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Recent physiological measurements have provided clear evidence
about scale-free avalanche brain activity and EEG spectra, feeding
the classical enigma of how such a chaotic system can ever learn or
respond in a controlled and reproducible way. Models for learning,
like neural networks or perceptrons, have traditionally avoided
strong fluctuations. Conversely, we propose that brain activity
having features typical of systems at a critical point represents a
crucial ingredient for learning. We present here a study that pro-
vides unique insights toward the understanding of the problem.
Our model is able to reproduce quantitatively the experimentally
observed critical state of the brain and, at the same time, learns
and remembers logical rules including the exclusive OR, which has
posed difficulties to several previous attempts. We implement the
model on a network with topological properties close to the func-
tionality network in real brains. Learning occurs via plastic adapta-
tion of synaptic strengths and exhibits universal features. We find
that the learning performance and the average time required to
learn are controlled by the strength of plastic adaptation, in a
way independent of the specific task assigned to the system. Even
complex rules can be learned provided that the plastic adaptation
is sufficiently slow.
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Spontaneous activity is an important property of the cerebral
cortex that can have a crucial role in information processing

and storage. Recently it has been shown that a unique spatiotem-
poral form of spontaneous activity is neuronal avalanches, which
can involve from a few to a very large number of neurons. These
bursts of firing neurons have been first observed (1, 2) in orga-
notypic cultures from coronal slices of rat cortex, where the size
and duration of neuronal avalanches follow power law distribu-
tions with very stable exponents. The presence of a power law
behavior is the typical feature of a system acting in a critical state
(3), where large fluctuations are present and the response does
not have a characteristic size. The same critical behavior, namely,
the same power law exponents, has been recently measured
also in vivo from superficial layers of cortex in anesthetized rats
during early postnatal development (4), and awake adult rhesus
monkeys (5), by using microelectrode array recordings. Results
confirm that indeed spontaneous cortical activity adjusts in a cri-
tical state where the spatiotemporal organization of avalanches is
scale invariant. Moreover, the investigation on the spontaneous
activity of dissociated neurons from different networks as rat hip-
pocampal neurons (6), rat embryos (7), or leech ganglia (6) has
also confirmed the robustness of this scaling behavior. In all these
cases, the emergence of power law distributions has been inter-
preted in terms of self-organized criticality (SOC) (8). The term
SOC usually refers to a mechanism of slow energy accumulation
and fast energy redistribution driving the system toward a critical
state, where the avalanche extensions and durations do not have a
characteristic size.

The understanding of the fundamental relations between
electrophysiological activity and brain organization with respect
to performing even simple tasks is a long-standing fascinating

question. A number of theoretical models (9) have been pro-
posed for learning, from the simple perceptron (10) to attractor
neural networks (11) of artificial two-state neurons (12). In these
models the state of the “brain” is the snapshot of the ensemble of
the individual states of all neurons, which explores phase space
following an appropriate dynamics and eventually recovers mem-
ories. The ability of the brain to self-organize connections in an
efficient way is a crucial ingredient in biologically plausible mod-
els. The breakthrough of Hebbian plasticity, postulating synapse
strengthening for correlated activity at the pre- and postsynaptic
neuron and synapse weakening for decorrelated activity, trig-
gered the development of algorithms for neuronal learning and
memory, as, for instance, “reinforcement learning” (13) or error
back-propagation (14), leading to the exclusive OR (XOR) rule
learning. Recent results have shown that extremal dynamics,
where only the neuron with the largest input fires, and uniform
negative feedback are sufficient ingredients to learn the following
task: to identify the right connection between an input and an
output node (15, 16). Similarly, low activity probabilistic firing
rules, where again a single neuron fires at each step of the itera-
tion, together with a uniform negative feedback plastic adapta-
tion acting on time scales slower than the neuron firing time
scale, enables learning the XOR rule without error back-
propagation (17). Both results suggest that the system learns
by mistakes; namely, depression rather than enhancement of sy-
naptic strength is the crucial mechanism for learning. However, in
both studies a single neuron fires at each step of the evolution,
not in complete agreement with recent experimental discoveries.
Cooperative effects leading to self-organization and learning are
completely neglected in the aforementioned approaches.

