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Epileptogenesis due to glia-mediated
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Homeostatic regulation of neuronal activity is fundamental for the stable functioning of the
cerebral cortex. One form of homeostatic synaptic scaling has been recently shown to be
mediated by glial cells that interact with neurons through the diffusible messenger tumour
necrosis factor-o. (TNF-a). Interestingly, TNF-a. is also used by the immune system as a pro-
inflammatory messenger, suggesting potential interactions between immune system
signalling and the homeostatic regulation of neuronal activity. We present the first
computational model of neuron—glia interaction in TNF-a-mediated synaptic scaling. The
model shows how under normal conditions the homeostatic mechanism is effective in
balancing network activity. After chronic immune activation or TNF-a overexpression by
glia, however, the network develops seizure-like activity patterns. This may explain why
under certain conditions brain inflammation increases the risk of seizures. Additionally,
the model shows that TNF-a diffusion may be responsible for epileptogenesis after localized

brain lesions.

Keywords: homeostasis; synaptic scaling; neuron—glia interaction;
neuro-immune interaction; epilepsy

1. INTRODUCTION

For the brain, as for any biological system, the only
constant is change. In order to maintain cortical
networks in a dynamic regime that allows for efficient
information processing a variety of homeostatic
mechanisms are used (Turrigiano & Nelson 2004).
Such activity regulation occurs on a wide range of time
scales—from milliseconds to days—and affects both
intrinsic neuron properties and synaptic strength.

A powerful mechanism for regulating overall net-
work activity is synaptic scaling, which scales all
excitatory synapses of a neuron to compensate for
changes in synaptic drive. This type of homeostatic
regulation has been demonstrated in various experi-
mental settings (Turrigiano et al. 1998; Turrigiano
2007) and its theoretical properties have been studied
in computational models (Abbott & Nelson 2000). The
precise biological signalling mechanisms underlying
synaptic scaling remain poorly understood, however.

Recent evidence suggests that glia—support cells in
the brain—and the soluble form of tumour necrosis
factor-a. (TNF-a) may be involved in a specific form of
synaptic scaling (Beattie et al. 2002; Stellwagen &
Malenka 2006). It was shown that acute application of
TNF-o or its long-term production after chronic
activity blockade increases AMPA receptor surface
expression in hippocampal neurons, thus strengthening
excitatory synapses. Furthermore, the surplus TNF-a
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that accompanies chronic activity blockade is produced
by local glial cells (Stellwagen & Malenka 2006).
Specifically, it is thought that glial cells estimate the
synaptic drive to neurons via neurotransmitter spil-
lover at the synapses (Volterra & Meldolesi 2005).
Activated glial cells, in turn, stimulate the post-
synaptic neurons via TNF-a, inducing an increase in
excitatory synaptic strength. The process is accom-
panied by the endocytosis of GABA, receptors
(Stellwagen & Malenka 2006), which results in a
decrease in inhibitory synaptic strength. In summary,
the neuromodulator TNF-a. (Pan et al. 1997; Vitkovic
et al. 2000) seems to be of vital importance for
balancing neuronal activity in the cortex.

Interestingly, TNF-a also plays an important role in
the immune system. It is a pro-inflammatory cytokine
whose levels can rise dramatically during local acute
immune responses. A 10-fold increase in serum is
frequently found, and even 100-fold increases are seen
during sepsis (Damas et al. 1992; Haagmans et al. 1994;
Galic et al. 2008). Produced by immune cells such as
monocytes, T-lymphocytes and phagocytes, TNF-a can
activate neutrophils and macrophages, control the
recruitment of immune agents from the blood and
regulate the permeability of the blood—brain barrier
(BBB) to soluble molecules (Deli et al. 1995; Rosenberg
et al. 1995; Bechmann et al. 2007).

The dual role of TNF-a as both pro-inflammatory
cytokine and neuromodulator leads to the interesting
hypothesis that TNF-a produced during an immune
response in the brain may interfere with the
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Figure 1. Overview of the model of homeostatic synaptic
scaling by neuron—glia interaction: glial cells estimate the
synaptic drive received by neurons via glutamate spillover.
Glial cells adjust their TNF-a production as a function of the
estimated glutamate level. Diffusing TNF-a reaches the
neurons and triggers the scaling of excitatory synapses.

homeostatic regulation of synapses, potentially increas-
ing synaptic strength sufficient to trigger paroxysmal
activity. This interference between different signalling
pathways could explain some of the recent evidence
suggesting an immune system influence in seizure
initiation in certain pathological conditions (Vezzani
2005; Lucas et al. 2006).

In order to investigate the relationship between
TNF-a and epileptiform activity, we have developed a
computational model of the interaction of neurons and
glial cells during homeostatic synaptic scaling. To the
best of our knowledge, it is the first model to simulate a
network of spiking neurons interacting with a popu-
lation of glial cells. As a first attempt of this type, our
model cannot aspire to capture the full complexity of
neuron—glia interactions. Instead, it focuses on TNF-
a-mediated homeostatic regulation and does not
consider other ways through which glial cells can
influence neuronal excitability, such as the regulation
of extracellular potassium (Kofuji & Newman 2004) or
the release of glutamate or ATP (Newman 2003).

Supporting our hypothesis, the model shows that an
overall increase in TNF-a levels following chronic
inflammation or TNF-a overexpression by glia can
push the network activity into a paroxysmal regime. In
addition, it shows that neuronal hyperexcitability also
arises after localized disruptions in network structure,
resulting from simulated local lesions. In particular,
following partial deafferentation, TNF-a. produced by
glial cells within the lesion area diffuses to the
neighbouring tissue and triggers network bursts.

