasking, accurate timing presents a serious challenge to the
experimenter. These problems are exacerbated by an interpreted language such as Python,
which can never be as fast as a compiled language.

Geller et al. Page 8

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In PyEPL, we address the timing problem in two ways. The first strategy is to optimize critical
code by writing it in C. The second is to provide an estimate of the precision of all measured
event times by associating a lag value with each event. We describe both strategies here.

To minimize any extra latency in timing due to code interpretation, critical sections of PyEPL
are implemented as compiled code invoked by the interpreter. Two software layers participate
in this strategy. First, the main libraries that PyEPL uses to interact with hardware are all C
code. These include SDL, the Simple DirectMedia Layer (2005), which PyEPL uses to manage
both manual input (keyboard, mouse, and joystick) and video output, and RtAudio (Scavone,
2005), which manages audio input and output (see Figure 3).

The second layer of compiled software is a set of PyEPL functions that frequently interact with
the preceding layer. The most important of these is the pollEvents function, which monitors
manual inputs. PyEPL uses Py-Game's (2005) event loop to manage hardware inputs. User
inputs such as keystrokes or joystick manipulations are available as PyGame events, and PyEPL
continually checks for these and logs them.

The pollEvents function also exemplifies the second strategy mentioned above, providing
a precision estimate for event times. Using the PyGame event loop is a powerful tool for
simplifying experiment code, especially for programs such VR tasks that receive continual
user inputs. This technique comes with a potential degradation in timing accuracy, however.
7 The problem is that Py Game's event functions provide only the kind of events that have
occurred (e.g., “key F depressed”) but not the time at which they occurred. Timing events that
are registered in PyGame's event loop thus depends on rapid, continual checking for these
events.

A full benchmark of a PyEPL system, including measuring the hardware latencies of all input
and output devices, along the lines of the BlackBox Toolkit (Plant, Hammond, & Turner,
2004) is beyond the scope of this article. Furthermore, it would obscure the fact that PyEPL is
a cross-platform software package, capable of running on diverse hardware and operating
systems. What we can present is an overview of the notion of software timing, the manner in
which PyEPL monitors for imprecision due to its own execution.

PyEPL compensates for the potential inaccuracy in its event loop by recording the time elapsed
between pollEvents calls, which defines the maximum error in their time stamp. The time
stamps thus take the form of ordered pairs (t, ∊), where t is the time of the previous iteration
of the event loop, and ∊ is the time between the previous iteration and the current one. Any
events discovered by PyEPL are thus guaranteed to have occurred between t and t + ∊. For
153,584 key events recorded during a typical experiment on a Mac G5 tower running OS 10.3
with Python 2.3, we observed a mean ∊ of 0.96 msec. By comparison, the MATLAB
Psychophysics Toolbox running on the same machine had a mean ∊ of 4.1 msec for keystrokes.

A similar error estimate is provided for output events. In general, output functions in PyEPL
do not block; that is, execution proceeds to the program's next line as soon as the particular
function has started running. This makes possible a timing precision estimation as follows:
Any output operation (such as drawing to the screen or playing a sound) is preceded and
followed by checking the system time. These two time stamps again define an interval inside
which the output function is known to have run.

7See, e.g., www.pygame.org/docs/tut/newbieguide.html, Sec 11.

Geller et al. Page 9

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.pygame.org/docs/tut/newbieguide.html


Screen Refresh Synchronization
To provide maximum timing precision of visual stimulus onset, PyEPL makes use of double-
buffering and of vertical-blanking loop (VBL) synchronization functionality provided by the
OpenGL library.8 Double-buffering allows PyEPL to draw the next screen before it is necessary
to show it, and then to simply flip the new screen to the display when it is ready. With OpenGL,
the screen flip can be made to wait until the next vertical blank before it executes. This ensures
that the entire screen is updated at once and that PyEPL knows when that update has occurred.
Consequently, when synchronization to the VBL is activated in PyEPL, the experimenter can
know (within 1 msec) when a stimulus is presented to the participant.

When synchronized to the vertical refresh, screen updates are assumed to have substantial
delays (on a 60-Hz monitor, up to 16.6 msec). Thus, they constitute an exception to the time-
stamping regime described above; instead of returning time stamps both from before and after
the screen update has run, only the postupdate time stamp is returned. The time of this stamp
is known to be approximately 1 msec after the actual time of the update.

Synchronization Pulsing
Given the widespread interest in the neural substrates of cognition, the desire to conjoin
behavioral cognitive tasks with electrophysiological measures is natural. We will take
electroencephalographic, or EEG, recordings as an example. In order to precisely characterize
the behavioral import of a particular segment of EEG, however, it is necessary to know with
maximal precision when, with respect to the behavioral paradigm, a given electrophysiological
signal was observed. This requires a mechanism that allows the experimenter to interconvert
two kinds of time stamps: those associated with physiological signals on the one hand, and
those associated with behavioral events on the other.

