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SUMMARY
1. Low birth weight is associated with an increased risk for development of hypertension. Our

laboratory utilizes a model of reduced uterine perfusion in the pregnant rat that results in
intrauterine growth restricted (IUGR) offspring that develop hypertension at a pre-pubertal
age. Although hypertension develops in both pre-pubertal male and female IUGR offspring,
only male IUGR offspring remain hypertensive after puberty. We previously reported that
bilateral renal denervation abolishes hypertension in adult male IUGR offspring indicating
an important role for the renal nerves in the maintenance of established IUGR-induced
hypertension. We also reported that ACE inhibition abolishes hypertension in adult male
IUGR offspring. However, activation of the renin angiotensin system does not occur in male
IUGR offspring until after puberty, or after development of established IUGR-induced
hypertension. Therefore, the mechanisms involved in the development of IUGR-induced
hypertension may differ from those involved in the maintenance of established IUGR-
induced hypertension. Thus, the purpose of this study was to determine whether the renal
nerves play a causative role in the early development of IUGR-induced hypertension in pre-
pubertal IUGR offspring.

2. IUGR and control offspring were subjected to bilateral renal denervation or sham
denervation at 4 weeks of age. Mean arterial pressure was determined at 6 weeks of age in
conscious chronically instrumented animals. Adequacy of renal denervation was verified
by renal norepinephrine content.

3. Whereas renal denervation had no effect on mean arterial pressure in control offspring (103
±2 versus 102±3 mmHg; sham versus denervated), it reduced blood pressure in growth
restricted offspring (114±3 versus 104±1 mmHg; P<0.01, sham versus denervated). Renal
norepinephrine content was significantly reduced in denervated animals relative to sham
operated.

4. Thus, these data indicate a role for the renal nerves in the etiology of IUGR-induced
hypertension and suggest the renal nerves may participate in the early development of
hypertension in IUGR offspring, in addition, to established hypertension observed in adult
male IUGR offspring.
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INTRODUCTION
Hypertension includes both a genetic and an environmental component. Recent
epidemiological studies report an inverse relationship between low birth weight (LBW) and
hypertension (1–3), suggesting that environmental influences leading to hypertension may
begin during fetal development (4–5). Although LBW is not a pre-requisite for raised blood
pressure (6,7), it does serve as a marker for intrauterine insult (8). LBW, defined as a birth
weight below the 10th percentile for a given gestational age (6,7), is due to fetal, placental and/
or maternal factors (10) that limit nutrient and oxygen supply to the fetus resulting in
intrauterine growth restriction (IUGR) and small-for-gestational-age newborns (10,11).
Animal models of IUGR support the association between LBW and hypertension (12–16). In
addition, animal models of IUGR, induced by either maternal nutrition deficiency during
pregnancy (14,16,17) or placental insufficiency (12,15,18), demonstrate that initiation of an
adverse fetal environment during a critical period of fetal development affects organ
development. The kidney is an example of one organ affected by an adverse fetal environment,
as reductions in nephron number are associated with hypertension in several animal models of
IUGR (14–17). Because of the importance of the kidneys in the long-term control of blood
pressure (19), adverse conditions in utero may result in alterations in renal function that lead
to hypertension in adult life. However, the exact mechanisms linking LBW, abnormal renal
function and hypertension are unknown.

As IUGR within the Western world is more likely due to placental insufficiency than maternal
undernutrition (20), our studies utilize a unique model of IUGR induced by reduced uterine
perfusion. In this model, reduced uterine perfusion initiated at day 14 of gestation in the rat
results in IUGR offspring predisposed to the development of hypertension (12). Furthermore,
in this model of IUGR, bilateral renal denervation in adult animals completely abolishes
established hypertension in adult male IUGR offspring (21). This finding is consistent with
reports in both human subjects (22,23) and experimental animals (24,25) suggesting that
activation of the sympathetic nervous system (SNS) may play an important role in the
pathogenesis of hypertension induced by IUGR. It is also relevant that increased renal
sympathetic activity is a common finding in human primary hypertension (26–28). Although
renal denervation at 10 weeks of age clearly abolishes the established hypertension in this
model of IUGR, it is not clear whether the renal nerves play a critical role in the early onset of
hypertension. The mechanisms that initiate hypertension in this model of IUGR may differ
from mechanisms involved in the maintenance of established hypertension. Sex differences
are observed in this model of IUGR hypertension as pre-pubertal male and female IUGR
offspring develop hypertension, but only adult male IUGR offspring remain hypertensive
(12). Hypertension in adult male IUGR offspring involves activation of the intra-renal renin
angiotensin system (RAS) (29). However, activation of the RAS does not occur until after
puberty in male IUGR offspring suggesting other factor involvement in the development of
hypertension in IUGR offspring. Thus, the purpose of this study was to determine whether the
renal nerves play a contributory role in the early development of IUGR-induced hypertension.