2. MATERIALS AND METHODS

We model the interaction between a population of
neurons and glial cells (figure 1). The neural network
model is a two-dimensional sheet of recurrently
connected spiking neurons. The synaptic scaling
mechanism is modelled after the data from Beattie
et al. (2002) and Stellwagen & Malenka (2006).
Specifically, glial cells estimate total synaptic drive
via glutamate spillover and produce TNF-a in response.
The TNF-a diffuses to neurons and its concentration
controls the strength of synaptic connections by scaling
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all excitatory weights of a neuron in a multiplicative
fashion. The translation of local glutamate levels into
TNF-o and the adjustment of synaptic weights are
modelled by two sigmoid functions, with parameters
established by a calibration step.

2.1. Neural network

We use a two-dimensional spiking neuron model
(Izhikevich 2003) that can produce a rich set of
dynamical behaviours, while remaining computation-
ally feasible,

do(t)

T 0.04v(t)? + 5o(t) + 140 —u(t) + I(t)

and

du(t) _

q = albu(t) —u(?)),

where o(t) is the membrane potential; u(t) is the
recovery variable; I(¢) is the total post-synaptic current
for the neuron; and @ and b are model parameters.
When the membrane potential reaches the threshold
value of 30, a spike occurs, the membrane potential is
reset to its rest value and the recovery variable is
updated: v(t) < ¢ and u(t) < u(t) + d, where c is the
membrane rest potential and d is a parameter of the
recovery variable. Different dynamic behaviours can be
obtained by varying the parameters a, b, ¢ and d. We
consider only pyramidal neurons (regularly spiking RS,
with ¢=0.02, b=0.1, ¢c=—65 and d=8) and inhibitory
interneurons (fast spiking FS; ¢=0.1, b=0.2, ¢=—65
and d=2).

AMPA and GABA, synapses are modelled as
exponentially decaying conductances g, which are instan-
taneously increased upon the arrival of an afferent spike:
(dg(t)/dt) = _(g(t)/Tsyn) + gsz(tb)é(t_ ti)v where g
represents the maximum synaptic increase per spike
event (here, g= 1); ¢;is the time of the ith spike; and D(t;)
is a synaptic depression variable described below. The
time constant 7, is the synaptic conductance decay,
with default values 10 and 20 ms for AMPA and GABA »
synapses, respectively (Moreno-Bote & Parga 2005; for
details, see appendix A.1).

Excitatory synapses in our model exhibit short-term
synaptic depression, arising due to the temporary
depletion of presynaptic vesicles, with an exponential
recovery to baseline level (Abbott et al. 1997; Tsodyks &
Markram, 1997)

dD(t)  1-—D(t)
W, U P ),

where U is the fraction of synaptic resources, which is
consumed by a single event (U=0.05) and 7p is the time
constant of recovery for the synaptic resources (in the
range 450-700 ms) (Abbott et al. 1997). In some
experiments we also considered synaptic delays, in the
range [0,dy.y), drawn from a uniform distribution
(dimax =32 ms).

The total input current I received by a neuron
obtained by summing up the post-synaptic currents for
all incoming synapses is

I(t) = Z Ajw;gi(t)(E; —v(1)),
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where A, is a scaling factor, with different values for a
synapse connecting an excitatory /inhibitory neuron to
an excitatory/inhibitory neuron (default values are
Agp=0.02 for excitatory—excitatory connections and
Agr= A= A =0.03 for the rest); w; is the strength of
the ith synapse (w;€[0,1]; g{t) measures the instan-
taneous synaptic conductance for synapse #; E; is the
reversal potential of the synapse (0 for excitatory
synapses and — 70 for inhibitory synapses); and () is
the membrane potential of the post-synaptic neuron.
The network consists of NX N neurons (N=25), 80
per cent RS excitatory and 20 per cent F'S inhibitory
neurons, organized in a two-dimensional lattice.
Neurons connect locally, within a square synaptic
footprint of size rXr (r="7), with probability p.on,=
0.2 and periodic boundary conditions. A weak
excitatory input (A;,=0.03) is provided from N;,=25
input neurons, which connect to each neuron in the
network with probability p;,=0.2 and spike as inde-
pendent Poisson processes with a frequency f,, =10 Hz.

2.2. Glial model

The glial tissue is organized in a lattice similar to the
neuron network, with one glial cell per neuron.
Consistent with the assumptions in Stellwagen &
Malenka (2006), the glial cells monitor excitatory
drive to neighbouring neurons via glutamate spillover,
considered to be proportional to the total drive received
by the neuron at each position (z,y), averaged over
a time window T 1, () = (1/Tg) f,/t_fgm I, ,(t)dt.
The neuronal activity is regulated by changes in
the excitatory synaptic strength, corresponding to the
AMPAr increases described experimentally. As the
reported reduction in GABA receptors is smaller in
relative magnitude (Stellwagen & Malenka 2006) and
given that the analysis of the network properties reveals
a weak dependence of the activity on A (see appendix
A.1), our model does not consider GABA, receptor
regulation. However, such regulation is expected to
exacerbate the results described below (simulations
showed no quantitative difference in the case when the
same gain factors are considered for both the excitatory
and the inhibitory regulation). Although experimental
reports on synaptic scaling involve pyramidal neurons
(Turrigiano et al. 1998; Ogoshi et al. 2005), the
modelled scaling affects excitatory synapses on both
pyramidal and inhibitory neurons, for simplicity.

