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Abstract
Human papillomavirus (HPV) natural history has several characteristics that, at least from a statistical
perspective, are not often encountered elsewhere in infectious disease and cancer research. There
are, for example, multiple HPV types, and infection by each HPV type may be considered separate
events. While concurrent infections are common, the prevalence, incidence, duration/persistence of
each individual HPV can be separately measured. However, repeated measures involving the same
subject tend to be correlated. The probability of detecting any given HPV type, for example, is greater
among individuals who are currently positive for at least one other HPV type. Serial testing for HPV
over time represents a second form of repeated measures. Statistical inferences that fail to take these
correlations into account would be invalid. However, methods that do not use all the data would be
inefficient. Marginal and mixed effects models can address these issues, but are not frequently utilized
in HPV research. The current paper provides an overview of these methods, and then uses HPV data
from a cohort of HIV-positive women to illustrate how they may be applied, and compare their results.
The findings show the greater efficiency of these models compared with standard logistic regression
and Cox models. Because mixed effects models estimate subject-specific associations, they
sometimes gave much higher effect estimates than marginal models, which estimate population-
averaged associations. Overall, the results demonstrate that marginal and mixed effects models are
efficient for studying HPV natural history, but also highlight the importance of understanding how
these models differ.
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INTRODUCTION
Human papillomavirus (HPV), a sexually transmitted virus, is the central etiologic agent in the
development of cervical cancer and precancerous cervical lesions(1). There are more than 40
types of HPV which commonly infect the cervical epithelium as well as other anogenital
tissues. At least 13 of these anogenital HPV types are considered oncogenic(2). The incidence
of HPV infection is very high, with 3-year cumulative incidence rates reported to be as much
as 43% amongst sexually active college aged-women, and the oncogenic HPV types cause the
majority of these infections(3). Most cervical HPV infections, however, including those with
oncogenic HPV types, resolve spontaneously within two years(4). Only a minority of
oncogenic HPV infections persists and leads to clinically significant cervical disease.

While much has been learned regarding the natural history of HPV, there is currently a growing
focus on type-specific HPV associations rather than data grouped by broad categories (e.g.,
any oncogenic HPV type), which was common in the past. Randomized clinical trials, for
example, are using the incident development of a persistent infection with a vaccine-related
HPV type as an intermediate endpoint(5). Observational studies are also increasingly studying
the natural history of HPV on a type-specific basis, whether to compare vaccinated versus
unvaccinated women (in non-clinical trial settings), or to investigate other exposures while
accounting for possible type-specific differences in effect estimates. The standard logistic
regression and Cox model approaches commonly employed in HPV research up until now may
not always be optimal for such analyses. More efficient statistical methods may need to be
adopted.

The choice of statistical method(s) must address several aspects of HPV natural history that
are not often encountered elsewhere in infectious disease and cancer research. For example,
while co-infection by more than one HPV type is common(3,6,7,8,9), prior studies suggest that
they infect separate cells, causing separate foci of infection(8). Therefore, the prevalence,
incidence, clearance/persistence, progression, of each HPV type-specific infection can be
examined as distinct events/outcomes. On the other hand, because of shared risk factors, these
separate HPV infections may be correlated. The probability of detecting any given HPV type,
for example, is greater among individuals who are currently positive for at least one other HPV
type(3,6,7,8,9). Another type of correlation in HPV natural history data relates to repeated
(serial) testing of the same women over time. If these two kinds of correlations are ignored, it
can affect p-values and confidence intervals, leading to an incorrect statistical inference. On
the other hand, statistical models that do not use all the available data (e.g., across all the visits
and HPV types examined) may be inefficient.

The current paper provides an overview of selected statistical methods that can be used to
address these issues. We then illustrate how these methods may be applied to HPV natural
history data, and compare their results. The example dataset is from the Women’s Interagency
HIV Study (WIHS), a large prospective cohort of HIV-infected and HIV-uninfected women.
It is worth noting that these analyses involve more than twice the total person-visits of data
available at the time of an earlier report regarding HPV type-specific infection in HIV-positive
women based in the WIHS(8) and represent an update of those earlier findings.
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MATERIAL AND METHODS
Subjects

Data were obtained from the Women’s Interagency HIV Study (WIHS) cohort. Details of this
cohort have been previously reported(6,7,8). Briefly, between October, 1994 and November,
1995, 2,058 HIV-seropositive and 568 HIV-seronegative women older than 13 years were
enrolled in the WIHS from similar clinical and outreach sources in Brooklyn/Manhattan/Bronx,
NY; Chicago, IL; Los Angeles and San Francisco, CA; and Washington, DC. In 2002, an
additional 738 HIV-seropositive and 406 HIV-seronegative women were similarly enrolled.
On a semiannual basis in this ongoing cohort subjects undergo a structured interview and a
physical examination that includes a gynecologic examination. Following a Pap smear, a
cervicovaginal lavage (CVL) is collected for HPV DNA testing, as are blood samples. At the
time of this analysis, there was a median follow-up of 14 visits among all subjects, with 9,475
persons-years of observation among HIV-positive women, and 2,708 person-years among
HIV-negative women.