PyEPL achieves this synchronization by sending intermittent, brief pulses to the recording
equipment throughout the behavioral task. By recording when the pulse was sent (via PyEPL)
and observing when the pulse was received (as recorded by the EEG equipment), one can easily
compute the mapping to interconvert the two sets of time stamps.

EEG synchronization pulsing (sync-pulsing) in PyEPL is one instance in which cross-platform
uniformity is not possible. Most Intel-based Linux systems have parallel ports that can be used
for sending transistor–transistor logic (TTL) pulses for synchronization. On Macs, which lack
parallel ports, we send sync-pulses from an ActiveWire USB card.9 Our sync-pulsing routines
check which platform they are running on and select the appropriate port.

Virtual Reality (VR)
PyEPL uses another C library, the Open Dynamics Engine (ODE;10 Smith, 2005), together
with PyGame and OpenGL, to create a VR API. PyEPL uses ODE to manage nongraphical
aspects of VR. This includes modeling the boundaries of the virtual environment, the locations
and trajectories of objects in it, and their interactions. Interactions generally correspond to the
action of a force, either mechanical (as in a collision) or the presence of friction or gravity; any
or none of these interactions may be included in a given virtual world. PyEPL visualizes this
nonvisual environment by maintaining a special virtual object, called an Eye, that selects a
specific view of the virtual world. In a VR program, PyEPL runs in a loop that computes what
the Eye currently sees, and uses OpenGL to render this view to the screen. As mentioned above,
PyEPL uses PyGame to receive input from hardware controllers, such as a joystick or keyboard.

8In implementing this, we have drawn on work by Straw (2006).
9Mac OS X drivers provided by Keck (2007).
10Accessed via the PyODE module (Baas, 2005).

Geller et al. Page 10

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Sound
PyEPL's sound module is another component implemented in C but exposed to Python. Using
the cross-platform RtAudio (Scavone, 2005) library to gain low-level access to the audio
devices, we coded two circular buffers, one providing read (record) functionality, the other
providing write (play) functionality. This code is exposed to Python with the SWIG (Beazley,
2005) utility.

Sound file I/O is implemented with the libsndfile (Castro Lopo, 2005b) and libsamplerate
(Castro Lopo, 2005a) libraries. These enable PyEPL to play sound from all conventional file
formats and sampling rates. File output is currently restricted to 44100-Hz WAV format.

State Management
For experiments run in noncontrolled environments, easy interruption and resumption of
experiments is critical, and this requires saving to disk (serializing) one or more program
variables. For example, if the participant is a hospital patient, the testing session may be
interrupted for various nonexperimental exigencies like administration of medication or
physiological diagnostics. To cope with these possibilities, convenient stopping and
resumption of the experiment is essential. The implications for the experiment program are as
follows. In general, experiment programs consist of a loop that iterates through a list of trials,
so this state management task entails, at a minimum, saving both the list of trials and the index
of the trial to be run. PyEPL uses the Python pickle serialization module to record
experimental state variables.

CONCLUSIONS
PyEPL makes the coding of feature-rich experiments quite easy. The sample experiments
described above can, with a modicum of effort, be scaled up into real experiments. Furthermore,
the features made accessible by PyEPL are provided by very few programming utilities that
are currently available. Future directions for PyEPL development include enhancing our
documentation and sample code base and streamlining the installation of PyEPL and its
dependencies.

RESOURCES
PyEPL is available from pyepl.sourceforge.net. This Web site provides instructions for PyEPL
installation, documentation, a user forum, and the PyEPL distributions themselves. Currently,
installation instructions are available for Mac OS X (both PowerPC and Intel) as well as Linux.
PyEPL was downloaded over 400 times in 2006, and its user base continues to grow.

Acknowledgments
We acknowledge support from NIH Grants MH55687, MH61975, and MH62196; NSF (CELEST) Grant SBE-354378;
and the Swartz Foundation. We thank Jacob Wiseman for his work on the installation system. The PyEPL project
grew out of earlier C/C++ libraries developed by M.J.K., J.J., Daniil Utin, Igor Khazan, Marc Howard, Abraham
Schneider, Daniel Rizzuto, Jeremy Caplan, Kelly Addis, Travis Gebhardt, and Benjamin Burack.