To account for the astrocytic arborization, the local
glutamate estimates are convolved with a normalized
Gaussian kernel: Cy,(t)=I(¢)*G,, where G,=
(1/2m0*)exp(—(2* + y*/20%)), and I(t)= (I, (1)), , is
the matrix of glutamate estimates for all neurons at time
t (6,=1.22, corresponding to a cell radius 3).

The TNF-a concentration is determined by the glial
production, computed as a function of the local
glutamate concentration, with an exponential decay,

dctnf(t) - _ Ctnf(t) B Ct,nfoc(t)
dt Tin
and ot
1
Ctnfw(t) =1-

1 + exp (_ Cglm(Kt)*Cglum) ’

glut
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where ¢y,(t) is the local TNF-a concentration at time
step & Cinin(t) represents target TNF-o concentration
for the current activity level; and 7, is a time constant
for TNF-a concentration decay. The asymptotic value
of the TNF-o concentration is a function of the
glutamate concentration at a glial cell ¢y (t), while
the parameter cgu0 specifies the target glutamate
concentration value, and Ky, is a scaling parameter
(unless specified otherwise, cyu10=0.52, Ky =2.5).

TNF-a diffuses to the neighbouring neurons, a
process modelled by the convolution with another
Gaussian kernel G, , with the default value g,=1.58
(cell radius 4): C'= C * G,,, where Cand C’ denote the
matrices corresponding to the concentration at each
glial cell ¢ and neuron ¢’. The TNF-a, triggers a change
in the average synaptic conductance of the neuron w(t),
w(t) =+ > ;w;(t), described by the equation,

dw(t) _  w(t) — wx(?)
dt Tw
and
1
w°°(t) = W =cpp
1+e Ke

where ¢/(t) is the local TNF-o. concentration at the
neuron; 7, gives the time scale of the synaptic strength
change; and ¢y and K, are model parameters with
default values ¢;=0.5 and K,=0.03.

The total change in conductance is distributed to the
synapses w; in a way that preserves their relative
strength, (duw,(£)/d?) = (dw(t)/dt) (w,(£)/3 i (1)).

While the estimation of synaptic drive and the
production of TNF-a by glial cells are very slow processes,
such that observable changes occur on a time scale of
minutes to days (Stellwagen & Malenka 2006), the model
uses much faster time constants in order to reduce
simulation time. Specifically, for all results presented, the
homeostatic regulation of synaptic strength occurs of the
order of secondsrather than hours or days (time constants
for glutamate estimation 7g,;, the glial TNF-oo pro-
duction 7, and the synaptic modification 7, were
reduced to 1, 10 and 1 s, respectively). However, since
the time constants of the homeostatic plasticity are still
much slower than the activity dynamics of the spiking
network, the qualitative behaviour of the overall model is
not altered.

Little is known quantitatively about the processes
underlying TNF-a production and the corresponding
synaptic scaling. Further experiments are needed to
constrain the model parameters relating neuronal
activity to TNF-a production and increase in synaptic
strength. In order to set these ‘free’ parameters of the
model, we use a calibration procedure that assumes
that the synaptic scaling robustly maintains homeo-
stasis of the neuronal activity after changes in input
(see appendix A.2 for details).

3. RESULTS
3.1. Increases in TNF-a can induce setzures

It is established that during chronic inflammation the
TNF-o concentration inside the brain can increase
(Gutierrez et al. 1993; Hanisch & Kettenmann 2007).
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Figure 2. Effects on network activity due to a TNF-o increase. (a) Changes in average neuronal activity after chronic

inflammation (external TNF-a values displayed in different colours; blue, 10

3. yellow, 10~ %; red, 10~ 7). The severity of immune

response (b) affects burst frequency and (c) induces an increase in the average firing rate. (d) Changes in average neuronal
activity in the case of TNF-a overexpression by glia (for different ¢, values; blue, 2.0; yellow, 1.0; red, 0.5). The degree of

overexpression affects (e) burst frequency and (f) the average
indicating standard error.

Additional TNF-a can either be produced locally or can
originate in serum and penetrate the BBB. Local
production is owed mostly to activated microglia, but
additional TNF-a sources are monocytes or lympho-
cytes, which can enter the brain due to changes in BBB
permeability (Prat et al. 2005). Also, systemic infec-
tions can trigger the activation of immune system
agents inside the brain, in response to endotoxaemia
(Rivest et al. 2000; Galic et al. 2008), for example. This
is of particular interest since bacterial infection (such as
bacterial meningitis) is sometimes accompanied by
seizures (Vezzani & Granata 2005), suggesting that
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firing rate. Results are averaged over 10 trials, with error bars

TNF-a or other pro-inflammatory cytokines might be
part of the mechanisms inducing an increased suscep-
tibility to seizures during brain infections.

In order to investigate this hypothesis, we consider the
case of a chronic inflammation. As a first approximation,
we model the increases in TNF-a levels caused by an
immune system activation by a spatially homogeneous
TNF-a source. As the synaptic weights are initialized at
random, the disruption is induced after the network has
reached the homeostatic regime (t=150 s) and involves
adding a small constant amount of TNF-a at each time
step to the local glial production (figure 2a—c).
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Figure 3. (a) Typical example of network bursts occurring
after a 10% increase in excitatory synaptic strength. (b)
Voltage traces of a neuron in the control case (upper) and
during a network burst (lower).

