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Combined deficiency of coagulation factors V and VIII (F5F8D),
an autosomal recessive disorder characterized by coordinate
reduction in the plasma levels of factor V (FV) and factor VIII (FVIII),
is genetically linked to mutations in the transmembrane lectin
ERGIC-53 and the soluble calcium-binding protein MCFD2. Growing
evidence indicates that these two proteins form a complex recy-
cling between the endoplasmic reticulum (ER) and the ER-Golgi
intermediate compartment and thereby function as a cargo recep-
tor in the early secretory pathway of FV and FVIII. For better
understanding of the mechanisms underlying the functional coor-
dination of ERGIC-53 and MCFD2, we herein characterize their in-
teraction by x-ray crystallographic analysis in conjunction with
NMR and ultracentrifugation analyses. Inspection of the combined
data reveals that ERGIC-53-CRD binds MCFD2 through its molecular
surface remote from the sugar-binding site, giving rise to a 1∶1
complex in solution. The interaction is independent of sugar-
binding of ERGIC-53 and involves most of the missense mutation
sites of MCFD2 so far reported in F5F8D. Comparison with the pre-
viously reported uncomplexed structure of each protein indicates
thatMCFD2 but not ERGIC-53-CRD undergoes significant conforma-
tional alterations upon complex formation. Our findings provide a
structural basis for the cooperative interplay between ERGIC-53
and MCFD2 in capturing FV and FVIII.

MCFD2 ∣ ERGIC-53 ∣ calcium-binding protein ∣ cargo receptor ∣
intracellular lectin

Combined deficiency of coagulation factors V and VIII
(F5F8D) is an autosomal recessive disorder characterized

by coordinate reduction in the plasma levels of factor V (FV)
and factor VIII (FVIII) (1, 2) Extensive genetic analysis of
F5F8D patients identified two genes that are associated with this
disorder. Genetic mutations in LMAN1 account for approxi-
mately 70% of F5F8D families, whereas the remaining 30%
families possess mutation in MCFD2 (3, 4). LMAN1 encodes
the transmembrane lectin ERGIC-53 (ER-Golgi intermediate
compound protein of 53 kDa) (5), which possesses a luminal car-
bohydrate recognition domain (CRD) with specificity for high-
mannose-type oligosaccharides (6, 7) and forms dimers or hexam-
ers stabilized by disulfide bonds formed in its stalk domain (5, 8).
By contrast, the product of MCFD2 is a soluble luminal protein
with two EF-hand Ca2þ-binding motifs (9). It has been shown
that MCFD2 interacts with the CRD of ERGIC-53 in a
Ca2þ-dependent manner (9–11). Accumulating evidence indi-
cates that this complex recycles between the endoplasmic re-
ticulum (ER) and the ER-Golgi intermediate compartment
(ERGIC) and thereby functions as a cargo receptor in the early
secretory pathway of FV and FVIII (12).

To gain a better understanding of the molecular mechanisms
underlying the sorting and trafficking of these coagulation
factors, it is essential to shed light on the structural basis of
the cooperative interplay between ERGIC-53 and MCFD2. The
crystallographic data of the CRD of rat ERGIC-53 have revealed
that it comprises one concave and one convex β-sheet packed into
a β-sandwich with structural resemblance to leguminous lectins
(13, 14). Although a highly homologous CRD is shared by
VIP36 (15), which is a cargo receptor putatively involved in the
retrograde transport of glycoproteins from the Golgi to the ER
(6, 16), this lectin is not capable of interacting with MCFD2 (10).
Three-dimensional structure of MCFD2 has been determined by
NMR spectroscopy (17). In the presence of Ca2þ ions, MCFD2
adopts a calmodulin-like EF-hand domain composed of four
α-helices, leaving the N-terminal 68 residues unstructured. How-
ever, the mode of interaction between ERGIC-53 and MCFD2
remains largely unknown.

