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In animal societies as well as in human crowds, many observed collective behaviours result from self-

organized processes based on local interactions among individuals. However, models of crowd dynamics

are still lacking a systematic individual-level experimental verification, and the local mechanisms

underlying the formation of collective patterns are not yet known in detail. We have conducted a set of

well-controlled experiments with pedestrians performing simple avoidance tasks in order to determine the

laws ruling their behaviour during interactions. The analysis of the large trajectory dataset was used to

compute a behavioural map that describes the average change of the direction and speed of a pedestrian for

various interaction distances and angles. The experimental results reveal features of the decision process

when pedestrians choose the side on which they evade, and show a side preference that is amplified by

mutual interactions. The predictions of a binary interaction model based on the above findings were then

compared with bidirectional flows of people recorded in a crowded street. Simulations generate two

asymmetric lanes with opposite directions of motion, in quantitative agreement with our empirical

observations. The knowledge of pedestrian behavioural laws is an important step ahead in the

understanding of the underlying dynamics of crowd behaviour and allows for reliable predictions of

collective pedestrian movements under natural conditions.

Keywords: self-organization; crowds; pedestrian interactions; social force model; controlled experiments

1. INTRODUCTION
The idea that large-scale collective behaviour emerges from

local interactions among individuals has become a key

concept in the understanding of human crowd dynamics

(Helbing et al. 2001; Couzin & Krause 2003; Ball 2004;

Sumpter 2006). Examples of such collective behaviours are

the spontaneous formation of lanes of uniform walking

direction in bidirectional flows (Milgram & Toch 1969), or

the oscillation of the passing direction at narrow bottlenecks

(Helbing & Molnar 1995). The quantitative understanding

of these collective phenomena is a major precondition for the

prediction of congestion, the planning of evacuation

strategies, and the assessment of building or urban

layouts. Therefore, recent research tries to understand

how pedestrians move and interact with each other in

order to predict the phenomena emerging at the scale of a

crowd (Helbing et al. 1997, 2000; Dyer et al. 2007; Yu &

Johansson 2007).

Many models of pedestrian behaviour have been

suggested to describe the mechanisms leading to the

formation of collective patterns (Willis et al. 2000;

Burstedde et al. 2001; Kirchner & Schadschneider 2002;

Antonini et al. 2006). In particular, the use of attraction

and repulsion forces to describe the motion of

a pedestrian has generated promising results (Helbing

1991; Hoogendoorn & Bovy 2003; Yu et al. 2005). For

instance, the social force model has been successful in

qualitatively reproducing various observed phenomena

and has been adapted many times when addressing

problems of crowd modelling (Helbing & Molnar 1995;

Lakoba et al. 2005; Johansson et al. 2007). The basic

modelling concept suggests that the motion of

a pedestrian can be described by the combination of a

driving force, that reflects the pedestrian’s internal

motivation to move in a given direction at a certain

desired speed, and repulsive forces describing the effects of

interactions with other pedestrians and boundaries such

as walls or obstacles in streets.

However, the underlying assumptions and the exact

form of the forces involved have never been empirically

measured or validated, although the function describing

the interactions among individuals is likely to play a

significant role for the resulting collective patterns, as it

has been demonstrated for various social animal species

(Couzin et al. 2002; Dussutour et al. 2005). The most

accurate studies, so far, were restricted to calibrating

parameters of assumed interaction forces by minimizing

the error in predicting individual motion (Hoogendoorn &

Daamen 2007; Johansson et al. 2007).
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are still lacking a systematic individual-level experimental verification, and the local mechanisms

underlying the formation of collective patterns are not yet known in detail. We have conducted a set of
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laws ruling their behaviour during interactions. The analysis of the large trajectory dataset was used to
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mutual interactions. The predictions of a binary interaction model based on the above findings were then

compared with bidirectional flows of people recorded in a crowded street. Simulations generate two
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1. INTRODUCTION
The idea that large-scale collective behaviour emerges from

local interactions among individuals has become a key

concept in the understanding of human crowd dynamics

(Helbing et al. 2001; Couzin & Krause 2003; Ball 2004;

Sumpter 2006). Examples of such collective behaviours are

the spontaneous formation of lanes of uniform walking

direction in bidirectional flows (Milgram & Toch 1969), or

the oscillation of the passing direction at narrow bottlenecks

(Helbing & Molnar 1995). The quantitative understanding

of these collective phenomena is a major precondition for the

prediction of congestion, the planning of evacuation

strategies, and the assessment of building or urban

layouts. Therefore, recent research tries to understand

how pedestrians move and interact with each other in

order to predict the phenomena emerging at the scale of a

crowd (Helbing et al. 1997, 2000; Dyer et al. 2007; Yu &

Johansson 2007).