Laboratory Testing/Data
As described in detail elsewhere(6,7,8,9), HPV testing was conducted at every visit using an
MY09/MY11/HMB01 polymerase chain reaction (PCR) assay. Amplification of a 268 bp
cellular β-globin DNA fragment was included in each assay as an internal control. Following
amplification, the presence of HPV DNA was assessed using filters hybridized with
biotinylated oligonucleotide probes for specific HPV types, as well as a general probe mixture
able to detect most anogenital HPV. For this analysis, oncogenic HPV types were defined as
types 16/18/31/33/35/39/45/51/52/56/58/59/66.

Blood specimens were tested for CD4+ T-cell count and HIV RNA levels in laboratories
participating in the AIDS Clinical Trials Quality Assurance Program. CD4+ count was
categorized into three strata (i.e., >500, 200–500, and <200 CD4+ cells/mm3), and plasma HIV
RNA level into four strata (i.e., <4000; 4000–20,000; 20,001–100,000; and >100,000 copies/
mL); a total of 13 combined CD4+ / HIV RNA strata that were found to be relevant in prior
studies(4,6), with HIV-negative women as the reference group.

OVERVIEW OF STATISTICAL METHODS
1. Analysis of HPV Prevalence

Standard Logistic Regression—It is common in HPV studies to use multivariable logistic
regression to cross-sectionally analyze the factors associated with “any HPV”, “any oncogenic
HPV type”, or an individual HPV type, at a given study visit. In such analyses, each woman
contributes a single outcome. Notationally, let Yi=1 represent the detection of HPV16 infection
for the ith person at the selected study visit, and 0 otherwise. We model Pi = P(Yi = 1) by

(1.1)

where Zi is our exposure variable of interest (e.g., a vector of indicators of 12 separate CD4+ /
HIV RNA strata) and Wi is the vector of other adjusted variables, including age, race, lifetime
of number of male sex, etc. for the ith person. The primary parameter of interest is β , defined
as the log odds ratio (OR) of HPV16 infection between women in a certain CD4+ / HIV RNA
stratum and HIV-negative women.

Repeated Observations Over Time: However, if HPV16 infection were assessed repeatedly
over several visits it would not be appropriate to use model (1.1) to incorporate all the available
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data: model (1.1) would naively treat repeated observations of each individual over time as if
they are independent (i.e., as if they were from different subjects), in essence amplifying the
sample size. This can result in underestimation of the variation in the estimate of β and its P-
value, as well as a confidence interval that is too narrow(10). To avoid these problems, a
generalized estimating equation (GEE)(11) can be incorporated in the logistic regression
model.

Generalization Estimating Equation (GEE) Models—Let Yij represent the HPV16
infection status (0/1) for the ith person at jth semiannual visit, we model Pij = P(Yij = 1) by

(1.2)

where Zijand Wijare defined similarly as in (1.1). The difference with standard logistic
regression is in how the parameters are estimated. Specifically, GEE uses an estimating
equation to estimate β in which a particular correlation structure (referred to as the working
correlation) is assumed between repeated measures of Y. Several choices of working
correlations are available in most statistical packages, including “independent” (suitable when
a small correlation between data at different visits is assumed), and “exchangeable
correlation” (suitable when the correlation between all pairs of observations can be assumed
to be similar; e.g., visits 1 and 2 have the same correlation as visits 3 and 14), as well as other
working correlations. Often we do not know how the repeated HPV outcomes are correlated
with each other, but a useful feature of the GEE approach is that even if the working correlation
is mis-specified, the estimate of β is still unbiased. Further, because a robust variance is used
the confidence interval for β is correct for large sample size. The main benefit of properly
specifying the correlation between repeated observations is that if the working correlation
chosen is close to the actual one the model has greater efficiency(11,12). In practice, it is
recommended that several working correlations be assessed. The one that produces the smallest
standard error for the estimate of β is generally accepted to be the one that is most consistent
to the true correlation. In many cases, though, the results will be similar across different
correlation assumptions. Time-dependent covariates can be incorporated.

In model (1.2) β has the same interpretation as that in the logistic regression model (model
(1.1)). Since β describes the average risk difference between two groups/populations, it is often
referred to as the “population-averaged effect”.

Multiple HPV Types: GEE models, furthermore, can be used to incorporate data across
multiple types of HPV. In a single GEE logistic regression model we can treat each of the
several different oncogenic HPV types as separate endpoints, and then estimate the exposure
effect on oncogenic HPV as a whole. We note that this common effect can also be examined
with “any oncogenic HPV” as a single binary outcome. However, greater efficiency is obtained
for grouped HPV data since each HPV type separately contributes data to the analysis, and the
final result is a weighted average across HPV types. This source of efficiency is in addition to
that discussed above, of being able to assess repeated visits over time.

We can also assess HPV type-specific relationships with the exposure variables using GEE
models. Compared with conducting separate standard logistic regression models, GEE models
still obtain greater efficiency since we reduce the number of covariate coefficients by assuming
a common effect for “nuisance variables”. For example, only one “life-time number of sexual
partners” coefficient is required if all individual oncogenic HPV are studied in the same GEE
model, whereas the sexual partners variable would require a separate coefficient in each
separate standard logistic regression for each HPV type. Further, GEE models allow us to
statistically evaluate if the exposure-disease association is common across types.