Operating at a critical level, far from an uncorrelated subcri-
tical or a too correlated supercritical regime, may optimize
information management and transmission in real brains (1,
18–20), as recently confirmed by experiments (21). To confirm
this point, a recent study of visual perceptual learning has evi-
denced that training to a specific task induces dynamic changes
in the functional connectivity able to “sculpt” the spontaneous
activity of the resting human brain and to act as a form of “system
memory” (22). It is therefore tempting to investigate the role that
critical behavior plays in the most important task of neuronal net-
works, namely, learning and memory. The emergence of a critical
state with the same critical behavior found experimentally has
been recently reproduced by a neuronal network model on the
basis of SOC ideas (23, 24). The model implements several phy-
siological properties of real neurons: a continuous membrane po-
tential, firing at threshold, synaptic plasticity, and pruning.
Extensive numerical studies on regular, small world, and scale-
free networks have shown that indeed the system exhibits a robust
critical behavior. The distributions of avalanche size and duration
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scale with exponents independent of model parameters and in
excellent agreement with experimental data (Fig. 1). More pre-
cisely, the distribution of avalanche sizes, measured experimen-
tally in terms of either number of active electrodes or summed
local field potentials in a microelectrode array (1, 2), decreases
with an exponent −1.5, whereas the distribution of avalanche
temporal durations decreases with an exponent close to −2.0. A
critical avalanche activity also has been found on fully connected
(25) and random networks (26). Moreover, the temporal signal
for electrical activity and the power spectrum of the resulting time
series have been compared with EEG data (23, 24). The spectrum
exhibits a power law behavior Pðf Þ ∼ f−0.8, with an exponent in
good agreement with EEG medical data (27) and physiological
signal spectra for other brain-controlled activities (28). This mod-
el therefore seems to capture many of the essential ingredients of
spontaneous activity, as measured in cortical networks.

Here we study the learning performance of a neuronal network
acting in a critical state. The response of the system to external
stimuli is therefore scale-free; i.e., no characteristic size in the
number of firing neurons exists. The approach reproduces closely
the physiological mechanisms of neuronal behavior and is imple-
mented on a plausible network having topological properties
similar to the brain functionality network. Neuronal activity is
a collective process where all neurons at threshold can fire and
self-organize an efficient path for information transmission. Plas-
tic adaptation is introduced via a nonuniform negative feedback
procedure with no error back-propagation.

The Model
We consider N neurons positioned at random in a two-
dimensional space. Each neuron is characterized by the potential
vi. Connections among neurons are established by assigning to
each neuron i a random outgoing connectivity degree kouti . The
distribution of the number of out-connections is then chosen in
agreement with the experimentally measured properties of the
functionality network (29) in human adults. Functional magnetic
resonance imaging has indeed shown that this network has uni-
versal scale-free properties; namely, it exhibits a scaling behavior
nðkoutÞ ∝ k−2out, independent of the different tasks performed by
the patient. We adopt this distribution for the number of presy-
naptic terminals of each neuron, over the range of possible values
between kmin

out and kmax
out ¼ 100, as in experimental data. Two neu-

rons are then connected according to a distance dependent prob-
ability pðrÞ ∝ e−r∕r0 , where r is their spatial distance (30) and r0 a
typical edge length. To each synaptic connection we then assign
an initial random strength gij, where gij ≠ gji, and an excitatory or
inhibitory character, with a fraction pin of inhibitory synapses. An
example of such a network is shown in Fig. 2.

The firing dynamics implies that, whenever at time t the value
of the potential at a site i is above a certain threshold
vi ≥ vmax ¼ 6.0, approximately equal to −55 mV for real neurons,
the neuron sends action potentials leading to the production of an
amount of neurotransmitter proportional to vi. As a conse-
quence, the total charge released by a neuron is proportional to
the number of synaptic connections, qi ∝ vikouti . Each connected
neuron receives charge in proportion to the strength of the sy-
napse gij:

vjðtþ 1Þ ¼ vjðtÞ �
qiðtÞ
kinj

gijðtÞ
∑
k

gikðtÞ
; [1]

where kinj is the in-degree of neuron j and the sum is extended to
all outgoing connections of i. In Eq. 1 it is assumed that the re-
ceived charge is distributed over the surface of the soma of the
postsynaptic neuron, proportional to the number of ingoing term-
inals kinj . The plus or minus sign in Eq. 1 is for excitatory or in-
hibitory synapses, respectively. After firing, a neuron is set to a

zero resting potential and in a refractory state lasting tref ¼ 1 time
step, during which it is unable to receive or transmit any charge.
We wish to stress that the unit time step in Eq. 1 does not corre-
spond to a real time scale; it is simply the time unit for charge
propagation from one neuron to the connected ones. In a real
system this time could vary and be as large as 100 ms for longer
firing periods. The synaptic strengths have initially a random
value gij ∈ ½0.5; 1.0�, whereas the neuron potentials are uniformly
distributed random numbers between vmax − 1 and vmax. More-
over, a small random fraction (10%) of neurons are chosen to
be boundary sites, with a potential fixed to zero, playing the role
of sinks for the charge.