In the present study, we present the three-dimensional struc-
ture of MCFD2 and the CRD of ERGIC-53 determined by x-ray
crystallographic analysis in conjunction with NMR and ultracen-
trifugation studies. These data provide a structural basis of the
functional coordination of the two causative gene products
for F5F8D.

Results
Overall Structure of the Complex. The structure of the complex be-
tween the CRD of ERGIC-53 and MCFD2 was solved by mole-
cular replacement and refined to 1.84 Å resolution (Fig. 1A). The
CRD of ERGIC-53 assumes a β-sandwich fold consisting of two
antiparallel β-sheets (β2, β5, β7, β8, β9, β10, β14, and β1, β6, β11,
β12, β13, β15), two short β-strands (β3 and β4), and three 310 he-
lices, which is consistent with the previously reported crystal
structure of rat ERGIC-53-CRD alone (13). The two crystal
structures can be superposed with an average rms deviation of
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0.4 Å for the Cα atoms, indicating that MCFD2 binding causes no
significant structural changes in the CRD of ERGIC-53 (Fig. 1B).
Also, the positions of the two Ca2þ-coordination sites, which ad-
join the putative sugar-binding site (Fig. S1), are almost identical
between the two structures.

On the other hand, MCFD2 assumes a cluster of four α-helices
(α1, α2, α3, and α4) in the C-terminal EF-hand region, whereas
the N-terminal segment (residues 27–65), which is shown to be
disordered in the NMR study of MCFD2 alone (17), also gave
no interpretable electron density in the complex. In contrast to

ERGIC-53-CRD, there exist significant conformational differ-
ences between the free and ERGIC-53-CRD-bound forms of
MCFD2 (2.0 Å rmsd for Cα atoms even with the closest structure
in the NMR ensemble) (Fig. 1C), although the α1 and α4 helices
and the N-terminal portion of α2 helix superimpose well. The α3
helix in the complex is tilted close to the ERGIC-53-CRD by ap-
proximately 20°. In the free form of MCFD2, the residues 90–101
form the slightly bent α2 helix, which is followed by the flexible
loop consisting of the residues from 102 to 112. In the complex,
the residues 97 and 98 are unwound and the residues 99–111 are
not visible in the electron density map. These results suggest that
MCFD2 undergoes conformational changes upon binding to the
CRD of ERGIC-53.

Interfaces Between ERGIC-53-CRD and MCFD2. In this crystal struc-
ture, two different packing interactions are observed between
ERGIC-53-CRD and two MCFD2 molecules, one of which is
from the next unit cell (Fig. 1A). One interaction mode (desig-
nated as contact 1) is mediated by α2, α3 and loops α1-β1, and
α3-α4 of MCFD2; and β1a, β1b, β2, β5, β15, 310-1 and loop β1-β2
of ERGIC-53-CRD. The other mode (designate as contact 2) in-
volves α1, α2, α3 and α4 of MCFD2; and 310-1, loop β10-β12 and
loop β12-β13 of ERGIC-53-CRD. Both of the interacting sites
are remote from the sugar-binding site of the CRD.

In contact 1, a total of 1; 316 Å2 of accessible surface area is
buried. The intermolecular hydrogen bonds are formed by resi-
dues Asp83, Asp89, Glu114, Asp122, Asn132, and Asp133 of
MCFD2, and Arg45, Phe46, Tyr48, Lys53, Gln59, Phe66, and
Lys96 of ERGIC-53-CRD (Fig. 1D). On the other hand, a total
of 1; 072 Å2 of accessible surface area is buried in contact 2,
where MCFD2 binding is mediated by both hydrogen bonds and
van der Waals contacts. Residues involved in the intermolecular
formation of hydrogen bonds are Gln73, Thr98, Glu116, Asp128,
Phe141, and Lys143 of MCFD2, and Phe198, Tyr199, Phe220,
Asp223, and Lys224 of ERGIC-53-CRD (Fig. S2). The values
of buried surface area and numbers of intermolecular hydrogen
bonds suggest that contact 1 mediates the intermolecular inter-
action more tightly.