Xue et al. Page 4

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To illustrate how GEE models can be used to model multiple types of HPV measured across
multiple visits, let Yijk represent the infection of HPV type k for the ith person at jth semiannual
visit. To assess an overall effect estimate across oncogenic HPV types, a type-specific baseline
prevalence is assumed for each type of infection but a common odds ratio is assumed across
the types, the infection rate of Yijk,Pijk , is modeled by

(1.3)

When sufficient events are available to study each HPV type individually, we can further allow
the association with HIV & CD4+ to be different across HPV types. In this case, equation (1.3)
becomes

(1.4)

In this model, the association with CD4+ / HIV RNA stratum is modeled by βk so that it can
vary by HPV type k. Model (1.4) also allows us to test if βk’s are the same across HPV types.

Note that two types of correlations exist in the above GEE models: correlation between different
types of HPV infection, and correlation between the same types of HPV infections at different
visits. Standard GEE methods do not easily enable construction of different correlation
structures for these two types of correlation(13,14): only one working correlation structure can
usually be used in a single model. Based on prior experience(8), we recommend using either
an independent or exchangeable working correlation as an approximation for both correlations.

ORs are a good approximation of relative risk when prevalence rates are low (e.g., less than
10%)(15), but when prevalence rates are high ORs overestimate relative risk. Therefore, an
additional advantage of the GEE logistic regression approach proposed under model (1.3) is
that because it estimates associations “across oncogenic HPV types” (the weighted average of
the effects for individual types) the OR is likely to be a good estimate of relative risk; i.e., since
the prevalence of oncogenic HPV on a type-specific basis is usually less than 10% even in high
risk populations. In contrast, “any oncogenic HPV” as defined under model (1.1) is binary
(detection of one or more oncogenic HPV types) which can involve high prevalence in high
risk populations. When a situation arises in which the prevalence of HPV is substantially greater
than 10% direct estimation of prevalence ratios may be preferred to the use of an OR. This can
be accomplished in GEE (or mixed effects models; see below) using log link instead of the
logit link used in logistic regression (i.e, ORs), but log link is more likely than logit link to
have problems with non-convergence(16,17).

Note that there are a number of links available for studying binary HPV outcomes such as
probit, complementary log-log link or identity links. Alternative links provide different
measures of exposure–disease associations: for example, an identity link provides an estimate
of the difference in prevalence (i.e., attributable risk). These other links can sometimes give
different results than logit or log links. The decision regarding which link functions are correct
depends on the underlying biologic relationship and usually can not be determined solely on
a statistical basis. However, the logit link (standard logistic regression) is the most common
link function used in HPV research.

All the above GEE models can be implemented using PROC GENMOD in SAS. Details to
implementing model (1.4) are given in the appendix.
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Mixed Effects Models—A mixed effects model(18,19) is an alternative approach for
incorporating repeated HPV prevalence data across HPV types and across visits involving the
same woman. A mixed effects model for repeated assessments of HPV16 infection can be
expressed as follows:

(1.5)

which allows each subject to have her own baseline rate of infection modeled by µ + αi where
µ is the population average baseline rate of infection and αi represents the ith subject’s departure
from the population average and is modeled as a random effect. The random effect is
unobserved and characterized by a distribution function (typically a normal distribution
centered at 0 with variation σ2), while Z and W are observed covariates and referred to as fixed
effects. Model (1.5) is therefore called a mixed effects model. The parameter δ has a different
interpretation from β in GEE: it is the log OR of HPV 16 infection in a woman in a certain
CD4+ / HIV RNA stratum compared with her risk if she were HIV-negative. Since δ describes
the change in risk within a person were her risk factor level to change, it is often referred to as
the “subject-specific effect”(20,21). In addition to δ and η, the variation in the random effect
σ can also be estimated from the model. The variation in the random effect is a measure of the
amount of heterogeneity (i.e., the level of intra-subject correlation) in the population, if σ =0,
the model reduces to a fixed effects model. Under a normal assumption, the variation in the
random effect can be interpreted as follow: 95% of the subjects in the population will not depart
from the population mean μ by more than 1.96σ.

Because repeated observations of HPV16 infection share a common αi they are correlated. The
simple mixed effects model (1.5) above specifically assumes an exchangeable correlation
structure, analogous to that described for GEE (above); that is, it assumes that any pair of
repeated observations of HPV within the same woman (e.g., at visits 1 and 5 versus at visits 3
and 14) has the same correlation. However, other correlation structures can be assumed in
mixed effects models, and in general mixed effects models attempt to more accurately model
the correlations rather than rely on the use of robust variance as in the GEE models. If the
correlation is correctly specified, a mixed effects model is more efficient than a GEE model.
However, if it is not correctly specified, the results can be biased(18).