In order to start activity we identify input neurons at which the
imposed signal is applied and the output neuron at which the re-
sponse is monitored. These nodes are randomly placed inside the
network under the condition that they are not boundary sites and
they are mutually separated on the network by kd nodes. kd re-
presents the chemical distance on the network and plays the role
of the number of hidden layers in a perceptron. We test the ability
of the network to learn different rules: AND, OR, XOR, and a
random rule RAN that associates to all possible combinations of
binary states at three inputs a random binary output. More pre-
cisely, the AND, OR, and XOR rules are made of three input–
output relations (we disregard the double zero input, which is a
trivial test leading to zero output), whereas the RAN rule with
three input sites implies a sequence of seven input–output rela-
tions. A single learning step requires the application of the entire
sequence of states at the input neurons, monitoring the state of
the output neuron. For each rule the binary value 1 is identified
with the output neuron firing, namely, the neuron membrane po-
tential at a value greater or equal to vmax at some time during the
activity. Conversely, the binary state 0 at the output neuron cor-
responds to the physiological state of a real neuron that has been
depolarized by incoming ions but fails to reach the firing thresh-
old membrane potential during the entire avalanche propagation.
Once the input sites are stimulated, their activity may bring to
threshold other neurons and therefore lead to avalanches of fir-
ings. We impose no restriction on the number of firing neurons in
the propagation and let the avalanche evolve to its end according
to Eq. 1. If at the end of the avalanche the propagation of charge
did not reach the output neuron, we consider that the state of the
system was unable to respond to the given stimulus and, as a
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Fig. 1. Demonstration of the critical behavior of the neuronal network ava-
lanche activity. The distribution of the sizes of the avalanches of firing neu-
rons, nðSÞ (Circles), follows a power law behavior with an exponent 1.5� 0.1
(Dashed Line). The size is measured as the number of firing neurons. The dis-
tribution of avalanche durations, nðTÞ (Squares), exhibits a power law beha-
vior with an exponent 2.2� 0.2 (Dot-dashed Line), followed by an
exponential cutoff. Data are obtained for 40 realizations of a network of
4,000 neurons with pin ¼ 0.05.
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consequence, to learn. We therefore increase uniformly the po-
tential of all neurons by units of a small quantity β ¼ 0.01, until
the configuration reaches a state where the output neuron is first
perturbed. We then compare the state of the output neuron with
the desired output. Namely, we follow the evolution in phase
space of the initial state of the system and verify if the nonergodic
dynamics has led to an attractor associated with the right answer.

Plastic Adaptation. Plastic adaptation is applied to the system ac-
cording to a nonuniform negative feedback algorithm. Namely, if
the output neuron is in the correct state according to the rule, we
keep the value of synaptic strengths. Conversely, if the response is
wrong, we modify the strengths of those synapses involved in the
information propagation by �α∕dk, where dk is the chemical dis-
tance of the presynaptic neuron from the output neuron. Here α
represents the ensemble of all possible physiological factors in-
fluencing synaptic plasticity. The sign of the adjustment depends
on the mistake made by the system: If the output neuron fails to
be in a firing state, we increase the used synapses by a small ad-
ditive quantity proportional to α. Synaptic strengths are instead
decreased if the expected output 0 is not fulfilled. Once the
strength of a synapse is below an assigned small value gt ¼ 10−4,
we remove it, i.e., set its strength equal to zero, which corresponds
to the so-called pruning. This ingredient is very important because
for decades the crucial role of selective weakening and elimina-
tion of unneeded connections in adult learning has been recog-
nized (31, 32). The synapses involved in the signal propagation
and responsible for the wrong answer are therefore not adapted
uniformly but inversely proportional to the chemical distance
from the output site. Namely, synapses directly connected to the
output neuron receive the strongest adaptation �α. This adapta-
tion rule intends to mimic the feedback to the wrong answer trig-
gered locally at the output site and propagating backward toward
the input sites. This could be the case, for instance, of some
hormones strongly interfering with learning and memory, as