Many models of pedestrian behaviour have been

suggested to describe the mechanisms leading to the
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Burstedde et al. 2001; Kirchner & Schadschneider 2002;

Antonini et al. 2006). In particular, the use of attraction

and repulsion forces to describe the motion of

a pedestrian has generated promising results (Helbing

1991; Hoogendoorn & Bovy 2003; Yu et al. 2005). For

instance, the social force model has been successful in

qualitatively reproducing various observed phenomena

and has been adapted many times when addressing

problems of crowd modelling (Helbing & Molnar 1995;

Lakoba et al. 2005; Johansson et al. 2007). The basic

modelling concept suggests that the motion of

a pedestrian can be described by the combination of a

driving force, that reflects the pedestrian’s internal

motivation to move in a given direction at a certain

desired speed, and repulsive forces describing the effects of

interactions with other pedestrians and boundaries such

as walls or obstacles in streets.

However, the underlying assumptions and the exact

form of the forces involved have never been empirically

measured or validated, although the function describing

the interactions among individuals is likely to play a

significant role for the resulting collective patterns, as it

has been demonstrated for various social animal species

(Couzin et al. 2002; Dussutour et al. 2005). The most

accurate studies, so far, were restricted to calibrating

parameters of assumed interaction forces by minimizing

the error in predicting individual motion (Hoogendoorn &

Daamen 2007; Johansson et al. 2007).
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Figure 1. (a) Snapshot of the experimental set-up. Red circles
indicate the location of cameras. (b) Calibration of the
acceleration behaviour on the basis of the average time-
dependent pedestrian velocity in the absence of interactions.
The fitted curve ( blue, simulation) is given by the accelera-
tion equation (4.1). The parameters were estimated as
tZ0.54G0.05 s and v0Z1.29G0.19 m sK1 after a reaction
time of 0.35 s (red solid and dashed lines, dataCs.d.).
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In this study, we use a novel approach by measuring

the behavioural effects of interactions between pedestrians

in controlled experiments. Indeed, under controlled

conditions, the response of individuals to mutual

interactions can be easily observed and described in

statistical terms, which then enables the extraction of

individual behavioural laws. Similar experimental

approaches were successfully applied in the past to grasp

the behavioural mechanisms underlying the self-organization

in many social animal species (Millor et al. 1999; Beekman

et al. 2001; Camazine et al. 2001; Theraulaz et al. 2002;

Dussutour et al. 2004; Jeanson et al. 2005; Ame et al. 2006;

Buhl et al. 2006; Ward et al. 2008).

Considerable progress in tracking technologies has

made such an approach possible for the study of crowd

dynamics, and has recently motivated a series of

experiments on crowds: on one hand, various studies

have aimed at characterizing macroscopic crowd patterns,

such as the speed-density diagram (Seyfried et al. 2005),

the flow around a bottleneck (Helbing et al. 2005;

Hoogendoorn & Daamen 2005; Kretz et al. 2006), or

the collective dynamics during evacuation processes

(Isobe et al. 2004). On the other hand, several studies

have investigated various aspects of microscopic pedestrian

motion, such as step frequencies (Hoogendoorn &

Daamen 2005) or lateral body oscillations (Fruin 1971;

Pauls et al. 2007). Our experimental approach, by

contrast, aims at linking both the individual and collective

level of observations by measuring the interaction laws

between individuals. How does a pedestrian modify the

behaviour in response to interactionswith other pedestrians?

Answering this question can reveal the precise mechanisms

leading to the self-organization in crowds and helps to

construct reliable crowd models.

To tackle this question, we have observed the behaviour

of a pedestrian moving in a corridor under three different

experimental conditions: (i) in the absence of interactions,

(ii) in response to a standing pedestrian, and (iii) in

response to a pedestrian moving in the opposite direction.