To incorporate repeated observations across multiple HPV types in addition to repeated
observations across multiple visits, a mixed effects model of Pijk (which assumes a common
OR across the types) can be defined as

(1.6)

where the type-specific baseline prevalence rate represented by γ k, like αi, is assumed be a
random effect. This model assumes that correlations among repeated infections of the same
type are higher than correlations between different types of HPV, consistent with empiric
observations. We can further expand model (1.6) to allow HPV type-specific odds ratios
(details are not provided here). Mixed effects models for binary outcome are in general more
computationally intensive than GEE and can sometimes have difficulty in convergence (i.e.,
the models can not be fit and no result is obtained) especially with small datasets.

The mixed effects model can be implemented using PROC NLMIXED in SAS

Comparison between GEE and Mixed Effects Models: Numerically, compared to β in the
GEE model, δ in the mixed effects model is in general larger in magnitude(20), but because
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the standard error for the estimate of δ is also larger their significance levels (p-value) are
similar. The interpretations of these estimators also differ, and mixed effects models may be
of greater clinical relevance. For example, if a doctor wants to describe to an individual patient
how much her risk of HPV16 infection will change if her CD4+ count changes, the subject-
specific estimator δ more directly addresses this. The population-averaged estimator given by
the GEE is of greater interest from a public health perspective because it describes on average
how two groups of women with different CD4+ levels will differ in prevalence of HPV
infection. For a more detailed discussion on the comparison of β and δ, see Hu(22).

Furthermore, on a practical basis, certain types of analyses that can be conducted using mixed
effects models can not be conducted using GEE. For example, a mixed effects model but not
GEE can be used to contrast rates of HPV infection before compared with after the initiation
of highly active anti-retroviral therapy (HAART), using women as their own comparison
group; an instance when it is the within-individual comparison that is of interest.

Power and Sample Size: Because GEE and mixed effects models make use of all available
data they generally produce a more efficient estimate and have greater statistical power than
standard logistic regression, which involves a single study visit and a single HPV endpoint. It
is, however, often difficult to determine an exact power estimate for GEE and mixed effects
models. Statistical simulations are sometimes necessary to estimate power for such studies.
Here we discuss a simplified approach, which may be used as a first order approximation(23,
24). To obtain a “ball park” estimate of power for correlated binary outcomes, we first assume
an average correlation (ρ) among repeated observations within a subject. If on average each
subject contributes J observations and there are a total of n subjects, then the “effective
size” (i.e., the equivalent size if each subject only contributes one observation) is nJ/(1+(J-1)
ρ). For example, if ρ=0.3 and there are J=5 multiple observations per subject and 100 subjects,
the power based on these 100 subjects is equivalent to the power based on 100*5/(1+(5−1)
*0.3)=227 subjects with only one observation per subject. Standard software packages for
power/sample size calculation, for example, PASS(25), can then be used to calculation the
power for the latter case (see Results).

2. Analysis of Incident Detection and/or Persistence of HPV
Standard Cox Models—A standard approach for analyzing time to first incident detection
of HPV of a particular type, such as HPV16, is to use a Cox proportional hazards model. The
Cox model is defined as follows:

(1.7)

where λ0(t) is the baseline hazard function and exp(β) is the hazard ratio of HPV16 infection
between women in a certain CD4+ / HIV RNA stratum and HIV-negative women, while
holding all other factors constant. Both the primary covariate Z and adjusting covariates W can
be time-dependent, i.e., the values of Z and W are allowed to change during the follow-up.

However, model (1.7) can not simultaneously analyze time to first incident detection of several
different types of HPV, because it does not address possible correlations between incident HPV
infections. Instead, it is often more efficient to use methods that can simultaneously assess
multiple types of HPV as separate endpoints in a single model. There are two main statistical
methods appropriate for this purpose, as follows.

Wei, Lin Weissfeld (WLW) Method—Wei, Lin and Weissfeld(26) developed an approach
that can be used to simultaneously analyze time to first incident detection of several types of
HPV either in the same or different clinical visits, taking into account possible correlations
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between the types. While each HPV type is allowed to have its own baseline hazard function,
a common (overall) exposure effect can be assumed in the following WLW model:

(1.8)

where λ0k(t) is the baseline hazard function for the kth type of event and exp(β) is the common
hazard ratio across oncogenic HPV types. Similar to the parameter estimate in GEE, β has a
population-averaged interpretation. Model (1.8) is in essence a Cox model stratified by HPV
type and it is estimated under an independent working correlation, with a variance estimator
that is robust to possible correlations between events.

Alternatively, if there are an adequate number of endpoints to study each HPV type separately,
we can calculate type-specific hazard ratios using the following WLW model:

(1.9)

where exp(βk) is the hazard ratio for incident detection of HPV type k for subjects in a certain
CD4+ / HIV RNA stratum relative to HIV-negatives.

Model (1.8) has greater power than a standard Cox model since in WLW women contribute
multiple time to event endpoints (one for each HPV type) that are incorporated into the overall
effect estimate. Greater efficiency is also obtained in the type-specific analyses using WLW
in model (1.9), relative to using separate Cox regression models for each type, since we reduce
the number of covariate coefficients by assuming a common effect (i.e., γ) for nuisance
variables. Further, model (1.9) allows testing of equality in exposure effects across HPV types.