Stoichiometry of the Interaction in Solution. To examine whether
both modes of interactions are realized in solution, the stoi-
chiometry of the interaction between MCFD2 and ERGIC-53
was determined by analytical ultracentrifugation. Sedimentation
coefficient (C(s)) distributions (Fig. 2A) from sedimentation
velocity (SV) experiments at 20.0 °C indicate s-values of MCFD2
and ERGIC-53-CRD are 1.6 S and 2.5 S, respectively. No other
peaks were detected. Correspondences of monomer molecular
masses estimated from the C(s) distributions for MCFD2 and
ERGIC-53-CRD to those calculated from amino acid sequences
(13534 for MCFD2 and 28028 for ERGIC-53-CRD) indicates
that they are monomeric below the concentration ranges studied
(<200 μM for MCFD2 and <100 μM for ERGIC-53-CRD).
In the mixed solution, the complex composed of MCFD2 and
ERGIC-53-CRD exhibited a peak with 3.0 S under 20 μM
condition (Fig. 2A) and 100 μM condition (Fig. S3A). The
molecular mass estimated of this complex is 41,100, indicat-
ing a 1∶1 stoichiometry of interactions between MCFD2 and
ERGIC-53-CRD.

The hydrodynamic parameters of each protein and their com-
plex estimated from SV analysis were compared with the calcu-
lated s-value, Sh, from the three-dimensional structures
(Table S1). Obviously, the Sh, values of free MCFD2 and ER-
GIC-53-CRD agree with those (S20;w) obtained experimentally.
As for the complex between the ERGIC-53-CRD and MCFD2,
the coincidence of S20;w with Sh computed under the assumption
of one of the two modes of interactions confirms a 1∶1 stoichiom-
etry and further supports the possibility of the contact 1-mode of
interaction in solution.

Fig. 1. Structure of the complex of MCFD2 and ERGIC-53-CRD. (A) Overall
view of the complex. ERGIC-53-CRD is colored gray, whereas MCFD2 is colored
green (at contact 1) and pale blue (at contact 2). (B) Superposition of human
ERGIC-53-CRD complexed with MCFD2 (Gray) and uncomplexed rat ERGIC-53-
CRD (Yellow). The orientation of human ERGIC-53-CRD is exactly the same as
that shown in A and secondary structure elements are labeled. (C) Structural
change of MCFD2 upon biding to ERGIC-53. Superposition of the ERGIC-53-
CRD-bound (Green, present study) and uncomplexed [Magenta, the closest
structure in the NMR ensemble deposited in PDB: Accession code 2VRG
(16)] forms of MCFD2. The orientation of MCFD2 is exactly the same as that
shown in A (contact 1) and secondary structure elements are labeled. (D)
Close-up stereo view of the contact 1 interface between ERGIC-53-CRD (Gray)
and MCFD2 (Green), showing intermolecular contacts. Hydrogen bonds are
represented by dotted lines. The bound Ca2þ ions are shown as spheres (Or-
ange in the MCFD2/ERGIC-53-CRD complex).
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In the sedimentation equilibrium (SE) experiment, nonlinear
fitting of the equilibrium concentration gradient for the mixed
solution (5 μM MCFD2 and 5 μM ERGIC-53-CRD) fit well with
ideal single component model as judged from the uniform distri-
bution of the residuals (Fig. 2B). Concentration gradients for
mixed solution under different concentration conditions are also
best fit with ideal single component model (Fig. S3B and C),
although association-dissociation model was also assessed for the
nonlinear fitting as our previous studies (18, 19). The molecular
weight determined from the nonlinear fitting is 41,300. This value
corresponds well to the molecular weight of a complex (41,562)
composed of one MCFD2 and one ERGIC-53-CRD molecules.
Hence, these SE results indicate the formation of stable 1∶1 com-

plex between MCFD2 and ERGIC-53-CRD, which is consistent
with the result obtained from the SV experiment.