The comparison of pedestrian trajectories with and

without interactions allowed us to quantify the beha-

vioural effects of interactions. The laws describing the

interactions were then formalized in mathematical terms

and implemented in the social force model. We finally

compared the predictions of the model with the experi-

mental results and empirical data of pedestrian flows

recorded in a crowded street.
2. MATERIAL AND METHODS
(a) Laboratory experiments

Controlled experiments have been conducted from February

to March 2006 at the Hospital Pellegrin, in Bordeaux,

France. A total of 20 females and 20 males aged 18–30 and

naive to the purpose of the experiment agreed to participate in

the study and gave informed consent to the experimental

procedure. The study has been approved by the Ethics

Committee of the Centre Hospitalier Universitaire de

Bordeaux. The experimental corridor (lengthZ7.88 m,

widthZ1.75 m) was equipped with a tracking system,

which consisted of three digital cameras (SONY DCR-

TRV950E, 720!576 pixels) mounted at the corners of the

corridor (figure 1). Participants were equipped with a white

T-shirt and coloured table-tennis balls on their shoulders to
Proc. R. Soc. B (2009)
facilitate an accurate detection of their motion by cameras.

The three-dimensional reconstruction of the shoulder

position was made on the basis of the digital movies of all

three cameras, encoded at 12 frames sK1, and with the help of

a specialized software developed in accordance with the

procedures described in Bouguet (2008). Cameras were

calibrated in space by using a planar chequerboard, and in

time by switching off and on the light at the beginning of the

recordings. The three-dimensional data were finally projected

to the two-dimensional floor, and each pedestrian was

characterized by a single point located at the middle of the

line connecting both shoulder positions. The trajectories were

finally smoothed over a time window of 10 frames.

The 40 selected subjects were divided into eight groups of

five people each. One session was performed on each day.

Every session was carried out with one of the eight groups

constituted before. It was randomly chosen and participated

in only once. During each session, five replications of the

following conditions were performed, which are as follows.

(i) In condition 1, a single pedestrian was given the

instruction to go back and forth in the corridor during a

period of 3 min (which corresponds to approx. 20 trajectories,

10 in each direction). Every subject performed this condition

once. (ii) In condition 2, one subject was instructed to stand still

in the middle of the corridor, while another one received the

same instructions as in condition 1, and therefore had to evade

the standing pedestrian. Each participant performed the test

once as a walker and once as an ‘obstacle’. Each replication

lasted for 3 min. (iii) In condition 3, two subjects received the

same instructions as in condition 1, but starting from opposite

ends of the corridor, and therefore had to evade each other.

A starting signal was given for each new trial, so that pedestrians

always met each other in the centre of the corridor. Pairs of

participants were chosen randomly, and each replication

ended after 20 trials. We have reconstructed 90, 148 and 123

trajectories for conditions 1, 2 and 3, respectively. For a better fit

of the acceleration behaviour, the data from condition 1 were

complemented with additional data obtained under the same

conditions, but with a more accurate tracking system

(Vicon Motion tracking system).
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Figure 2. Observed trajectories in (a) condition 2 (NZ148)
and (b) condition 3 (NZ123). One of the pedestrians
(moving from left to right) is represented in blue, while the
other one is represented in red.
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(b) Field observations

Bidirectional flows of pedestrians were observed in a

pedestrian zone in Bordeaux, France (Sainte-Catherine

Street, during April 2007). The street was video-recorded

from above with a digital camera (SONY DCR-TRV950E,

720!576 pixels) during 30 min and at a height of

approximately 10 m. The picture field covered an area

of 8!6 m. A 1 m wide area on each side of the street was

occupied by a few pedestrians standing next to shops, while

the flow of walkers was mainly concentrated in the middle

of the street. The lens distortion was corrected, and 2670

pedestrians were tracked at a rate of 1 frame sK1.

(c) Simulation design

Simulations were performed in a way reflecting the experi-

mental conditions, with simulated pedestrians starting from a

20 cm squared area located at each end of the corridor.

The parameters used were v0Z1.3 m sK1, tZ0.5 s, and the

respective destinations were assumed to be located 0.5 m after

the end of the corridor, to allow for some flexibility towards the

end of the trajectory. The time step was set to dtZ1/20 s.