The WLW model can be implemented using the SAS PHREG procedure, selecting the
STRATA option to allow different baseline hazards function for each HPV type. A robust
variance is requested by choosing the option COVS(AGGREGATE).

Frailty Models—An alternative to the WLW method is to use frailty models to analyze
multiple incident HPV infections(27). A frailty model introduces a frailty term, νi, to the Cox
model as follows

(1.10)

Where νi, treated as a random effect, represents the ith woman’s unobserved individual
susceptibility to develop an oncogenic HPV infection relative to the average level in the
population. The coefficient δ is interpreted as the log of the hazard ratio for any incident
oncogenic HPV detection in a woman at a certain CD4+ / HIV RNA stratum compared with
her risk if she were HIV-negative while holding all other factors constant. Frailty models are
a form of mixed effects model, and the parameter estimate δ has a subject-specific
interpretation. Model (1.10) can also be extended to assess HPV type-specific associations (not
shown).

By incorporating eθk in the model, frailty models assume that the baseline hazard functions are
proportional to one another (i.e., the hazard functions have similar shape). If instead the baseline
hazard function for one HPV type increases with age while the baseline hazard function for
another decreases with age this assumption would be violated. WLW, in contrast, is more
flexible, in that the baseline hazard function for each infection can be entirely different from
each other. In addition, as with other mixed effects models, frailty models: (i) explicitly model
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the correlation between multiple events and, therefore, can be more efficient than WLW (a
marginal model) if the correlation is correctly specified; but (ii) tend to be more
computationally intensive than marginal models, and obtaining model convergence can be
problematic, especially with small datasets.

Frailty models can be implemented using a SAS macro %gamfrail.1

Clearance / Persistence of HPV: HPV persistence can be measured as the time to clearance
of an HPV type following its initial detection, with clearance defined as the first subsequent
negative result (or preferably two sequential negative results) for that HPV type(6,8). The
WLW and frailty models described above can be used to assess time to clearance of HPV on
a type-specific basis(6,8).

Power and Sample Size: can be estimated for WLW and frailty models using the formula
described for GEE and mixed effects models (i.e., nJ/(1+(J−1)ρ) where J is the number of HPV
types)(28).

SAS programs for implementing some of the statistical models (above) as well as cautions
needed to use these programs are provided on the web2.

RESULTS
WIHS women have been followed on a semiannual basis. Mid-interval (i.e., the midpoint
calendar data between two consecutive visits) was used to estimate the time of each incident
event. Women were censored for missed visits, and we assumed missing at random. Since our
statistical models adjusted for CD4+ count and HIV viral load as well as other risk factors the
analyses addressed the main factors that might cause informative censoring in the WIHS cohort.
Incident detection of HPV incident detection of type-specific HPV was defined as a positive
HPV DNA test result for a specific type in a participant who was negative for that HPV type
in all earlier visits (prevalent infections are excluded).

Below we discussed the results for the prevalence data and incidence data.

1. HPV Prevalence
We assessed the prevalent detection of HPV16 and other oncogenic HPV types (across all
visits) and their relationships with host immune status (i.e., CD4 / HIV RNA stratum, defined
as a time-dependent covariate) using GEE. The prevalence of HPV16 infection varied by host
immune status. For example, HPV16 prevalence (model(1.2)) was significantly greater among
HIV-positive women with CD4+ count <200 cells/mm3 and HIV viral load >100,000 copies/
mL compared with HIV-negative women (OR = 4.66 ,95% confidence interval [CI],2.60–
8.35). However, the same effect estimate measured across oncogenic types (model (1.3)) was
much stronger (OR = 10.82,95% CI,8.32–14.08) than that for HPV16 alone, suggesting that
there may be type-specific differences in these associations.

GEE model (1.4) was, therefore, used to assess HPV type-specific differences in the effects of
host immune status. HPV16 was the referent HPV type, and the ratio of the type-specific ORs
was estimated. As shown in Table 1, each of the other oncogenic HPV types had stronger
associations with host immune status than did HPV16. For example, the OR for HPV31 was
2.62 fold greater (95% CI,1.02–6.71)) and the OR for HPV45 was 3.49 fold greater (95% CI,
1.39–8.80) than the OR for HPV16.

1Available at http://www.biostat.mcw.edu/software/SoftMenu.html
2http://eph.aecom.yu.edu/xue
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We then compared these GEE results with those obtained using a mixed effects model (model
(1.5)). As expected, the mixed effects model gave much higher estimates of association, with
wider confidence intervals than did GEE (Figure 1), but similar P-values (P<0.001). For
example, the OR (i.e., eδ ̄ in model (1.5)) of HPV16 detection associated with having a CD4+
count <200 cells/mm3 and HIV viral load >100,000 copies/mL (the most immunosupressed
stratum) relative to being HIV-negative was 9.22 (95% CI,4.84–17.6). This estimate indicates
that if an individual HIV-negative woman were to become HIV-positive and her immune status
dropped to the most immunosupressed stratum, her risk of having HPV 16 infection would
increase approximately 9-fold. In contrast, the OR (i.e., eβ̄ in model(1.3)) from the above GEE
model would be interpreted as that on average an HIV-positive woman in the most
immunosuppressed stratum has a 4-fold greater risk of HPV16 than an HIV-negative woman.
A common limitation of mixed effects models was also revealed. Specifically, mixed effects
models to assess HPV type-specific associations with host immune status failed to converge,
consistent with the greater data requirement to run these models compared with GEE.