Interaction Analyses by NMR and Mutagenesis. To determine which
of the two interaction modes observed in the crystal is actually
exhibited in solution, we conducted NMR analyses by using
15N-labeled MCFD2 and the synthetic peptides corresponding
to the ERGIC-53 segments involved in contact 1 (Arg44-
His56) and contact 2 (Ile 216-Tyr227). Upon titration with the
contact 1 peptide, significant chemical shift changes were ob-
served in the residues of MCFD2, especially those located in the
EF-hand motifs and the loop connecting them, whereas the che-
mical shift perturbations induced with contact 2 peptide were
much less pronounced (Fig. 3). The chemical shift perturbations
with the contact 1 peptide were virtually abolished by the D89A
mutation, which is located in the contact 1 interface of MCFD2
and associated with F5F8D (Fig. S4). These results suggest that
the widespread chemical shift perturbations reflect the conforma-
tional change of MCFD2 upon binding to the contact 1 peptide,
in accordance with the crystallographic data. Furthermore,
ultracentrifugation and nanoflow electrosplay ionization mass
spectrometric (nESI-MS) analyses revealed that the amino acid
substitutions at the contact 1 interface, i.e. D122V inMCFD2 and
R45A in ERGIC53-CRD, destabilize the complex whereas the
point mutations introduced into the contact 2 interface, i.e.
E116A and D128A in MCFD2 and Y199A and K224A in ER-
GIC-53-CRD, have no impact on their interaction (Figs. S5
and S6). On the basis of all these data, we conclude that MCFD2
and the CRD of ERGIC-53 form a 1∶1 complex in solution
through the contact 1-mode of interaction. The isothermal titra-
tion calorimetry (ITC) data showed that this interaction is not
influenced by carbohydrate binding to ERGIC-53-CRD (Fig. S7).

Discussion
In the present study, we have determined the three-dimensional
structure of the complex between MCFD2 and the CRD of
ERGIC-53. In human, ERGIC-53 together with VIP36 and its
homolog VIPL constitute a family of leguminous type lectins
(20, 21). These proteins have different intracellular distributions
and dynamics in the ER-Golgi system in the secretory pathway
(22–25). Among these three lectins, only ERGIC-53 interacts
with MCFD2 despite the structural similarities of their CRDs
(3, 13, 15). Our structural data indicate that ERGIC-53 binds
MCFD2 primarily through the segment spanning from β1a to
β2 strands of the CRD. The amino acid residues located in this
region are much less conserved between ERGIC-53 and VIP36/
VIPL (Fig. S1A). In addition, comparison of the crystal structures
of the CRDs demonstrates that the loops connecting β1b and β2
strands exhibit marked conformational differences between
ERGIC-53 and VIP36 despite their overall structural similarities
(Fig. S1B). These structural differences account for the specific
binding of MCFD2 to ERGIC-53.

So far, seven missense mutations of MCFD2 have been
reported in F5F8D families (2, 9). These mutations cause amino
acid substitutions in the first EF-handmotif (D81YandD89A)and
the secondEF-handmotif (D122V,D129E,Y135N, and I136T/V).
All themutations except forY135Nhave already been tested for in
vitro and/or in vivo interactions with ERGIC-53 and shown to re-
sult in impaired binding (3, 10, 12, 17). The present study also con-
firmed the negative effects of these mutations on the binding
capability to ERGIC-53-CRD (Figs. S4–S6). Our crystal structure
revealed that, four of these amino acid residues, D81, D89, D122,
and Y135 are directly involved in the intermolecular interaction
with ERGIC-53, whereas the remaining two residues (D129
and I136) are involved in Ca2þ-coordination and therefore crucial
for structural integrity of MCFD2 (Fig. 1D). A recently reported
nonsensemutation ofMCFD2 results in deletion of theC-terminal
three residues Ser144, Leu145, and Gln146. This truncated