dopamine suppressing long term depression (33) or adrenal hor-
mones enhancing long term depression (34). Moreover a recently
discovered class of messenger molecules as nitric oxide has been
found to have an important role in plastic adaptation (35). For all
these agents, released at the output neuron, the concentration is
reduced with the distance from the origin. In our neuronal net-
work simulation this nonuniform adaptation has a crucial role be-
cause it prevents, in case of successive wrong positive answers,
synapses directly connected to the input sites to decrease exces-
sively, hindering any further signal transmission. This plastic
adaptation is a non-Hebbian form of plasticity and can be inter-
preted as a subtractive form of synaptic scaling (36), where sy-
napses are changed by an amount independent of their
strength. The procedure mimics the performance of a good critic
who does not tell the system which neurons should have fired or
not. However it tells more than just “right” or “wrong”; it ex-
presses an evaluation on the type of error. Finally, we wish to
stress that this model naturally sets the system in a critical state,
and therefore the study of the response of the system in a sub-
critical or supercritical state requires the introduction of addi-
tional parameters. We can however suppose that in both cases
learning becomes a more difficult task. For instance, in a subcri-
tical state, the size of neuronal avalanches being smaller, it would
be more complex to generate a firing state in the output site. Con-
versely, in a supercritical state it would be more difficult to gen-
erate a nonfiring state in the output site.

Results and Discussion
We analyze the ability of the system to learn the different rules.
Fig. 3 shows the fraction of configurations learning the XOR rule
versus the number of learning steps for different values of the
plastic adaptation strength α. We notice that the larger the value
of α, the sooner the system starts to learn the rule; however, the
final percentage of learning configurations is lower. The final rate
of success increases as the strength of plastic adaptation de-
creases. This result is because of the highly nonlinear dynamics
of the model, where firing activity is an all or none event con-
trolled by the threshold. Very slow plastic adaptation allows
one then to tune finely the role of the neurons involved in the
propagation and eventually to recover the right answer. More-
over, very slow plastic adaptation also makes the system more
stable with respect to noise, because too strong synaptic changes
may perturb excessively the evolution hampering the recovery of
the right answer. The dependence of the learning success on the
plasticity strength is found consistently for different values of the
parameters kd, kmin, and pin, where a higher percentage of success
is observed in systems with no inhibitory synapses. Moreover, the
dependence on the plastic adaptation α is a common feature of all
tested rules. Data indicate that the easiest rule to learn is OR,
where a 100% percentage of success can be obtained. AND
and XOR present similar difficulties and both lead to a percen-
tage of final success around 80%, whereas the most difficult rule
to learn is the RAN rule with three inputs where only 50% of
final success is obtained. This different performance is mainly be-
cause of the higher number of inputs, because the system has to
organize a more complex path of connections leading to the out-
put site.

The most striking result is that all rules give a higher percen-
tage of success for weaker plastic adaptation. Indeed this result is
in agreement with recent experimental findings on visual percep-
tual learning, where better performances are measured when
minimal changes in the functional network occur as a result of
learning (22). We characterize the learning ability of a system
for different rules by the average learning time, i.e., the average
number of times a rule must be applied to obtain the right answer,
and the asymptotic percentage of learning configurations. This is
determined as the percentage of learning configurations at the
end of the teaching routine, namely, after 106 applications of

Fig. 2. One neuronal avalanche in the scale-free network. A configuration
of 40 neurons is shown connected by directed bonds (direction indicated by
the arrow at one edge), representing the synapses. The size of each neuron is
proportional to the number of in-connections, namely, the number of den-
drites. The two red neurons are the two input sites, whereas the black neuron
is the output. Connections involved in the avalanche propagation are shown
in red, whereas inactive connections are black.
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the rule. Fig. 4 shows that the average learning time scales as τ ∝
1∕α for all rules and independently of parameter values. Because
some configurations never learn and do not contribute to the
average learning time, we also evaluate the median learning time
that exhibits the same scaling behavior as the average learning
time. The asymptotic percentage of success increases by decreas-
ing α as a very slow power law, ∝α−0.05. Because this quantity has a
finite upper bound equal to unity, this scaling suggests that in a
finite, even if very long, time any configuration could learn the
rule by applying an extremely slow plastic adaptation. It is inter-
esting to notice that a larger fraction of systems with no inhibitory
synapses finds the right answer and the average learning time for
these systems is slightly shorter. We understand this result by con-
sidering that for only excitatory synapses the system more easily
selects a path of strong enough synapses connecting inputs and
output sites and giving the right answer. Conversely, the presence
of inhibitory synapses may lead to frustration in the system be-
cause not all local interactions contribute in the optimal way to
provide the right answer and the system has to find alternative
paths. We check this scaling behavior by appropriately rescaling

the axes in Fig. 3. The curves corresponding to different α values
indeed all collapse onto a unique scaling function. Similar col-
lapse is observed for the OR, AND, and RAN rules and for dif-
ferent parameters kd, kmin, and pin. In fact, two different cases of
distributions of inhibitory synapses, one in which they are chosen
randomly among all synapses and the other where certain ran-
domly chosen neurons have all outgoing synapses inhibitory, pro-
vide equivalent results. The learning dynamics shows therefore
universal properties, independent of the details of the system
or the specific task assigned.