Simulations of bidirectional flows were conducted in a

6!50 m street with the pedestrians of each flow starting from

the central, 4 m wide area. As observed in field observations,

simulated pedestrians entered the street at a rate of 0.65 sK1,

with an initial speed vZv0Z1.2G0.4 m sK1. Borders of the

street (1 m on each side) were occupied by randomly located

static pedestrians with a density of 0.2 pedestrian mK2. The

results shown were obtained by the evaluation of 10 simu-

lation runs over 10 min each to reflect the observed conditions.
3. MODEL DESCRIPTION
In accordance with the social force concept (Helbing &

Molnar 1995), we consider that the motion of a pedestrian

i can be described by means of three different components:

(i) the internal acceleration behaviour f 0
i , reflecting the

pedestrian’s motivation to move in a particular direction at

a certain speed, (ii) the effects of corridor walls f wall
i on

this pedestrian, and (iii) the interaction effects fij, reflec-

ting the response of pedestrian i to another pedestrian j.

At a given moment of time, the change of velocity vi of

pedestrian i is then given by the equation

dvi

dt
Z f

0
i C f

wall
i C f ij : ð3:1Þ

In the following, we use experimental data to check

the validity of the above equation and determine the

interaction function fij.
4. MEASUREMENT OF THE BEHAVIOURAL LAWS
(a) Single pedestrian behaviour

The experimental condition 1 was used to validate and

calibrate the internal acceleration behaviour. Helbing &

Molnar (1995) suggested the equation

f
0
i Z

dvi

dt
Z

v0
i e

0
i KviðtÞ

t
; ð4:1Þ

describing the adaptation of the current velocity vi of

pedestrian i to a desired speed v0
i and a desired direction

of motion e0
i (given by the direction of the corridor) within

a certain relaxation time t. According to figure 1, this

equation describes the observed acceleration behaviour

well. The desired velocities v0
i are normally distributed
Proc. R. Soc. B (2009)
with an average value of 1.29G0.19 m sK1 (meanGs.d.),

and the relaxation time amounts to tZ0.54G0.05 s

(see figure 1b).

(b) Interaction law

Conditions 2 and 3 were then used to determine the exact

trajectories when avoiding a standing or moving ped-

estrian (figure 2). By the formula

f ijðtÞZ
dvi

dt
Kf

0
i ðtÞKf

wall
i ðtÞ; ð4:2Þ

we have measured the interaction effect fij resulting from

the interaction with the other pedestrian j. In the above

equation, the term f 0
i has been calibrated during the

experimental condition 1, while the interactions with

the corridor walls f wall
i have been specified according to

previous findings (Johansson et al. 2007), i.e. as a function

of the distance dw perpendicular to the wall:

f wall
i ðdwÞZa eKd w=b, with parameters aZ3 and bZ0.1

corresponding to a repulsion strength of the same order

as the internal acceleration term, and a repulsion range of

approximately 30 cm from the wall border.

We then quantified the interaction laws of pedestrians

by computing the average value of the interaction effect

fij(t) at different interaction distances and angles. For

this, we partitioned the area in front of pedestrian i into a

15!25 grid. In each cell of the grid, we computed the

mean interaction effect h fij i resulting from the presence of

pedestrian j in this cell, averaged over all the trajectories

of the experimental condition 2 (NZ148; see figure 6

in the electronic supplementary material). This finally

provides us with a so-called behavioural map, which

summarizes the average change of speed and direction

of the focal pedestrian i in various interaction configu-

rations (figure 3).

It was not obvious in advance that removing the effects

of internal acceleration and walls would yield a highly

structured vector field, which can be interpreted as the

outcome of characteristic interpersonal interactions.

