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Thehalteres ofdipteran insects are essential sensoryorgans forflight
control. They are believed to detect Coriolis and other inertial forces
associatedwith body rotationduringflight. Flies use this information
for rapidflight control.Weshowthat theprimaryafferentneuronsof
thehaltere’smechanoreceptors respondselectivelywithhigh tempo-
ral precision to multiple stimulus features. Although we are able to
identify many stimulus features contributing to the response using
principal component analysis, predictive models using only two fea-
tures, common across the cell population, capture most of the cells’
encoding activity. However, different sensitivity to these two fea-
turespermitseachcell to respondtosinusoidal stimuliwithadifferent
preferredphase. This feature similarity, combinedwith diversephase
encoding, allows the haltere to transmit information at a high rate
about numerous inertial forces, including Coriolis forces.
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Rapid input from mechanosensors is a crucial component of
flight control in many insects (1). Behavioral studies have

demonstrated that the information transmitted by mechanor-
eceptors, particularly by gyroscopic organs like dipteran halteres (2,
3) and lepidopteran antennae (4), is necessary for stable flight. In
particular, the kinematics of dipteran halteres allow them to expe-
rience Coriolis forces resulting from body rotations (3, 5), and thus
potentially to act as gyroscopic organs for flight control (6, 7). The
base of the haltere is equipped with a rich array of dome-shaped
campaniform sensilla that occur in patches on thedorsal and ventral
surfaces (8, 9). Of these fields, three [dF1, dF3, and vF1, in the
terminologyofGnatzy et al. (9)] are orientedparallel to the longaxis
of the haltere, and one field (dF2) and the large chordotonal organ
are oriented orthogonal to the long axis. The directional orientation
(8, 9) and selectivity (10) of the fields suggest that the haltere can
detect forcesmoving inmultiple directions using the diverse patches
of campaniform sensilla.
Although kinematic (5) and behavioral (6) evidence suggests that

the haltere’s primary function is to encode Coriolis forces that result
frombody rotations duringflight, little is known about the response of
primary afferent neurons to halteremotions. The diverse orientations
(9) and directional sensitivity (10) of the campaniform sensilla suggest
that they could employ a variety of encoding strategies to capture
different aspects of complex mechanical stimuli, but a particular
strategy remains tobe shown.Forexample, thedifferent campaniform
sensilla could be tuned to different frequencies of stimuli, responding
best to specific kinds of motion. Alternatively, the sensilla could be
broadly tuned to respond to a range of frequencies, and the stimuli
that activate themwould befilteredby the structure of theorgan itself.
The utility of these potential coding strategies for producing con-
trolled flight behavior remains an open question.
In previous research (10), we used step and sinusoid stimuli to

describe the latency and frequency responses of dipteran halteres.
However, stimulating the halteres with such simple patterns permits
only a linear analysis of their encoding properties. Here, we examine
nonlinear characteristics using band-limited white noise stimuli (11).
We focused on the feature selectivity and information processing
capabilities of these neurons. These encoding characteristics are
particularly important, because at least some of the information can

be transmitted directly to a motor neuron via an electrotonic gap
junction (12), and thus is not further refined in the central nervous
system before affecting behavior (13, 14). By characterizing the
encoding properties, we are able to examine neural information
processing at the earliest sensory and immediate premotor levels
simultaneously. In doing so, we reveal the mechanisms by which
neurons convert complex stimuli into a train of spikes that can be
immediately used to control a complex behavior.