If the external TNF-a contribution is big enough
(greater than 107°% figure 2b), the local TNF-a
concentration remains elevated, causing an increase in
the average synaptic conductance, accompanied by a
rise in the average firing rate of the neurons (figure 2¢).
Additionally, as the excitatory synapses are strength-
ened, the activity becomes increasingly synchronized
(a detailed analysis of how neuronal synchronization
depends on the scaling of excitatory synapses can be
found in appendix A.l). Transient increases in the
input, due to normal activity fluctuations, are amplified
by the recurrent excitatory connections and the
neuronal network experiences seizure-like bursts
(similar to those in figure 3a). Consistent with the
experimental findings (Nita et al. 2006), regular spiking
neurons exhibit spike bursts (figure 3b, lower curve),
synchronized over the population. For high values of
external TNF-a, the effect saturates (figure 2b). The
relationship between average excitatory synaptic
strength and the development of network bursts is
investigated in detail in appendix A.1. Importantly, the
analysis of a reduced population-level version of the
system shows that the robustness of the system to
additional TNF-a sources depends on the parameters
K and K, a result confirmed in simulation (see
appendix A.3). Specifically, the stable state of the
system is determined by the total gain of the feedback
loop (essentially by the product Kgy,+Kc). The
stability of the system to a certain destabilizing
scenario, such as a chronic immune response, depends
critically on the individual parameters, however. For a
mild inflammatory state, the network can either remain
stable or develop strong seizure-like patterns of
activity, as a function of K¢ (See appendix A.3).

Transgenic mice mildly overexpressing TNF-a can
develop spontaneous seizures (Akassoglou et al. 1997)
(strong overexpression is usually fatal), an effect also
captured by our model. In order to model various levels
of TNF-a overexpression, we simulate an increase in
the target glutamate level of the system (measured by
parameter Cgu0). This manipulation forces glia to
produce more TNF-a than in the control case. Similar
to the effects observed experimentally, the network
reaches a hyperexcitable state, with the probability
of developing seizures being related to the degree of
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Figure 4. Network adaptation following changes in input
frequency. (@) Time evolution of average population rate after
a +50% change in mean firing of the input population. (b)
Increase in burst probability relative to baseline (marked by
asterisk). (¢) A low-pass filtered version of the average firing
rate. Results are averaged over 10 trials, with error bars
representing the standard error.

TNF-a overexpression. As shown in figure 2d,e, if the
change in synaptic strength is big enough, the network
activity becomes paroxysmal.

3.2. A sustained reduction in input can trigger
setzures

Simulations used for the calibration of system par-
ameters, which involve changes in input firing rate (see
appendix A.2), suggest that the dynamics of the
network can change qualitatively due to chronic
changes in the input rates. Therefore, we investigate
the degree of network synchronization, for different
input frequencies. As before, the system is first allowed
to converge to the homeostatic state (150s). After-
wards, the mean input frequency is changed in a step
function-like fashion to different levels and the
frequency of the network bursts is evaluated (figure 4).
After a sudden but sustained reduction in input, the
network initially falls almost silent, but later recovers
its normal activity level due to the strengthening of
excitatory synapses by synaptic scaling. However, as a
result of the adaptation, the network generates bursts
at irregular intervals, provided the remaining input is
sufficient to drive the network (figure 4b, the 2 Hz case).
Correspondingly, after a sudden increase in input, the
network responds with an initial burst of activity, after
which it slowly recovers to a low-activity regime
without any seizures. In both the cases, the homeostatic
mechanism brings the average firing rate of the
neuronal population back to baseline (figure 4c).
These results are consistent with those from a recently
published work (Frohlich et al. 2008) that considered
only a simplified one-dimensional network structure,
with local connections, facilitating burst propagation.

3.3. Local lesions induce seizures

The experiments involving variations in input rates
described above suggest that the dynamics of the
network can change qualitatively for a long-term
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Figure 5. Effects of local lesions. (a) Evolution in time of average synaptic strength for individual neurons after a local lesion ((i)
t=0s, (ii) t=150s, (iil) t=lesion, (iv) t=300s, (v) t=450s). (b) Corresponding average firing rate for the neuronal population.
(¢) Increase in burst frequency and (d) firing rate relative to baseline for different lesion severity levels and (e, f) lesion sizes. (g)
Time evolution of average excitatory synaptic strength for the neurons (i) within and (ii) outside lesions, for a lesion size 15X 15
and 100% damage of input synapses. Different colours mark different trials. (¢—f) Results estimated over 10 trials, with error bars

measuring the standard error.

reduction in input. Thus, it is plausible to assume
that lesions can also enhance seizure predisposition
(Timofeev et al. 2000; Houweling et al. 2005). In
contrast to previous approaches, here we focus on the
mechanism of homeostatic regulation, specifically on
the spatial effects due to TNF-a diffusion.