However, the resulting values of h fij i as a function of the

distance and the angle of approach turn out to show a

clear and reasonable dependence. In contrast to previous

heuristic specifications, we find that a pedestrian
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i essentially continues to move at the previous speed and

mainly adjusts the direction of walking, when another

pedestrian j is located towards the sides (i.e. either the left-

hand side when x is less than K0.25 m or the right-hand

side when x is more than 0.25 m). Pedestrians decelerate

significantly primarily in case of head-on encounters, i.e.

when the pedestrian j is located in front of pedestrian i

(see the light grey area in figure 3). This corresponds to the

zone where pedestrians choose the side on which they

want to pass. For this reason, we interpret this central area

as a decision zone: for head-on encounters, it is necessary to

take a binary decision, whether to evade the other

pedestrian on the left-hand side or on the right-hand

side. Moreover, it turns out that the resulting choice of the

passing side is biased. Pedestrians avoiding a static

pedestrian have a slight preference for the right-hand

side in our experiments, but the asymmetry is significantly

more pronounced if both pedestrians are moving (see blue

bars in figure 4). This shows that the mutual adjustment of

motion of two interacting pedestrians amplifies the

individual left/right bias significantly.

(c) Specification of the interaction laws

Given the above experimental observations, we now

model the interaction function fij by fitting the extracted

behavioural map. In §4b, we have described the interaction

effects in terms of directional changes (towards the sides)

and speed changes (during head-on encounters). There-

fore, it is natural to specify the interaction function on the

basis of two components, fv and fq, describing the

deceleration along the interaction direction tij and directional

changes along nij respectively, where nij is the normal

vector of tij, oriented to the left (see, for e.g. Hoogendoorn &

Bovy (2003) for a similar representation).

We specify the interaction direction tij as a composition

of the direction of relative motion ðviKvjÞ and the

direction eijZ ðxjKxiÞ=kxjKxik, in which pedestrian j is
Proc. R. Soc. B (2009)
located, where xi is the location of pedestrian i. This leads

to tijZDij

�
kDijk with DijZlðviKviÞCeij , where the

weight l reflects the relative importance of the two

directions. The value estimated from the experimental

data is lZ2.0G0.2.

If dij denotes the distance between two pedestrians i

and j, and qij the angle between the interaction direction

tij and the vector pointing from pedestrian i to j,

fitting our experimental data yields the following

mathematical functions:

fvðd; q ÞZKA expðKd=BKðn0Bq Þ2Þ ð4:3Þ

and

fqðd; q ÞZKAK expðKd=BKðnBq Þ2Þ; ð4:4Þ
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(figure 3). There, we have dropped the indices i and j.

KZq/jq j is the sign of the angle q, and A, B, n, n 0 are model

parameters. Equation (4.3) represents an exponential

decay of the deceleration with distance d. The decay is

faster for large values of q, i.e. towards the sides of the

pedestrian. Therefore, the deceleration effect is strongest

in front, in accordance with the decision area identified

above. Through the dependence on BZgkDk, it is

increased in the interaction direction by large relative

speeds, while the repulsion towards the sides is reduced.

This reflects the fact that fast relative motions require

evading decisions in a larger distance, which also means

that the same amount of displacement to the side

(basically the shoulder width plus some safety distance)

can be gained over a longer distance, requiring a weaker

sideward movement (compare figure 2a with 2b). Note

that equation (4.4) is analogous to equation (4.3) for the

directional changes, just with another parameter n!n 0,

which corresponds to a larger angular interaction range.

The prefactor KZq/jq j takes into account the disconti-

nuity in the angular motion, reflecting the binary decision

to evade the other pedestrian either to the left or to

the right.

The resulting interaction effect fij becomes clearer, if

we take into account the overall contributing terms,

resulting in

f ijðd; q ÞZKA eKd=B eKðn0Bq Þ2
tCeKðnBq Þ2

n
h i

: ð4:5Þ

Accordingly, we have an exponential decay of the

interaction effect with the pedestrian distance d, where

the interaction range B depends on the relative speed. The

angular dependence and anisotropy of the interactions is

reflected by the q-dependence. The model parameters

have been estimated from the experimental data to be

AZ4.5G0.3, gZ0.35G0.01, nZ2.0G0.1 and 3.0G0.7,

by using an evolutionary algorithm designed to minimize

the difference between observed and simulated trajectories

in conditions 2 and 3.