METHODS
Animals

All experimental procedures were in accordance with National Institutes of Health guidelines
with approval by the Animal Care and Use Committee at the University of Mississippi Medical
Center. Rats were housed in a temperature-controlled room (23°C) with a 12:12 hour light/
dark cycle with food and water available ad libitum. Timed pregnant Sprague Dawley rats were
purchased from Harlan Inc. (Indianapolis, IN). At day 14 of gestation, rats destined for reduced
uterine perfusion were clipped as described below. All dams delivered at full term and were
size matched at birth with equal distribution of male and female offspring per dam. Litters were
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culled to 8 pups per dam to ensure equal access to nutrients for offspring of every litter.
Offspring were weaned at 3 weeks of age. At 4 weeks of age, male control and male IUGR
offspring were randomly assigned to undergo either bilateral renal denervation (RDNX) or
sham denervation. Only male IUGR offspring were used in this study as only male offspring
of reduced uterine perfusion dams develop hypertension that persists into adulthood (9). Mean
arterial pressure (MAP) was measured 2 weeks after RNDX, at 6 weeks of age. Male offspring
from 5 control pregnant rat and 8 reduced uterine perfusion pregnant rat were randomly
assigned into 4 groups: control sham (n=8), control RDNX (n=7), IUGR sham (n=9), and IUGR
RDNX (n=8).

Reduced Uterine Perfusion in the Pregnant Rat—IUGR was induced by reducing
placental perfusion. In short, rats were anesthetized with isoflurane and silver clips were slipped
around the lower abdominal aorta and on both branches of the ovarian arteries at day 14 of
gestation (12).

Measure of Arterial Pressure in Conscious Rats—During isoflurane anesthesia, rats
were surgically instrumented with a carotid arterial catheter (PE 50 tubing) for blood pressure
monitoring. Following a recovery period of two days, rats acclimated to restraint were placed
in modified restraining cages with arterial pressure monitored with a pressure transducer
connected to a data acquisition kit (DATAQ Instruments, Inc., Akron, OH) and computer for
continuous recording. After a one-hour equilibration period, 2-twenty minute pressure
determinations were obtained. All pressure measurements were made during mid morning
hours.

Bilateral Renal Denervation—Bilateral renal denervation was achieved by stripping
visible nerves and connective tissue from the renal arteries and veins and subsequent painting
of these vessels with 10% phenol in alcohol (21). Sham-operated rats underwent a similar
incision, but renal nerves were left intact.

Renal Norepinephrine Content—Completeness of renal denervation was determined by
measurement of renal norepinephrine content by electrochemical detection (21).

Measure of plasma renin activity—Renin activity in plasma collected following
decapitation was measured by radioimmunoassay (RIA) (30).

Statistical Analyses—Graph pad PRISM version 4 was used for all statistical analyses. For
comparison made between groups, ANOVA, with adjustments for multiple comparisons was
used. A value of P<0.05 was considered statistically significant.

RESULTS
Birth and Body weight

Weight at birth was significantly reduced in offspring from reduced uterine perfusion dams as
compared to offspring from control dams (Table I). However, as summarized in Table I, body
weight did not differ between IUGR and control offspring by 6 weeks of age. In addition, body
weight at 6 weeks of age did not differ upon comparison of intact offspring to denervated
offspring from either control or reduced uterine perfusion pregnant rats. Therefore, bilateral
renal denervation had no effect on weight gain (Table I). Kidney weight (data not shown) and
kidney weight normalized to body weight (Table 1) also did not differ upon comparison of
control to IUGR offspring at 6 weeks of age, regardless of whether animals underwent sham
or bilateral renal denervation
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Effect of Bilateral Renal Denervation on Mean Arterial Pressure
As illustrated in Figure 1, MAP was significantly elevated in intact IUGR offspring as
compared to intact control offspring at 6 weeks of age. MAP was significantly lower in
denervated IUGR offspring as compared to their intact counterparts (104±1 vs. 113±2 mmHg,
IUGR RDNX vs. IUGR sham, respectively). Further, there were no significant differences in
MAP between denervated IUGR offspring and either sham control or denervated control
offspring (101±2 vs. 103±2 mmHg; control sham vs. control RDNX, respectively). Thus, early
bilateral renal denervation abolished hypertension at pre-pubertal age.