Statistical Power—We use data from Strickler et al(8) to illustrate the gain in power with
GEE compared with standard logistic regression. Based on 535 women with a CD4+ count
<200 cells/mm3 and 458 women with ≥500 cells/mm3, Figure 2 shows the power to detect
OR=2.0 for the association of HPV prevalence and CD4+ count with (i) only one observation
(e.g., one visit with one HPV type), J=1 (i.e., standard logistic regression), versus (ii) J=5 or
=10 (based on GEE) per subject under various assumptions regarding the prevalence rate of
HPV infection. In our example, the correlation between repeated observations across HPV
types and visits were assumed to be either 0.3 (moderate) or 0.6 (high). As demonstrated in
Figure 2, the power when J=5 is substantially larger than the power without repeated
observations (J=1). The power when J=10 is only slightly higher than the power with J=5,
indicating that while there is a benefit to statistical power with a certain number of repeated
observations, there is a diminishing impact on power as the number of repeats increases.
Further, the increase in power is greater when the correlation is lower; e.g., ρ=0.3 versus ρ=0.6.
This is as expected since the level of correlation is inversely related to effective sample size.
Intuitively, when the correlation between repeated observations is low having additional
repeats should provide substantial new information, whereas having a high correlation implies
that the repeated observations are not greatly independent of one another and therefore the
repeats provide limited additional information. If the correlation is unknown a conservative
estimate should be used to calculate power/sample size.

2. Incident HPV Detection
A WLW model of incident oncogenic HPV detection by type (Model(1.8)) showed that women
with a CD4+ count <200 cells/mm3 and HIV RNA > 100,000 copies/mL had significantly
increased risk of incident oncogenic HPV detection (HR = eβ̄ = 4.9; 95% CI,3.8–6.3) relative
to HIV-negative women (Table 2). Further analysis involving measurement of type-specific
associations (Model(1.9)), using HPV16 as the referent HPV type, showed that most oncogenic
HPV types, with the exception of HPV18 and HPV56, had stronger associations with host
immune status than HPV16 (Table 3). While on an individual basis these two-fold or greater
differences did not reach significance, the power to study incident HPV detection is less than
to study HPV prevalence; in our WLW model of incident HPV detection each person
contributed one time-to-event result per HPV type, whereas in our GEE logistic regression
model on HPV prevalence the dataset involved repeated observations of each HPV type at each
visit. That said, when assessed as a group, the incident detection of all other oncogenic HPV
types excluding HPV18 and HPV56 (model (1.9)) had a three-fold (HR = eβ̄otheronc / eβ̂16 =
3.1) greater (95% CI,1.4–7.2) association with CD4+ count than HPV16.
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Lastly, we compared WLW and frailty model (model (1.10)) results. Figure 3 shows the
findings of an analysis involving the incident detection of 7 common oncogenic HPV, namely,
HPV16/18/31/33/35/45/58 selected since the frailty model had problem converging when less
common HPV types were analyzed (most likely because of insufficient occurrences to define
their baseline hazards). Interestingly, unlike the comparison of mixed effects and GEE models,
effect estimates obtained using the frailty model were only slightly larger than those obtained
using WLW. Frailty models to assess type-specific associations failed to converge.

DISCUSSION
This paper shows that marginal and mixed effects models are appropriate, efficient methods
for the analysis of HPV natural history data. While it has been common to use standard logistic
regression for the analysis of the prevalent (cross-sectional) detection of HPV, and standard
Cox models for time to incident detection (or clearance) of HPV, these common approaches
do not make use of all the available data. That is, standard logistic and Cox regression models
can only consider a single HPV type, and logistic regression can also only consider a single
visit or a single time period. Marginal and mixed effects models, in contrast, can simultaneously
address multiple oncogenic HPV types as well as multiple visits over time. As shown in paper,
they consequently have greater statistical power in the analysis of HPV natural history data.
In addition, these models allow comparison of exposure-disease associations between HPV
types. Thus, marginal and mixed effects models could have many useful applications to HPV
research, both in randomized clinical trials and epidemiologic studies.

There are, however, important differences in the estimates obtained from marginal and mixed
effects models. Our paper examined the major current forms of these models relevant to the
analysis of HPV data. The marginal models were GEE for the analysis of HPV prevalence,
and WLW for the incident detection or clearance of HPV. Marginal models estimate the
average relative difference in risk between two groups of subjects with different levels of risk
factor exposure. This is often referred to as the “population-averaged effect”. The mixed effects
models examined were frailty models for analyzing the incident detection (or clearance) of
HPV, and mixed effects models for analyzing HPV prevalence. Mixed effects models estimate
the change in risk that would occur within a person were risk factor exposure to change. This
is often referred to as the “subject-specific effect”.