Finally, the model has to take into account the observed

asymmetry in the avoidance behaviour, which is reflected

by the somewhat higher proportion of pedestrians evading

on one side. The simplest way to reproduce this bias is to

replace the angle q in equation (4.5) by qCB3 where

3Z0.005O0 corresponds to a preference for the right-

hand side. The dependence on B describes the fact that

pedestrians make a faster side choice when the relative

speed increases. Note that in other countries similar to

Japan, the pedestrians have a preference for the left-hand

side (Helbing et al. 2005), which corresponds to a negative

value of 3.
(d) Comparison of model predictions with

empirical results

(i) Binary interactions

After the above model was fitted to the experimental data,

we first tested it through a series of computer simulations

involving two pedestrians in situations similar to con-

ditions 2 and 3. The model predictions show that the

shape of the trajectories during avoidance manoeuvres as

well as the side choice proportions are in good agreement

with the empirical data collected in our experiments

(figure 4). The non-trivial reinforcement of the side

preference observed in conditions 2 and 3 is also well
Proc. R. Soc. B (2009)
reproduced by the model. This first validation step

demonstrates that the interaction function and the side

preference have been well specified.

(ii) Collective patterns

We then used the model to study the dynamics of a larger

number of pedestrians, who were exposed to many

simultaneous interactions. In our simulation study, it

was assumed that the behaviour of all pedestrians was

simply given by the total of all binary interactions with

other pedestrians in the neighbourhood. The super-

position of binary interaction effects was used to compare

computer simulations of pedestrian counterflows with

empirical data of collective pedestrian movements. For

this, we conducted simulations of the above model under

conditions reflecting the field observations (§2c). First, we

found that restricting the number of neighbouring

individuals a pedestrian responds to did not improve our

results significantly. Therefore, the superposition of all

binary interactions worked well for the above model.

Second, we observed that the empirical flows, as well as

the simulated ones, displayed two lanes of pedestrians

moving in opposite directions. Moreover, both simulated

and observedpatterns exhibited averypronounced left–right

asymmetry in street usage (figure 5b), while simulations for

a unidirectional flow generate a uniform distribution of

pedestrians (see the inset in figure 5b). We also found

an almost uniform distribution for bidirectional pedestrian

flows of low density, which supports the idea that a

minimum amount of interactions is necessary for the flow

separation to emerge (see figure 6 in the electronic

supplementary material).
5. DISCUSSION
We have presented a set of controlled experiments that

reveal the detailed mechanisms and functional dependen-

cies of pedestrian interactions in space and time. In

contrast to the previous modelling approaches, we did not

use a prefabricated interaction function and fitted

parameters to the data. Instead, we first extracted

dependencies between certain variables from the data

(such as the longitudinal and the lateral movement

components as a function of the relative positions of

interacting pedestrians). Then, we identified suitable

mathematical functions fitting them. Only after such

functions were extracted, the model parameters were

determined. Therefore, the interaction function is not just

chosen in a plausible way, but it explicitly represents

experimentally determined features of the data.

Our experimental result reveals how pedestrians

modify their behaviour during interactions. Towards the

side of another pedestrian, people simply adjust their

direction of motion to avoid collisions. In case of head-on

encounters, a binary decision takes place: pedestrians

need to choose whether to evade the other person on the

right-hand or on the left-hand side. This decision process

goes along with a significant decrease of walking speed.

During evading manoeuvres, there is an individual bias

towards one side. This seems to make the movement

smoother and to reduce the related speed decrease.

The side preference is not directly coupled to the

asymmetry of the body, nor to the direction of car traffic,

as can be illustrated, for example, by the observed
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Figure 5. Asymmetry of bidirectional pedestrian traffic.
As sketched in (a) six areas of the street were distinguished
for the measurements: (1) left sidewalk, (2) and (3) left side of
the walkway, (iv) and (5) right side of the walkway, and
(6) right sidewalk. ‘Left’ and ‘right’ are referring to the
walking direction. The sidewalks next to shops were occupied
by a small number of standing pedestrians. The blue bars in
(b) show the proportion of observed pedestrians walking
in each area, while the red bars are simulation results
(with the same parameter values as in figure 4). For
comparison, the inset illustrates the symmetric simulation
results for a unidirectional flow.
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right-hand traffic organization in some areas of Great

Britain (Older 1968; Moussaı̈d et al. 2009). Instead, we

suggest that the left/right bias can be interpreted as a

behavioural convention that emerges because the coordi-

nation during evading manoeuvres is enhanced when both

pedestrians favour the same side (Helbing 1991; Bolay

1998). It is therefore advantageous for an individual to

develop the same preference as the majority of people.