The learning behavior is sensitive to the number of neurons
involved in the propagation of the signal and therefore depends
on the distance between input and output neurons and the level
of connectivity in the system. We then investigate the effect of the
parameters kd and kmin on the performance of the system. Fig. 5
shows the percentage of configurations learning the XOR rule for
different minimum values of the neuron out degree. Systems with
larger kmin have a larger average number of synapses per neuron,
producing a more branched network. The presence of several
alternative paths facilitates information transmission from the
inputs to the output site. However, the participation of more
branched synaptic paths in the learning process may delay
the time the system first gives the right answer. As expected
the performance of the system improves as the minimum out-
connectivity degree increases, with the asymptotic percentage
of success scaling as ∼k0.4min. The dependence of the learning per-
formance on the level of connectivity is confirmed by the analysis
of systems with different numbers of neurons N, the same out-
degree distribution, and the same set of parameters. We verify
that larger systems exhibit better performances. In larger systems,
in fact, the number of hubs, i.e., highly connected neurons, in-
creases improving the overall level of connectivity. Indeed, the
existence of complex patterns of activation has been recently re-
cognized as very important in linking together large scale net-
works in visual perceptual learning (22).

On the other hand, also the chemical distance between the in-
put and output sites has a very important role, as the number of
hidden layers in a perceptron. Indeed, as kd becomes larger
(Fig. 5), the length of each branch in a path involved in the learn-
ing process increases. As a consequence, the system needs a high-
er number of tests to first give the right answer and a lower
fraction of configurations learns the rule after the same number
of steps. The percentage of learning configurations after 106
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applications is found, as expected, to decrease as ∼k−0.3d , and si-
milar behavior is detected for the OR, AND, and RAN rules.

Learning Stability and Memory. The existence of systems that are
unable to learn, even after many learning steps, raises intriguing
questions about the learning dynamics. We question what hap-
pens when a second chance is given to the configurations failing
the right answer. We then restart the learning routine after im-
posing a small change in the initial configuration of voltages. This
small perturbation leads to about 25%more configurations learn-
ing the rule. The initial state of the system can therefore influence
the ability to learn, especially for complex rules such as XOR or
RAN. On the other hand, the analysis of the out-degree distribu-
tion in configurations that did and did not give the right answer
indicates that “dumb” configurations tend to have less highly con-
nected nodes than the “smart” ones. Namely, giving repeatedly
wrong positive answers leads to pruning of several synapses,
which affects in particular the highly connected neurons that have
a crucial role in identifying the right synaptic learning path.
Finally we test the ability of the configurations that do learn
to remember the right answer once the initial configuration is
changed. The memory performance of the system is expected
to depend on the intensity of the variation imposed, namely,
on the extension of the basin of the attraction of states leading
to the right answer. The system is able to recover the right answer
in more than 50% of the configurations if a very small perturba-
tion (of the order of 10−3) is applied to all neurons or else a larger
one (of the order of 10−2) to 10% of neurons. The system has a
different memory ability depending on the rule: Almost all con-
figurations remember OR, whereas typically 80% remember
AND and at most 70% the XOR rule.

Conclusions
In conclusion, we investigate the learning ability of a model able
to reproduce the critical avalanche activity as observed for
spontaneous activity in in vitro and in vivo cortical networks.
The ingredients of the model are close to most functional and
topological properties of real neuronal networks. The implemen-
ted learning dynamics is a cooperative mechanism where all neu-
rons contribute to select the right answer and negative feedback is
provided in a nonuniform way. Despite the complexity of the
model and the high number of degrees of freedom involved at
each step of the iteration, the system can learn successfully even
complex rules such as XORor a random rule with three inputs. In
fact, because the system acts in a critical state, the response to a
given input can be highly flexible, adapting more easily to differ-
ent rules. The analysis of the dependence of the performance of
the system on the average connectivity confirms that learning is a
truly collective process, where a high number of neurons may be
involved and the system learns more efficiently if more branched
paths are possible. The role of the plastic adaptation strength,
considered as a constant parameter in most studies, provides a
striking result: The neuronal network has a “universal” learning
dynamics; even complex rules can be learned provided that the
plastic adaptation is sufficiently slow. This important requirement
for plastic adaptation is confirmed by recent experimental results
(22) showing that the learning performance, in humans trained to
a specific visual task, improves when minimal changes occur in
the functionality network. Stronger modifications of the network
do not necessarily lead to better results.
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