The effect estimates obtained using mixed effects models tend to be considerably larger than
those obtained using marginal models but, since the standard errors in mixed effect models are
also larger, the significance levels obtained are often similar in both types of models.
Interestingly, in our dataset we found that the results of GEE and mixed effects models had
these expected differences, but the WLW and frailty models provided very similar effect
estimates. Close agreement between WLW and frailty models in our data may reflect small
correlation between the incident detections of different types of HPV, whereas the large
differences observed between the GEE and mixed effects model estimates likely reflects strong
correlations between the cross-sectional detection of the same HPV types over serial semi-
annual visits (i.e., the high frequency of persistent and recurrent infections).

As an important practical matter, though, mixed effects models are much more computationally
intensive than the marginal models and are more likely to have problems with convergence;
i.e., mixed effects models require more extensive data. For this reason, marginal models may
be seen as having an advantage over mixed effects models in many clinical trials and
epidemiologic studies, or whenever data are limited. As mentioned, though, certain types of
analysis require mixed effects models. In general, we recommend a biostatistician be involved
when implementing and interpreting results from mixed effects models.
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While not our main focus, this paper also served to further demonstrate that the prevalent and
incident detection of HPV16 (the HPV type that accounts for half of all cervical cancers) is
more weakly associated with host immune status than other oncogenic HPV types, as we and
others have previously reported(8). The relative independence of HPV16 infection from host
immune status has been interpreted as evidence that HPV16 may be better able to avoid the
effects of immune surveillance than other HPV types, and that this ability might help partly
explain the predominance of HPV16 in cervical disease. The current study represents an update
of the prior data, involving more than double the person-years of observation available at the
time of our earlier report, and approximately a third of the women were new to the analysis.

In summary, while the statistical methods discussed in this paper are well established and highly
efficient, their application to HPV research has been limited(29). To our knowledge, this is the
first formal discussion of these methods in the context of HPV natural history data. However,
even if the greater use of these methods were to represent an advance, the analysis of the natural
history of HPV will continue to be a challenge. It is hoped, therefore, that this paper will not
only spur interest in current marginal and mixed effects models, but will additionally interest
biostatisticians in the development of new and better methods for the analysis of HPV natural
history data.
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Appendix

Model (1.4)

is implemented by including indicator variables (Type ijk for k=1, …, K) for each of the other
oncogenic HPV types (with HPV16 as a reference) and their interactions with CD4+ / HIV
RNA stratum in the model. The model becomes

so that β represents the relationship of HPV16 detection with host immune status and φk
represents the difference between HPV type k and HPV16 in relation to host immune status,
i.e., the log ratio of the ORs. Type-specific analyses for other models (mixed effects, WLW,
frailty) (such as models (1.9)) are implemented using the same approach.
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Figure 1.
A comparison of the odds ratios (ORs) calculated using mixed effects models (model (1.5))
versus logistic regression models that incorporated a generalized estimating equation (model
(1.2)). The specific example given is the relationship between HPV16 prevalence and 12
separate CD4+ / HIV RNA strata, with HIV-negative women used as the reference group. The
vertical bars represent the ORs, and the line within each bar represents the lower 95%
confidence limit of those ORs. The CD4+ / HIV RNA strata are defined as the follows.
Reference Group = HIV negative women. CD4+ count: >500, 200–500, <200 cells/mm3. HIV
RNA level: Undetectable (U)<4000, Low (L)=4000–20000, Moderate (M)=20001–100000
and High (H)>100000 copies/mL. Both models adjusted for age (<30, 30–34, 35–39, 40–44,
>=45), race (White, Black, Hispanic, and other), sexual partners in the past 6 months (none, 1
(married), 1(single), 2 and >2) and smoking status (none, former smoker, current smoker<10
packs per year and current smoker ≥10pk per year) and incorporated each individual HPV type
as a separate indicator variable. The results show that mixed effects models provide much
higher OR estimates than GEE (a form of marginal models) using the same dataset.
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Figure 2.
The power to detect an odds ratio of 2.0 for the association between prevalent HPV detection
and host immune status, comparing HIV-positive women with CD4+ count <200 (n=535)
versus >500 cells/mm3 (n=458) under various conditions: (i) using data from only a single
observation (J=1; equivalent to standard logistic regression), (ii) using data from 5 or 10
repeated study visits per observations (J=5, J=10), and (iii) assuming the correlation between
repeated observations is moderate (corr=0.3) or very high (corr=0.6). The figure shows greater
statistical power for models that incorporate a generalized estimating equation (GEE), and use
data from multiple observations, compared with standard logistic regression models, which
can only use data from a single observation.)
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Figure 3.
A comparison of the hazard ratios (HRs) calculated using frailty models (model(1.10)) versus
Wei Lin Weisfeld (WLW) Cox models (model (1.8)). The specific example given is the relation
between the incident detection of seven common oncogenic HPV (i.e., 16/18/31/33/35/45/58)
and 12 separate CD4+ / HIV RNA strata, with HIV-negative women used as the reference
group. The vertical bars represent the HRs, and the line within each bar represents the lower
95% confidence limit of those HRs. The CD4+ / HIV RNA strata are defined as the follows.
Reference Group = HIV negative women. CD4+ count: >500, 200–500, <200 cells/mm3. HIV
RNA level: Undetectable (U)<4000, Low (L)=4000–20000, Moderate (M)=20001–100000
and High (H)>100000 copies/mL. The adjustment variables are the same as reported in Figure
1. Both the frailty and WLW models incorporated HPV type-specific baseline hazard functions
while assuming a common association with CD4+ count / HIV RNA stratum. Overall, the
results show that frailty models (a form of mixed effects models) provide similar HR estimates
as WLW (a form of marginal models) using the same HPV dataset. As discussed in the text,
the close agreement between WLW and frailty models in our data may reflect small correlation
between the incident detections of different types of HPV, whereas the large differences
observed between the GEE and mixed effects model estimates (Fig 1) likely reflects strong
correlations between the cross-sectional detection of the same HPV types over serial semi-
annual visits (i.e., the high frequency of persistent and recurrent infections).