Fig. 2. Analytical ultracentrifugation of MCFD2, ERGIC-53-CRD, and their
mixture. (A) SV experiments. (Upper and Center) Representative SV run at
60,000 rpm, result of C(s) distribution analysis of 20 μM solution of MCFD2
and ERGIC-53-CRD mixture with a 1∶1 molar ratio, and the residual of the fit
are shown. (Lower) Sedimentation coefficient distribution of the indicated
protein that were obtained from the analysis of SV experiments. The uncom-
plexed ERGIC-53-CRD was not detected despite the fact that its molar extinc-
tion coefficient is larger than that ofMCFD2. Therefore theMCFD2-ERGIC-53-
CRD complex is stable and small peak at 1.6 S is not attributed to the disso-
ciated form ofMCFD2 from the complex but a small excess fraction of MCFD2
over ERGIC-53 under the experimental condition. (B) SE experiments. Repre-
sentative equilibrium concentration gradient for 5 μM solution ofMCFD2 and
ERGIC-53-CRDmixture with 1∶1molar ratio. Best fit curve of nonlinear fitting
employing single species model and the residual of the fit are shown.
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MCFD2 mutant also exhibits impaired binding to ERGIC-53
(26). In the crystal structure, the C-terminal residues of MCFD2
gave no electron density but are obviously remote from the bind-
ing site for ERGIC-53-CRD. As shown by the previous CD data
(26), the C-terminal residues are likely to confer structural integ-
rity of MCFD2 and thereby contribute to the interaction with
ERGIC-53 in an indirect manner.

Our present data also indicate that MCFD2 undergoes signifi-
cant conformational alteration upon binding to the ERGIC-53,
whereas MCFD2 binding has little impact on the conformation
of ERGIC-53-CRD. In addition, the MCFD2 binding site is lo-
cated remotely from the sugar-binding site on ERGIC-53-CRD
(Fig. S1B). These observations suggest that sugar-binding affinity
and specificity of ERGIC-53 are influenced neither directly nor
allosterically by the interaction with MCFD2. Indeed, our ITC
data indicate that the sugar-binding to ERGIC-53-CRD is inde-
pendent of its interaction with MCFD2 (Fig. S7). In accordance
with these results, ERGIC-53 has been shown to be able to bind
cathepsin Z and cathepsin C as cargo glycoproteins in an
MCFD2-independent fashion (11). This strongly implies that
MCFD2 operates as a recruitment factor for FV and FVIII.

In many cases, EF-hand domains use their finger-motifs to
form ligand-binding pockets on the opposite face of the
Ca2þ-binding sites (27). MCFD2, however, does not adopt this

typical mode of ligand-binding but uses the back of the EF-hand
for the interaction with ERGIC-53-CRD, which results in the al-
losteric conformational change of the canonical ligand-binding
site. Our structural data lead us to propose a model of functional
coordination between ERGIC-53 and MCFD2. MCFD2 is con-
verted into the active form upon complex formation with ER-
GIC-53 and thereby becomes able to capture polypeptide
segments of FVand FVIII in cooperation with ERGIC-53 inter-
acting with their carbohydrate moieties. These coagulation fac-
tors are heavily glycosylated and therefore bind the ERGIC-53
oligomer avidly in the ER but become released upon arrival to
acidic postER compartments because the sugar-binding of
ERGIC-53 is pH-dependent (28). Thus, this study provides new
insights into the mechanisms underlying sorting and trafficking of
the two coagulation factors mediated by the ERGIC-53/MCFD2
cargo receptor complex. Targeting the ERGIC-53/MCFD2 com-
plex has been proposed as a therapeutic approach to anticoagu-
lation (9). Considering our finding of a conformational change of
MCFD2 upon complex formation with ERGIC-53, it appears
that such an undertaking should focus on MCFD2.

Methods
Protein Expression. DNA fragments encoding MCFD2 were cloned into
the pET-16b plasmid (N-terminal hexahistidine tag) and expressed in the

Fig. 3. NMR analysis of the interactions. 15N-labeledMCFD2was titrated with the synthetic peptides corresponding to the segments of ERGIC-53-CRD involved
in contact 1 (A and C) and contact 2 (B and D) in the crystal structure. 1H-15NHSQC spectra (A and B) measured in the absence (Black) and presence (Red) of 5-
fold molar excess of the peptides and plots of chemical shift perturbation data (C and D) obtained therefrom. Asterisk indicates residues whose chemical shift
perturbation data could not be obtained due to severe broadening and/or peak overlapping.