We consider localized lesions in the shape of a square
of varying size (figure 5a). The network starts from
random initial conditions (¢=0), individual neurons

J. R. Soc. Interface (2009)

having variable average excitatory synaptic strength.
In time, the TNF-a-mediated synaptic scaling equalizes
the total excitatory drive to neurons. Deafferentation is
induced when the network has reached a homeostatic
state (¢=150 s) and causes a certain percentage of the
synapses from the input neurons to neurons in the
lesion area to be removed. We study the dynamic
regime after the lesion, for various lesion sizes and
different extents of synaptic damage.
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When varying the proportion of deafferentation for a
fixed lesion size (15X15), the strength of remaining
synapses reaches a value large enough to facilitate
network bursts (figure 5b). The burst probability
increases with the severity of the lesion (figure 5¢),
consistent with the results in Houweling et al. (2005).
Furthermore, the effect is observable for a wide range of
partial deafferentation levels, as observed experimen-
tally (Timofeev et al. 2000). Similarly, when the lesion
affects a fixed percentage of the input synapses (100%),
the network dynamics depend on the size of the affected
area. For small lesions the effect is negligible, but it
increases with the size of the lesion, as shown in
figure 5e. For almost complete deafferentation,
however, the seizure-like behaviour disappears (not
shown). As neurons in our model have no intrinsic
spontaneous activity, the network is driven by the
external input. Consequently, when the lesion damages
a large number of input connections, the remaining
drive is insufficient to generate any activity (also, the
overall firing rate decreases, as shown in figure 5f). It
may trigger large bursts if the input configuration is
right, but most of the times the network is quiescent.

A closer inspection of the evolution of average
excitatory strength within and outside the lesion area
(figure 5g) reveals a potential explanation of the effect.
Owing to the decrease in glutamatergic input, glial cells
in the lesion area start producing TNF-a and the
average excitatory strength increases (to a value higher
than before the lesion, as the rate of the input is higher
than the population firing rate). However, TNF-a
diffusion causes the same increase to the weights
outside the lesion.

As the increased TNF-o production within the lesion
also affects the neighbouring ‘healthy’ neurons, we can
assume that TNF-o diffusion may be an important cause
of increased synchrony in the network. In order to test this
hypothesis, we compare the dynamics of the network
after 100 per cent deafferentation, within a 15X 15 area,
for various diffusion coefficients. As predicted, when the
synaptic scaling process is local to each neuron, the
response is restricted to the lesion area (figure 6a) and
bursts disappear completely, as shown in figure 6b. Also,
note that local synaptic scaling leads to an increased
variability in average excitatory strength for neurons
(figure 6a). For the case of 100 per cent lesion, the damage
is too severe for the homeostatic mechanism to be able to
recover the original activity level (figure 6¢). Also, for
local regulation convergence becomes significantly slower
(figure 6d,e). For an 80 per cent lesion, the activity within
the lesion goes back to baseline (figure 6 ).

Our result suggests that, as predicted, the strength-
ening of synapses in neighbouring neurons due to TNF-
a. diffusion is responsible for the network hyperexcit-
ability in the case of localized lesions. When diffusion
does occur, the actual parameters controlling the
astrocytic arborization range and TNF-a diffusion are
not very important, and no systematic differences are
observed in the system dynamics. Importantly, the
result suggests that homeostatic regulation mechanisms
that rely on the diffusion of neuromodulators are prone
to become maladaptive in cases of localized disruptions
in the system.
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Figure 6. Effects of local lesions for local synaptic scaling. (a)
Evolution in time of average synaptic strength for individual
neurons during a 100%, 15X 15 local lesion ((i) ¢=0s, (ii)
t=150s, (iii) t=lesion, (iv) ¢=300s, (v) t=450s). (b)
Corresponding average activity for the entire neuronal popu-
lation, and (c) for separate affected and unaffected neuron
populations. (d) Evolution of average weights within (red) and
outside (blue) the lesion. (e) Single trial converge of average
excitatory weights for a 100% lesion (red, in; blue, out).
(f) Average activity within and outside an 80% 15X 15 lesion.

4. DISCUSSION

We have presented a first model of glial cells interacting
with a population of neurons by homeostatic synaptic
plasticity. The model suggests that the dual role of
TNF-a as both a pro-inflammatory messenger of the
immune system and as a mediator of synaptic scaling
can lead to interesting interactions. Specifically, it
offers a novel mechanism through which immune
activity in the brain can influence the dynamics of
cortical circuits and increase seizure susceptibility. In
addition, our model builds on previous data linking
homeostatic mechanisms and seizures (Timofeev et al.
2000; Houweling et al. 2005; Frohlich et al. 2008) in the
context of localized lesions. It implements a biologically
plausible mechanism for the synaptic upregulation
following deafferentation. Interestingly, in our model,
diffusion of TNF-a through cortical circuits was shown
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to be critical for the development of paroxysmal
activity. This represents a clear distinction to previous
models (Houweling et al. 2005; Frohlich et al. 2008),
which explicitly implement the homeostatic regulation
of synapses as a function of the global population
activity (corresponding to a large TNF-a diffusion in
our model). This is particularly relevant because the
degree of locality of the process was shown to affect the
final outcome after deafferentation. This effect could be
enhanced by other means for spreading of TNF-o from
the lesion area, such as the range of the astrocytic
arborization (aresult confirmed in simulations) or by glial
communication (e.g. via gap junctions; Giaume &
McCarthy 1996). Currently, little is known about how
TNF-o and other proteins diffuse through cortical tissue
and more data are needed to constrain future models.