REFERENCES
Baas, M. PyODE: Python bindings for the Open Dynamics Engine [Computer software]. 2005. Retrieved

December 29, 2005, from pyode.sourceforge.net.
Bates T, D'Olivero L. Psyscript: A Macintosh application for scripting experiments. Behavior Research

Methods, Instruments, & Computers 2003;4:565–576.
Beazley, D. SWIG: Simplified Wrapper and Interface Generator [Computer software]. 2005. Retrieved

December 28, 2005, from www.swig.org.

Geller et al. Page 11

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pyepl.sourceforge.net
http://pyode.sourceforge.net
http://www.swig.org


Brainard DH. The Psychophysics Toolbox. Spatial Vision 1997;10:443–446. [PubMed: 9176954]
Castro Lopo, E. de Libsamplerate [Computer software]. 2005a. Retrieved December 28, 2005, from

www.mega-nerd.com/SRC/.
Castro Lopo, E. de Libsndfile [Computer software]. 2005b. Retrieved December 28, 2005, from

www.mega-nerd.com/libsndfile/.
Cohen JD, MacWhinney B, Flatt M, Provost J. PsyScope: A new graphic interactive environment for

designing psychology experiments. Behavior Research Methods, Instruments, & Computers
1993;25:257–271.

Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, et al. Cellular networks
underlying human spatial navigation. Nature 2003;425:184–187. [PubMed: 12968182]

Keck, D. ActiveWire driver & interfaces for OS X [Computer software]. 2007. Retrieved January 17,
2007, from sourceforge.net/projects/activewire-osx/.

MacWhinney B, James J, Schunn C, Li P, Schneider W. STEP—A system for teaching experimental
psychology using E-Prime. Behavior Research Methods, Instruments, & Computers 2001;33:287–
296.

Pelli DG. The VideoToolbox software for visual psychophysics: Transforming numbers into movies.
Spatial Vision 1997;10:437–442. [PubMed: 9176953]

Plant RR, Hammond N, Turner G. Self-validating presentation and response timing in cognitive
paradigms: How and why? Behavior Research Methods, Instruments, & Computers 2004;36:291–
303.

PyGame. Computer software. 2005. Retrieved December 28, 2005, from www.pygame.org.
Scavone, GP. RtAudio [Computer software]. 2005. Retrieved December 28, 2005, from

www.music.mcgill.ca/~gary/rtaudio/.
Simple DirectMedia Layer. Computer software. 2005. Retrieved December 28, 2005, from

www.libsdl.org.
Smith, R. Open Dynamics Engine [Computer software]. 2005. Retrieved December 28, 2005, from

www.ode.org.
Straw, A. VisionEgg [Computer software]. 2006. Retrieved January 25, 2006, from visionegg.org.

Geller et al. Page 12

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.mega-nerd.com/SRC/
http://www.mega-nerd.com/libsndfile/
http://sourceforge.net/projects/activewire-osx/
http://www.pygame.org
http://www.music.mcgill.ca/~gary/rtaudio/
http://www.libsdl.org
http://www.ode.org
http://visionegg.org


Figure 1.
Stimulus and feedback screens from Sample Experiment 1.

Geller et al. Page 13

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Screen shot of Sample Experiment 2, showing sprite (person with hand extended).

Geller et al. Page 14

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The software infrastructure of PyEPL and its hardware interfaces. The leftmost boxes describe
three system layers: Python, C, and hardware. SDL is the Simple DirectMedia Layer, a cross-
platform library for hardware management. The rightmost boxes describe the system for sync-
pulsing via an ActiveWire card, which is only done on Mac OS X. On Linux, PyEPL accesses
the serial port via the kernel.

Geller et al. Page 15

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Geller et al. Page 16

Table 1

Features of Interest Provided by Several Experiment Generation Packages and Scripting Languages

Package Platform
Sound
Recording

Sync-
Pulsing VR

E-Prime 1.1 Windows2 No Yes3 No

PsyScope X Build 454 Mac OS X5 No Yes No

SuperLab 4.0 Windows,2 Mac OS X5 Yes3 Yes3 No

PsyScript6 Mac OS 9 Yes Yes No

Psychophysics Toolbox Windows, Mac OS X5 No Yes3 No

Note—VR, virtual reality.

2Versions: 95 and later.
3Functionality exists via third-party hardware and/or software.
4See Cohen, MacWhinney, Flatt, and Provost (1993).
5Also runs on Mac OS 9 and earlier.
2Versions: 95 and later.
5Also runs on Mac OS 9 and earlier.
3Functionality exists via third-party hardware and/or software.
3Functionality exists via third-party hardware and/or software.
6See Bates and D'Olivero (2003).
5Also runs on Mac OS 9 and earlier.
3Functionality exists via third-party hardware and/or software.

Behav Res Methods. Author manuscript; available in PMC 2010 March 16.