Nishio et al. PNAS ∣ March 2, 2010 ∣ vol. 107 ∣ no. 9 ∣ 4037

BI
O
CH

EM
IS
TR

Y

http://www.pnas.org/cgi/data/0908526107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0908526107/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0908526107/DCSupplemental/Supplemental_PDF#nameddest=SF7


Escherichia coli BL21(DE3) codonplus strain induced with 0.5 mM isopropyl
β-D-thiogalactopyranoside. For NMR analyses, the protein was expressed
in M9 minimal medium with appropriate ½15N�NH4Cl and/or ½13C�glucose. The
protein purified by a Ni2þ-NTA high performance column (GE Healthcare),
and subsequently by an anion exchange column (GE Healthcare) for crystal-
lization. For ultracentrifuge, NMR, and nESI-MS analyses, the hexahistidine
tag was cleaved by incubation with factor Xa (Novagen) and further purified
by using anion exchange chromatography. The DNA fragment encoding re-
sidues 31-269, corresponding to the CRD of human ERGIC-53 was cloned into
the pCold III plasmid and expressed in E. coli (BL21 (DE3)) as inclusion bodies,
which were then solubilized by 6 M guanidinium chloride. The protein solu-
tion was diluted with a refolding buffer composed of 50 mM Tris-HCl, pH 8.0,
0.4 M L-arginine, 5 mM glutathione reduced form, and 0.5 mM glutathione
oxidized form. The proteins were further purified using a Superdex 75 gel
filtration column (GE Healthcare). Amino acid substitutions of MCFD2 and
ERGIC-53-CRD were made by standard PCR and genetic engineering techni-
ques. The mutated proteins were expressed and purified following the same
protocol used for the wild-type proteins.

Crystallization, Data Collection, and Structure Determination. After mixing
ERGIC-53-CRD and MCFD2, the fraction containing their complex was iso-
lated by using a Superdex 75 gel filtration column (GE Healthcare) and then
dialyzed against 10 mM Tris-HCl, pH 8.0, containing 100 mM CaCl2. Crystals
of the complex between MCFD2 and the CRD of ERGIC-53 were obtained at
16 °C by using the hanging-drop vapor diffusionmethod. The reservoir buffer
contained 0.2 M sodium tartrate, pH 5.5, and 20% PEG 3,350. For cryoprotec-
tion, the crystals were soaked in the crystallization buffer containing 20%
(v/v) glycerol and immediately frozen in the cryostream. Diffraction data
were collected using synchrotron radiation beamline BL5A at Photon Factory,
KEK. Data processing and reduction were carried out with the MOSFLM (29)
and SCALA (30). There was one complex in the asymmetric unit.

The ERGIC-53-MCFD2 structure was solved by molecular replacement with
the CRD domain of rat ERGIC-53 (PDB accession code 1R1Z) as a search model
using the program MOLREP (31). An initial model was built using ARP/wARP
(32). Manual building was carried out using the program COOT (33)and
alternated with several cycles of refinement using the program REFMAC5
(34). The structure was refined to an Rcryst of 18.8% and an Rfree of 20.0%
for the data between 50 and 1.84 Å resolution. The final model contains re-
sidues 41–268 of the CRD of ERGIC-53 and residues 66–98 and 112–143 of
MCFD2, four calcium ions, four glycerol molecules, and 189 solvent mole-
cules. The electron densities of the first 39 N-terminal residues (27–65)
and the C-terminal 3 residues (143–146) and the loop comprised of residues
99–111 of MCFD2 were not visible, suggesting that this region possesses a
significant degree of flexibility. Stereochemistry of the final model was
checked using the program PROCHECK (35), which indicated that 89.2%
and 10.8% of the residues constituting ERGIC-53-CRD and MCFD2 were in
the most favored and allowed regions of the Ramachandran plot, respec-
tively. There are no residues in both the generously allowed and disallowed
regions of the Ramachandran plot. Data collection and refinement statics are
summarized in Table 1. Structure superpositions were performed using
Dali-lite (36) and COOT. The program AREAIMOL (37) was used to calculate
accessible surface areas. Molecular graphics were generated using PyMOL
(http://pymol.sourceforge.net).