At present, the immune system’s influence on
seizures is still controversial. Positive evidence for an
immune system role in triggering seizures comes from
clinical practice, as anti-inflammatory drugs can
provide effective anti-epileptic treatment in some
cases. Another strong indication comes from con-
ditions, such as Rasmussen’s encephalitis, that are
associated with an increase in pro-inflammatory mar-
kers (Aarli 2000; Vezzani & Granata 2005). More
evidence comes from animal models. Chronic inflam-
mation was shown to trigger spontaneous seizures in
mouse models of pneumococcal meningitis, cerebral
malaria or cysticercosis. In the case of meningitis, the
incidence of seizures was decreased by treatment using
an inhibitor of a TNF-a-converting enzyme, which
reduces the levels of soluble TNF-a (Meli et al. 2004).
Additionally, inflammation induced by lipopolysac-
charide (LPS), for example, is known to enhance the
effect of proconvulsive drugs (such as kainic acid), an
effect blocked by anti-inflammatory drugs (Vezzani &
Granata 2005). In a different study, systemic infection
caused by Shigella dysenteriae was reported to enhance
the seizure-inducing effect of pentylenetetrazol, an effect
mediated by TNF-a and interleukin-18, which a sub-
sequent study revealed to be non-monotonic as a function
of the TNF-a concentration ( Yuhas et al. 2003).

All'in all, the outcome of pharmacological manipula-
tions of TNF-a levels depends on a variety of factors
including concentration, time scale, activated pathway
and receptors involved. As part of a complicated
molecular network, with multiple regulatory
mechanisms running in parallel, TNF-a effects on
seizures are manifold. When activating a different
signalling pathway, the cytokine can have beneficial
effects, improving neuronal survival by the release of
neurotrophic factors (Akassoglou et al. 1997; Balosso
et al. 2005). In the case of brain immune system
interference, a beneficial pharmacological manipulation
would ideally affect the synaptic scaling mechanism,
without blocking the protective effects of TNF-a. A
potential target for selectively disabling homeostatic
regulation is the TNF-a receptor p55, as protective
effects are mediated by a different receptor (p75)
(Balosso et al. 2005).

Recent experimental evidence (Galic et al. 2008) has
shown that a LPS-induced infection in rats, occurring
during a critical period in development, induces a long-
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lasting increase in neuronal excitability and seizure
susceptibility. The effect is mediated by TNF-a and can
be mimicked by the intracerebral administration of rat
recombinant TNF-a. The nature of the changes
induced by a transient inflammatory response during
development is still unclear. However, it is interesting to
note that, although the baseline TNF-a levels seem not to
be altered in the adult, the cytokine levels following an
induced seizure are increased, potentially also due to an
increase in the number of astrocytes. In the context of our
model, it is possible to imagine that the initial inflam-
mation may alter the ‘gain function’ for the astrocytic
TNF-a production, making the system more unstable and
thus more prone to seizures. Further experiments are
needed to clarify whether TNF-o-mediated synaptic
scaling plays a role in this case.

An interesting question in this context is why the
immune system and the synaptic scaling mechanism
rely on the same messenger protein, if this can lead to
such unwanted crosstalk. One possible answer is that
the immune and nervous systems are usually well
isolated from one another through the BBB. According
to an alternative view, TNF-a has an immune-related
role in the brain under normal circumstances. Immune
agents are frequently observed in the brain (Bechmann
et al. 2007) and glial cells can also acquire immune
functions (Sebire et al. 1993). From this vantage point,
TNF-a is part of a well-balanced network of molecular
mechanisms in the homeostatic state. It is only under
chronic conditions that the excess of TNF-a turns
harmful and increases seizure susceptibility, while short
and local brain infections do not affect the stability of
the system.

Taken together, our results illustrate that the
reliance of immune signalling and synaptic scaling on
the same messenger molecule, TNF-o, may be respon-
sible for infection-related seizures in a number of
conditions. A great challenge for future experiments
would be to carefully analyse the interference between
the signalling pathways regulating an inflammatory
response and homeostatic synaptic regulation. Speci-
fically, we need a better understanding of how the TNF-
o signal is translated into AMPAr changes in neurons.
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APPENDIX A

A.1. Network parameters

We address the question of how changes in the
parameters of the neuron network model alone affect
the dynamics of the neural circuit, especially in relation
to the generation of seizure-like events. Such an activity
burst is considered to occur when the population firing
rate (estimated for 10 ms time bins) is higher than the
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burst threshold (default, 10 Hz). We analyse the effects
of varying the connectivity, synaptic properties and
input frequency in order to determine the conditions
under which the network becomes hyperexcitable.
These results are also used for optimizing the width of
the time bin and the burst threshold for the synaptic
scaling simulations (specifically, 30 ms and 10 Hz).
We start by analysing the importance of varying the
synaptic strength of excitatory—excitatory connections.
As the strength of excitatory synapses is increased, the
network dynamics change from a low firing to large
synchronized population bursts. As shown in
figure 7a,b, both the number and duration of burst
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events can be significantly altered by varying the
strength between excitatory synapses. As high TNF-o
concentrations scale up excitatory synapses, this result
supports the idea that for inflammatory responses
which raise the TNF-a levels inside the brain suf-
ficiently the network activity can become paroxysmal.

In order to determine the effects of inhibition, we
have studied the impact of varying the amount of
inhibition within the neuron population, i.e. the scaling
factor for the inhibitory to excitatory synapses (Aig).
The results in figure 7c,d show a decrease in burst
duration, but no significant effect on their frequency, in
the parameter range considered.



664

Epileptogenesis and synaptic scaling C. Savin et al.

@
SN
T 2t
oy
c -
o
=
F ol
[}
g -
° 0 -
10 30 50 70 90
N
(©) 0.8r
N L
S
= L
) L
5
5 041
jon
e -
~ -
2
E L
0

6 10 14 18 22
r

—
S
=
[ee]
(]
1

D
(o)
T

~
(e}
T

burst duration (ms)

[\
[e]

10 30 50 70 90

~
) &
oy
S

I
(e}

20

burst duration (ms

Figure 9. Dependence of burst properties on (a,b) network size and (¢,d) connectivity range.