Xue et al. Page 17

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xue et al. Page 18

Table 1

The weak association between the prevalence of HPV16 and host immune status relative to that for other
oncogenic HPV types.

HPV Types Ratio of the OR (95% CI)*

HPV16(reference) 1.00

HPV 18 2.05 (0.97–4.34)

HPV 31 2.62 (1.02–6.71)

HPV 33 2.97 (1.09–8.13)

HPV 35 2.66 (1.08–6.55)

HPV 39 5.24 (1.39–19.7)

HPV 45 3.49 (1.39–8.80)

HPV 51 2.56 (1.06–6.19)

HPV 52 3.03 (1.35–6.80)

HPV 56 2.55 (1.14–5.72)

HPV 58 2.70 (1.09–6.68)

HPV 59 4.42 (1.72–11.4)

HPV 66 5.85 (2.55–13.5)

*
The ratio of odds ratios was estimated using a GEE logistic regression model (model (1.4)) examining the associations of host immune status with

the prevalent detection of HPV by type, with HPV16 as the reference type. For convenience, the table shows only shows the contrast between HIV-

positive women with CD4+ count <200 cells/mm3 and HIV viral load >100,000 copies/mL versus HIV-negative women. The adjustment variables
included age at visit (<30, 30–34, 35–39, 40–44, >=45), race (White, Black, Hispanic, and other), sexual partners in the past 6 months (none, 1(married),
1(single), 2 and >2) and smoking status (none, former smoker, current smoker<10 packs per year and current smoker ≥10pk per year).
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Table 2

Hazard ratios for the incident detection of oncogenic HPV infection as estimated using a Wei Lin Weissfeld
(WLW) Model*

CD4 T-cell count, cells per mm3 HIV RNA, copies per mL Hazard Ratio
(95% CI)

>500 <4000 1.61(1.23,2.10)

4001–20000 2.03(1.39,2.97)

20001–100000 3.06(1.96,4.76)

>100000 3.40(1.82,6.32)

200–500 <4000 2.58(2.02,3.30)

4001–20000 3.15(2.37,4.18)

20001–100000 4.02(3.02,5.35)

>100000 4.77(3.47,6.56)

<200 <4000 4.55(3.33,6.21)

4001–20000 5.10(3.70,7.03)

20001–100000 4.55(3.38,6.12)

>100000 4.87(3.75,6.34)

*
HIV-negative women were the reference group. The WLW model (model (1.10)) adjusted for the same variables reported in Figure 1.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2011 January 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xue et al. Page 20

Table 3

The weak association between the incident detection of HPV16 and host immune status relative to that for other
oncogenic HPV types.

HPV Types Ratio of HRs (95% CI)

HPV16 (reference) 1.00

HPV 18 1.12 (0.37–3.39)

HPV 31 2.02 (0.68–6.03)

HPV 33 5.28 (1.53–18.2)

HPV 35 1.71 (0.43–6.72)

HPV 39 3.65 (0.84–15.9)

HPV 45 2.05 (0.63–6.70)

HPV 51 2.15 (0.72–6.41)

HPV 52 5.54 (1.81–17.0)

HPV 56 0.97 (0.32–2.93)

HPV 58 2.42 (0.82–7.11)

HPV 59 3.69 (1.12–12.1)

HPV 66 6.29 (2.07–19.1)

*
The ratio of hazard ratios (HR) was estimated using a WLW model (model (1.9)) examining the associations of host immune status with the incident

detection of HPV by type. The adjustment variables included all those shown in Figure 2. For convenience, the table shows only shows the contrast

between HIV-positive women with CD4+ count <200 cells/mm3 and HIV viral load >100,000 copies/mL versus HIV-negative women. Although
most of the oncogenic types did not on an individual basis have a significantly different HR than that for HPV16, all other oncogenic types when
assessed as a group (excluding HPV 18 and 56) did have a significantly higher HR than HPV16 (P-value=0.008). The findings were also significant
if we included HPV 18 and 56 in the analysis.
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