Through a self-reinforcing process, most people would use

the same strategy in the end. As both sides are equivalent

in the beginning, the theory predicts that different

preferences emerge in different regions of the world, as it

is actually observed (Helbing et al. 2001).

In other words, the side preference may be interpreted

as a cultural bias. This cultural interpretation could

potentially be checked by performing walking experiments

with young children, but these may involve a variety of

ethical and organizational issues. Alternatively, the

hypothesis that asymmetrical evading behaviour is based
Proc. R. Soc. B (2009)
on a self-organized behavioural convention could also be

tested by empirically studying the occurrence of a side

preference in some hard-to-reach areas with high popu-

lation densities, but no car traffic. Furthermore, other

examples of ‘coordination games’ could be investigated as

well (e.g. regarding the writing direction, clock direction,

side of hot water tap, VHS versus BETAMAX video format;

(Arthur 1990), DVD format, etc). In such coordination

games, symmetry breaking occurs in the initial phase of

the self-organized formation of a convention (Helbing

1991; Helbing et al. 2001). Eventually, however, the

asymmetry becomes institutionalized, i.e. it becomes a

cultural bias transmitted from one person to another by

imitation and learning. In such a way, the asymmetrical

behaviour is culturally inherited, and symmetry breaking

is not spontaneous anymore.

We show that the concept of social forces is applicable

in principle for modelling the observed movements of

pedestrians during our experiments, and that it facilitates

a quantitative prediction of collective crowd patterns. In

particular, the interaction function is well described by the

combination of a deceleration effect with directional

changes. The deceleration effect applies to head-on

encounters, when a binary decision between the right-

hand and the left-hand side must be made, while

directional adjustments apply otherwise and afterwards.

Moreover, a simple bias in the interaction angle influences

the statistical properties of the resulting collective patterns

of motion. It supports the formation of a small number of

lanes at high pedestrian densities (typically two), i.e. it

separates the opposite walking directions very effectively

and minimizes the frequency of mutual obstructions.

Our results also show that the amplification of the side

preference at the crowd level requires the combination of

asymmetric behaviour with frequent interactions to

quantitatively reproduce empirical data on side prefer-

ence. The left/right bias is much more pronounced when

people have to mutually adjust to each other (as in

condition 3). This may also explain the unexpected

observation of higher traffic efficiency in some situations

of counterflows (Algadhi et al. 2002; Helbing et al. 2005).

Similar amplification phenomena, where an individual

preference is amplified by the action of many other

individuals and shapes the collective organization, have

been recently observed in various other group-living

organisms (Ame et al. 2004; Bon et al. 2005; Jeanson

et al. 2005). For example, a slight wall-following tendency

in ants affects the colony choice of a path to a food source

(Dussutour et al. 2005). Our results, therefore, show

that similar mechanisms seem to guide the dynamics of

human crowds.

These findings may be used to assess the suitability of

pedestrian facilities and escape routes under various

conditions, such as the movement of homogeneous as

compared to multinational crowds with different side

preferences (e.g. during international sports events). This

could significantly affect the efficiency of pedestrian flows

during mass events or the functionality of heavily

frequented buildings such as railway stations, if not

taken into account of in the planning of events and the

dimensioning of public spaces and facilities.

Finally, we highlight the fact that experimental

methods of investigation previously applied to the study

of animal collective behaviour can be successfully
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transferred to the study of human interaction laws and to

collective phenomena emerging from them (Dyer et al.

2007, 2008), even though the behavioural and cognitive

complexity of humans are greater. We also note that a

multivariate linear regression approach would not be able

to identify laws resulting in self-organized collective

behaviours, as those require nonlinear interactions.

Therefore, it is necessary to quantitatively extract the

nonlinear dependencies from the data. In a similar way,

one may address a multitude of other problems such as the

simultaneous interaction with several other people, or

communication and decision-making behaviours explain-

ing self-organized phenomena ranging from collective

attention (Wu & Huberman 2007) over collective opinion

formation (Deffuant et al. 2001), up to social activity

patterns (Barabàsi 2005).
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