It was shown that some amount of inhibition is
required for preventing the network activity from
‘exploding’, but burst termination can also be achieved
by other mechanisms as well. As synaptic depression
reduces the efficacy of synapses in response to high
activity, it is probable that the mechanism is also
important for burst termination. To test this hypothesis,
we study the parameters influencing synaptic resources
consumption (U) and recovery (7p) and their effects on
burst properties. The results illustrated in figure 8
demonstrate that short-term synaptic depression plays
a role in burst termination, consistent with the findings
reported in Houweling et al. (2005). The fraction of
resources consumed per burst event influences signi-
ficantly the burst duration, as slower exhaustion of the
synaptic resources makes bursts last longer. It also
increases to some extent the burst frequency. The time
constant of the recovery 7p influences the burst
frequency, since the longer it takes to recover the initial
amount of synaptic resources, the longer it takes to
trigger another network burst event.

Burst duration values suggested by experimental
findings are typically larger than those produced in our
model, of the order of 200400 ms (Nita et al. 2006), as
compared with 60-100 ms in simulations. We hypothe-
size that the network size is too small for sustaining the
synchronous activity for longer times. In order to test this
assumption, we have systematically varied the network
size, while maintaining the connectivity parameters
constant. This variation is still insufficient to match
experimental values, but burst duration is increased for
larger networks, as seen in figure 9. Synaptic delays can
be a potential mechanism for prolonging bursts further.
By introducing synaptic delays (d,.x=32 ms), we have
been able to prolong burst events by as much as 25-30 per
cent. Owing to the computational overhead, most
experiments do not consider synaptic delays, however.

The range of lateral connectivity also plays a role in
the generation of bursts. When varying the range of
connectivity and the connection probability such that
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the average incoming drive to neurons is kept constant,
bursts occur only if the synaptic footprint is large
enough, suggesting that excitatory loops are essential
for the emergence of seizure-like behaviour.

Owing to the variability in times between burst
events, it is likely that bursts are triggered by
fluctuations in network input. In order to test this
hypothesis, we compute a cross-correlogram of the
instantaneous (bin size of 10 ms) rates of input and the
population rate of the network, on one hand, and of
the inputs and burst events, on the other. Both show a
strong peak for the network at a time lag of
approximately 20 ms, as shown in figure 10a. To
further confirm that transient increases in input can,
on their own, trigger bursts, we perform an additional
experiment. We change the average frequency of the
Poisson process in a short time window (of length
10 ms) and monitor whether or not a burst occurs
100 ms after this input increase. The cross-correlation
of the input—output rates shows similar results to the
initial experiment (figure 10b). Additionally, the burst
probability increases with the increase in frequency
during the window, further supporting the idea of
bursts as input triggered events (figure 10¢).

It is reasonable to assume that network bursts also
lead to an increase in overall neuronal synchronization.
More specifically, we analyse how network synchroniza-
tion depends on average excitatory synaptic strength,
the quantity affected by synaptic scaling (specifically,
Agg and Agp). For different scaling factors, the network
activity is analysed (10 trials, each lasting 10 s). A total
of 1000 pairs of neurons are selected at random and
the cross-correlation coefficient is computed for each
pair. The average cross-correlation coefficients show
that strengthening of lateral excitatory synapses
increases the synchronization of individual neurons in
the network (figure 11).

The synaptic time constants used in our model
are larger than those used in similar experiments
(Houweling et al. 2005). However, these values do not



Epileptogenesis and synaptic scaling C. Savin et al. 665

(a) () (©
1.0
£ 3 g 6 Z 03
s~ s - F
2% 2 g 4 g 06
g x 1 8x 2 5 04
2 o0 Z 0 Z 02
5 1 L 5 5 /NVVY VM8
0 250 500 0 250 500 0 5 10 15 20
time lag (ms) time lag (ms) Af

Figure 10. (a) Cross-correlation between input and population rate for a 5 s trial, in bursting conditions (Agg=0.03). (b) Cross-
correlation between input rate and burst events, for transient increases the input frequency by an amount Af (Agg=0.02)
(light grey curve, 5; dark grey curve, 15; black curve, 20). (¢) Increase in burst probability, following a transient increase in

input frequency.

0.06

0.04

0.02

average correlation coefficient

0 1.0 1.2 1.4 1.6 1.8 2.0
synaptic strength increase

Figure 11. Average correlation coefficient of neurons for an
increase of average excitatory strength relative to baseline, for
different values of 7y, (see text for details; black curve, 10 ms;
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play a critical role in the network dynamics. Theoretical
work predicts that, for an exponentially coupled network
of excitatory and inhibitory neurons, synchronized firing
is facilitated by shorter synaptic decay times (Kanamaru
& Sekine 2005). We observe the same result in simulation
for 74,=5ms, after changing the synapse scaling
parameters such that the total current of an ESP is
preserved (namely, Agp=0.04, Ag;=0.06, A=0.12,
Ap=0.12). Our experiments show an increase in syn-
chronization at lower values of the excitatory coupling,
for faster synaptic dynamics (figure 11, grey curve).

To summarize the results above, in the neuronal
network model considered bursts are triggered by
transient increases in the input, which are amplified
by the recurrent excitatory architecture to a full
network burst. The activation of the local inhibitory
population, together with the depletion of synaptic
resources terminates a burst event.