Coordinates and structure factors have been deposited at the Protein
Data Bank (PDB; www.rcsb.org) under accession code 3A4U.

Analytical Ultracentrifugation. SV and SE experiments were performed in the
buffer (10 mM MES, pH 6.0, 150 mM NaCl, and 100 mM CaCl2) using Proteo-
melab XL-I Analytical Ultracentrifuge (Beckman–Coulter). In SV analysis, sam-
ples of MCFD2 (200 μM), ERGIC-53-CRD (20 μM and 100 μM), and their
mixtures with a 1∶1 molar ratio (20 μM and 100 μM) were measured. Runs
were carried out at 60,000 rpm and at a temperature of 20.0 °C using 12 mm
aluminum double sector centerpieces and four-hole An60 Ti analytical rotor
equilibrated to 20.0 °C. The evolution of the resulting concentration gradient
was monitored with absorbance detection optics at appropriate wavelength
(281 nm and 297 nm) according to the concentration of the solution, where
the absorbance of the solution becomes between 0.8 and 1.2. Rayleigh infer-
ence detection systemwas also employed. The radial increment was 0.003 cm
and at least 150 scans were collected between 5.9 and 7.25 cm from the cen-
ter of rotation axis. All SV raw data were analyzed by the continuous C(s)
distribution model in the software program SEDFIT11.71 (38). The position
of the meniscus and frictional ratio (f∕f0) were set to vary as fitted para-
meters and time-invariant noise and radian-invariant noise were removed.
Additional parameter for the analysis included partial specific volumes calcu-
lated from the amino acid composition (MCFD2: 0.719 cm3∕g; ERGIC-53-CRD:

0.724 cm3∕g; MCFD2/ERGIC-53-CRD complex: 0.722 cm3∕g), and buffer den-
sity (ρ ¼ 1.0139 g∕cm3) and viscosity (η ¼ 1.0376 centipoises) calculated using
the program UltraScanII version 9.9 (http://www.ultrascan.uthscsa.edu/) (37).
A resolution of 300 increments between 0.5 and 10 S were entered and maxi-
mum entropy regularization was used (p ¼ 0.68). The absence of concentra-
tion dependent interactions were verified and ideal sedimentation behavior
was confirmed by obtaining molar mass estimates from C(s) close to the
values calculated from the amino acid sequences. Calculation of hydrody-
namic parameters including s-value were carried out using three-dimensional
structures of each protein or protein complex by using the program US-
SOMO implemented in UltraScanII version 9.9 (39, 40). Molar extinction coef-
ficient spectra of MCFD2 (ex. 5120 mol−1 cm2 at 280 nm) and ERGIC-53-CRD
(ex. 38810 mol−1 cm2 at 280 nm) were derived using the program Sednterp
version 1.09. For evaluation of the effects of the point mutations, equi-molar
mixtures (5 μM each) of the wild-type or mutated versions of ERGIC-53-CRD
and MCFD2 were subjected to the SV analysis.

In SE analysis, samples of MCFD2 and ERGIC-53 mixtures with a 1∶1 molar
ratio (5 μM, 10 μM, and 100 μM) were centrifuged at 20,000 rpm and at 20.0 °
C using 12 mm charcoal-epon double sector centerpieces using four-hole
An60 Ti analytical rotor. Absorbance detection optics and Rayleigh interfer-
ence detection systemwere used for the concentration gradient observation.
Equilibrium was confirmed by the complete overlapping of two different
concentration gradients obtained at 6 h interval. Nonlinear least squares fit-
ting of the equilibrium concentration gradients were performed by the pro-
grams Origin6.0 (OriginLab Corporation) and SigmaPlot11 (Systat Software
Inc) using the single fitting and global fitting modes.