Verification of Renal Denervation
Renal norepinephrine content as shown in Figure 2 was determined to verify completeness of
renal denervation. Renal norepinephrine content was markedly reduced following bilateral
renal denervation in both control and IUGR offspring as compared to their intact counterparts
at 6 weeks (control: 193±12 vs. 31±6 ng/g and IUGR: 301±22 vs. 22±4 ng/g, sham vs. RDNX,
respectively) Additionally, the hypertension in pre-pubertal IUGR offspring was associated
with a significant increase in renal norepinephrine content at 6 weeks of age. (Figure 2).

Plasma Renin Activity
There were no differences in plasma renin activity (PRA) between IUGR offspring and intact
control offspring (6.2±1.0 vs. 4.7±0.3 AI/L/Hr, IUGR vs. control, respectively). Bilateral renal
denervation did not affects PRA (4.6±0.2 and 3.5±1.9 AI/L/Hr; IUGR vs. control respectively).

DISCUSSION
One regulatory system that may be altered during fetal programming is the SNS. Activation
of the SNS is observed in LBW humans and in animal models of IUGR (22–25,31–35). Since
the renal nerves influence fetal renal development (36), exposure to an elevated level of SNS
activity during the critical period of renal development may impair kidney development and
affect the kidney’s normal ability to regulate blood pressure. Our laboratory has previously
reported that an adverse fetal environment due to placental insufficiency results in IUGR
offspring predisposed to development of hypertension (12). Although hypertension develops
in both pre-pubertal male and female IUGR offspring, only male IUGR offspring remain
hypertensive after puberty (12). A role for SNS activation is suggested as bilateral renal
denervation abolishes hypertension in post-pubertal male IUGR offspring (21). Thus, the renal
nerves contribute to the maintenance of established hypertension in adulthood in this model of
IUGR (21). However, the temporal role of the renal nerves in the development of hypertension
in IUGR offspring remains unknown. Therefore, the purpose of this study was to determine
whether the renal nerves play a role in the early onset of hypertension, as well as the
maintenance of hypertension in adulthood in this model of IUGR.

The present study demonstrates that the renal nerves play an important causative role in the
initiation of hypertension observed in this model of IUGR induced hypertension. Early renal
denervation had no effect on arterial pressure in control offspring, yet reduced or normalized
arterial pressure in IUGR offspring relative to control. Renal norepinephrine content was
increased in intact IUGR offspring as compared to intact control offspring at 6 weeks of age.
Thus, increased renal sympathetic innervation may be present in pre-pubertal IUGR offspring.
Animal studies suggest that chronic exposure to hypoxia during development can serve as a
potent stimulator of hyperinnervation (37,38) and long-lasting alterations in renal nerve activity
(35). Thus, reduced uterine perfusion and subsequent fetal hypoxia may induce altered renal
nerve development in IUGR offspring resulting in hypertension.
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Sympathetic activation, as suggested by increased plasma levels of catecholamines, has been
reported in animal models of IUGR induced by placental insufficiency (24,25). Determination
of sympathetic activity has not been made in the present model of IUGR. However, based on
the MAP responses to renal denervation, we hypothesize that sympathetic activation also
occurs in this model of IUGR and includes increased sympathetic outflow to the kidney. Thus,
an important question in future studies will be to determine the stimulus for
sympathoexcitation. As indicated above, hypoxia is a potent stimulator of hyperinnervation
(34,37,38). Hypoxia during fetal development may also serve as a stimulus for increased renal
sympathetic outflow. Hypoxia can increase renal sympathetic activation by stimulating
tyrosine hydroxylase, the rate-limiting enzyme in the synthesis of catecholamines (39,40). The
gene for tyrosine hydroxylase is regulated by hypoxia-inducible factor-1 (HIF-1), a
transcription factor involved in oxygen and energy homeostasis (41). Thus, activation of
tyrosine hydroxylase in response to hypoxia (42,43) may lead to alterations in renal
norepinephrine synthesis resulting in increased norepinephrine release from nerve terminals.