A.2. Model calibration

Current experimental data are insufficient for fully
determining the parameters of the processes involved in
TNF-o-mediated synaptic scaling. A reasonable con-
straint is that, under normal conditions, the synaptic
scaling mechanism should be able to maintain homeo-
stasis of neuronal activity. In particular, the synaptic
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regulation should be able to preserve the average firing of
the neurons in response to changes in the input firing rate.

The specific experiment performed involves slow
ramp changes in input (figure 12a). As previously, the
system is allowed 150 s to reach a homeostatic state
before the input rates are modulated. The analysis
focuses on two of the model parameters—the gain
values for the TNF-o production as a function of
glutamate (Ky,:) and the adjustment of excitatory
synaptic strength as a function of TNF-a concentration
(K.). The reciprocal of their product is an important
parameter of the model and can be viewed as a total
gain of the feedback loop (see appendix A.3).

As a calibration step, we select the gain that
maintains the average population rate constant in
time, independent of the change in input. For smaller
gains, the homeostatic mechanism is not able to fully
compensate for the changes in input, while for large
gains the system overcompensates for these variations.
As the gain defines a set of possible values for the two
model parameters mentioned above, we select one such
pair for the subsequent experiments. The particular
choice can, however, be important for some patho-
logical disruptions affecting the feedback loop (e.g.
during an immune response), and the robustness of the
system to such events can be enhanced by larger values
for K. (see the analysis of the population behaviours
below for a more detailed discussion).

For the selected parameters, the firing rates of the
neuron population are maintained, as seen in figure 12a
(the time average is computed by convolving the
output firing rate with a Gaussian kernel, with o=
6s). A more detailed study of the structure of the
population firing rate (figure 12b) reveals similar firing
patterns for the increase in input (blue) and constant
firing (grey) regime. In the case of a chronic decrease in
input (red), although the mean output rate is main-
tained the activity of individual neurons becomes more
correlated, as the excitatory weights are increased to
compensate for the input change.

A.3. Stability analysis

Although the homeostatic loop is not linear, looking at
a large-scale linear approximation of the system may
enhance our understanding of its behaviour. For a
homogeneous connectivity structure, it is possible to
consider a spatial average of the variables and construct
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a reduced model of the system, whose stability can be
analysed in the framework of linear control systems.

The block diagram of the reduced system is shown in
figure 13. Several assumptions are required for this
approximation to be valid. Firstly, we consider the case
of small variations around the fixed point. Hence, the
two sigmoid functions that describe the processes
translating glutamate in TNF-o and corresponding
synaptic strength can be linearized around this fixed
point. Secondly, we assume a linear mapping between
the average value of excitatory synaptic strength and
the glutamate level averaged for the neuronal
population.

More specifically, when considering the asymptotic
value of the TNF-a concentration, as a function of
glutamate, linearized around the fixed point cgg,
together with the exponential decay, we obtain the
transfer function for the TNF-a production as

431

G = -
1(8) TintS 1 )

where oy = —(1/4Ky,,) is the gain of the process.
Similarly, the transfer function for the synaptic
strengths regulation is
—_*
Tps+ 17

Gy(s)

with ay = (1/4K,).

Based on the simulated data, we develop a phenom-
enological model of the network activity as a function of
average synaptic strength and input frequency. For
this, we consider average synaptic weights in the range
of 0.4-0.6 and input frequencies between 8 and 12 Hz
(10 trials are considered for each parameter pair). For
each trial, the strength of excitatory synapses of each
neuron is multiplicatively scaled such that wis the same
for all neurons. The glutamate levels are estimated for
30 ms large bins and a low-pass filtered version of the
signal is computed, similar to the averaging assumed
for the glial cells. The resulting data points are fitted
with a linear function by using the least mean-squares
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Figure 13. Diagram of the large-scale linear approximation of
the system.

method, resulting in a transfer function, Gs(s) = a3 with
a3 =0.44.

The transfer function of the system can then be
computed as

_ Gs(s)
Gls) = 1+ Gf(s) Gy(s) "

After replacing the expressions for the transfer
functions above, the stability analysis is reduced to
studying the poles of G(s), i.e. the solutions s; and s, of
the equation

(1 4+ 7u8) (1 4+ 7.8) + ajagas = 0.

The roots have negative real parts in all cases, and
the output is oscillatory for complex solutions, corre-
sponding to

(Tout + 7o) = 4707 (1 + oy op053) <0,

which reduces to a bound for the product K, ;K.<
0.0643. The analytical results are confirmed by
simulations in the neuronal network model. Firstly,
experiments confirm that network dynamics do not
change when the total gain of the feedback loop is
maintained constant. Secondly, for the lesion experi-
ment (80%, r=10), lower gains (K,;K.=0.125) result
in low burst probability (less than 10%), while for the
underdamped regime (K;,:K.=0.0075) bursts occur in
80 per cent of the cases (results averaged over 10 trials),
as predicted by the constraint on the product K, ¢K..
The actual values for the parameters Ki,; and K,
matter in the cases when disruptions are induced within
the control loop, e.g. during inflammation. In this case,
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although the total gain is preserved, the network
dynamics change, depending on how sensitive the
synaptic strength is to TNF-a fluctuations. For a mild
inflammatory state, induced by an homogeneous TNF-
o source with co=10"", the network can either
remain stable or develop strong seizure-like patterns
of activity, as a function of ay (figure 14). Note that the
network dynamics prior to the disruption are virtually
indistinguishable for all pairs, as predicted by the
population-level analysis.
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