NMR Analyses. Proteins were dissolved in 10 mM Tris-HCl, pH 7.5, containing
100 mMCaCl2, 2.4 mMNaN3, and 10% (v/v) D2O. All NMR spectra were
acquired at 303 K using Avance600 (Bruker BioSpin) and ECA920 (JEOL) spec-
trometers. Although the backbone resonances of MCFD2 have been depos-
ited in the Biological Magnetic Resonance Bank under accession code BMRB-
15789 (18), these data were collected at a different buffer condition from this
report. Therefore, we assigned the backbone resonances of MCFD2 as well.
The chemical shifts of MCFD2 were assigned using the following experi-
ments: 2D 1H-15NHSQC, 3D HNCA, HN(CO)CA, HNCO, HN(CA)CO, CBCA
(CO)NH and HNCACB spectra. To observe chemical shift perturbation, 5-fold
molar equivalents of the synthetic peptides, which are corresponding to the

Table 1. Data collection and refinement statics

Crystallographic data

Space group P3121
Unit cell
a/b/c (Å) 59.4 59.4 198.8
α/β/γ (°) 90.00 90.00 120.00
Data processing statistics
Beam line PF-BL5A
Wavelength (Å) 1.000
Resolution (Å) 49.8 − 1.84 (1.94 − 1.84)*
Total reflections 247663
Unique reflections 36530
Redundancy 6.8 (7.0)
Completeness (%) 99.9 (100.0)
Rmerge (%) 5.9 (25.7)
I∕σðIÞ 19.5 (6.1)
Refinement statistics
Resolution (Å) 49.81 − 1.84
Rwork (%) 18.8
Rfree (%) 20.0
Rmsd from ideal values
Bond length (Å) 0.007
Angle (°) 1.086
Ramachandran plot (%)
Most favored 89.2
Additionally allowed 10.8
Generously allowed 0.0
Disallowed 0.0
Number of molecules and atoms
Protein atoms 2315
Ca2þ ions 4
Glycerol 4
Water molecules 189

*Values in parentheses are for the highest resolution shell.
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ERGIC-53-CRD segments Arg44-His56 (RRFEYKYSFKGPH) and Ile216-Tyr227
(INNGFTPDKNDY) (purchased from AnyGen), were individually added to
wild-type or mutated ½15N�MCFD2 solutions. The chemical shift perturbation
data were estimated for each residue using the equation ð0.04δ2N þ δ2HÞ1∕2
(ppm), where δN and δH represent the change in nitrogen and proton chemi-
cal shift upon mixing of MCFD2 and the peptides, respectively.

Mass spectrometry. Protein mixtures composed of wild-type or mutated
MCFD2 and ERGIC-53-CRD (25 μM each) were subjected to mini gel filtration
columns (BioRad) equilibrated with 250 mM ammonium acetate (pH 6.0) for
buffer exchange. Spectral data of ions generated by nanoflow electrospray
ionization were acquired on an Synapt HDMS mass spectrometer (Waters)
modified for high mass operation (41). Nanospray ionization was performed
using gold-coated glass capillaries prepared in-house. Typical conditions in-
cluded 2–3 μL of aqueous protein solution, capillary voltage of 1.1–1.7 kV,
cone voltage of 80–120 V, trap and transfer collision energy voltages of
30 and 10 V respectively, except during MS/MS dissociation when the trap
collision energy voltage was increased to 100 V. The source pressure was

maintained at 2 × 10−2 mbar. Spectra were calibrated externally using an
aqueous 33 mg∕mL−1 solution of cesium chloride.

Calorimetric Analysis. ITC experiments were performed using an iTC200 calori-
meter (GE healthcare UK Ltd.). Manα1-2Man (Sigma–Aldrich) or the M8.1 iso-
mer of Man8GlcNAc2-PA (16) were used as carbohydrate ligands.
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