Increased sympathetic outflow including sustained increases in renal sympathetic nerve
activity can also occur as a result of the actions of angiotensin II on the central nervous system
(44). In the low protein model of fetal programming, marked increases in MAP are associated
with increased expression of angiotensin II receptors in areas of the brain involved in
cardiovascular regulation (45). In addition, intracerebroventricular administration of an
angiotensin-converting enzyme inhibitor or an AT1 specific antagonist significantly reduces
MAP in low protein offspring (45). Therefore, it is possible that the central actions of
angiotensin are involved in the fetal programming of hypertension and may serve as a stimulus
for SNS activation.

In the present study, PRA did not differ between pre-pubertal control and IUGR offspring.
Bilateral renal denervation had no effect on PRA in either control or IUGR offspring. Intra-
renal levels of the RAS also do not differ at this age in this model of IUGR (29). However, in
models of programming induced by protein restriction during gestation, activation of the intra-
renal RAS is observed as early as 4 weeks of age (46,47). Furthermore, RAS blockade abolishes
hypertension in protein restriction models of programming in both pre-pubertal (48,49) and in
adult low protein offspring (50) suggesting the RAS plays a critical role in both the development
and maintenance of established hypertension in this model of hypertension programmed by
prenatal insult. Although we do not observe activation of the RAS in pre-pubertal IUGR
offspring, intra-renal levels of the RAS are activated in post-pubertal adult male IUGR
offspring from reduced uterine perfusion dams (29). Furthermore, ACE inhibition abolishes
hypertension in post-pubertal adult male IUGR offspring (51). Established hypertension in
adult male IUGR offspring is also associated with a two-fold higher level of plasma testosterone
and castration abolishes hypertension in adult male IUGR offspring (51). Thus, other
mechanisms, such as the RAS and testosterone, in addition to the renal nerves, contribute to
the established phase of hypertension in this model of fetal programming induced by placental
insufficiency.

Several animal models of programmed hypertension demonstrate that a prenatal insult can
impair the renal sympathetic nerves, thus resulting in permanent effects on renal development
and renal function leading to hypertension. (33–35). Whether alterations in renal morphology
and histology are present in this model of IUGR is unknown. Renal weight when normalized
to body weight did not differ in this study. However, we previously reported a reduction in
kidney weight was present in IUGR offspring at 4 weeks of age (12). A reduction in nephron
number is observed in models of IUGR induced by placental insufficiency in the rat (15,18)
and is associated with increased proteinuria (18). Maternal protein restriction in the rat is also
associated with a reduction in nephron number (14,16,17) and proteinuria (50). Thus, a renal
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mechanism may contribute to increased blood pressure in this model of IUGR-induced
hypertension.

The fetal environment is an important factor in fetal development and contributes to postnatal
consequences. The present study demonstrates that the renal nerves play a causative role in the
early onset of hypertension observed in a model of IUGR-induced hypertension induced by
placental insufficiency. Thus, activation of the SNS may be a mechanism by which placental
insufficiency programs IUGR-induced hypertension. Although established hypertension
involves interaction of other regulatory systems in addition to the renal nerves, the renal nerves
play a critical role in the early onset of hypertension in pre-pubertal IUGR offspring.

Abbreviations

LBW low birth weight

IUGR intrauterine growth restriction

RAS renin angiotensin system

RDNX bilateral renal denervation

SNS sympathetic nervous system

MAP mean arterial pressure

RAS renin angiotensin system
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Figure 1.
Effect of renal denervation on mean arterial pressure (MAP) in a rat model of intrauterine
growth restriction (IUGR) induced by reduced uterine perfusion. MAP was measured at 6
weeks of age in conscious chronically instrumented animals that underwent either sham (Sham)
or bilateral renal denervation (RDNX) at 4 weeks of age. * P<0.05 vs. control sham, † P<0.05
vs. IUGR sham., All data are expressed as mean ± SEM.
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Figure 2.
Renal norepinephrine content in control or intrauterine growth restricted (IUGR) offspring that
underwent either sham (Sham) or bilateral renal denervation (RDNX) at 4 weeks of age
followed by measure of mean arterial pressure and collection of kidneys for determination of
renal norepinephrine content at 6 weeks of age. * P<0.05 vs. control sham, † P<0.05 vs. sham
counterpart. All data are expressed as mean ± SEM.
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