Results
Haltere Afferents Show Diverse Responses to Complex Stimuli with
High Timing Precision and Short Latency.Our goal was to determine
which components of a complex time-varying stimulus drive the
haltere primary afferents to fire, and thereby to infer the motion
information that spikes transmit to the brain and the downstream
motor neurons.
When halteres are mechanically driven by simple motion stimuli

(steps and sine waves), haltere primary afferents show highly tem-
porally precise spiking responses with short latencies (10). Here, we
measured these encoding properties in response to complex stimuli.
We evaluated the spike timing jitter by repeating a 10-s long seg-
mentof awhite noise randommotion stimulus at least 20 times; cells
with fewer than 50 defined firing events (15) were not analyzed. The
spike responses to these repeated trials, illustrated in Fig. 1, are
highly repeatable,with small variations, from trial to trial. Themean
temporal jitter,measured as theSDof the spike arrival time for each
discrete event, averaged over events, for the 18 analyzed cells was
0.81 ± 0.15 ms (median = 0.78 ms), consistent with previous esti-
mates (10). This degree of temporal precision is very high relative to
the natural wing-beat period of 25 ms, also the period of oscillation
of the halteres.
To identify the specific patterns of haltere motion that cause

spiking, we used reverse correlationmethods to analyze the structure
of spike-triggering stimuli.We collected the set of stimulus segments
immediately preceding each spike (Fig. 2A); we used segments 40ms
in length as for times earlier than 40 ms, the stimulus did not have a
net effect on the arrival of a spike. The mean of this set of stimulus
segments is the spike-triggered average (STA) (Fig. 2B). The STA
provides a first-order estimate of what feature of themotion stimulus
causes the cell to fire; it is the optimal linear estimator of the stimulus
that results in a spike (16).Weused the STA to estimate the response
latency by finding the time at which the STA reached its maximum
excursion from zero (i.e., the largest peak or trough of the STA). The
mean latency of the 36 recorded cells was 3.02 ± 2.8 ms, again con-
sistent with previous measurements (10). As a second measure of
latency, we found the point at which the SD of the STA reached a
minimal value.Themean timeof this reduction invariancewas4.44±
3.8msbefore the spike.Todetermine themagnitudeof the reduction
in variance, we compared the minimum variance with that of the
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variance at the start of our timewindow (40ms before the spike). The
mean percentage reduction in variance was 51 ± 9% (Fig. 2B).
Given that the STA is an estimate of the feature in the stimulus

to which a cell is selective, we compared the feature selectivity of
all cells by overlaying their STAs (Fig. 2D). The STAs of this
population of cells are diverse in their time courses (both time to
peak and width of peak), their amplitudes, and even their signs.

This first-order analysis of the response suggests that haltere pri-
mary afferent neurons are selective for different stimulus features.

All Cells’ Responses Contain Two Components that Resemble a Single
Feature and Its Derivative. Given this diversity of average spike-
triggering features, we sought to determine if there was some
common structure in the neuronal responses using a more sen-
sitive characterization.Examination of the second-ordermoments
through principal component analysis of the spike-triggering
stimuli allows one to determinemultiple stimulus components that
are associated with spiking activity (17–20). Along with the
ensemble of stimulus segments associated with spikes, we also
sampled 40-ms segments from the stimulus at random to create a
collection of stimuli that were unrelated to spiking (Fig. 2C). We
refer to this random stimulus set as the “prior ensemble”; this set is
used to sample the statistics of the stimulus itself, independent of
the neural responses. We then computed the covariance matrices
of the spike-triggering and random stimulus sets (Fig. 3 A and B)
and found the difference between them (Fig. 3C). Diagonalizing
the resulting matrix yields a set of eigenmodes characterizing the
stimulus features that best capture what it is about the stimulus
that leads to a spike.
These eigenmodes allow one to reparametrize the stimulus in

terms of features that are relevant to spiking by reexpressing each
stimulus sample in terms of its similarity to each eigenmode. The
corresponding eigenvalues quantify how important each stimulus
component is for spiking by measuring the difference in its variance
in the sets of spiking and random stimuli. For example, if a given
component is irrelevant for spiking, its distribution in the spike-
triggered and prior ensembles will be identical, the covariance
matrices will cancel out, and the corresponding covariance will be
zero. If a given feature is highly constrained in the spike-triggering
ensemble, for instance, if the system must cross threshold with
respect to a given stimulus component to spike, the variance in the
spike-triggeredensemble (STE) for that componentwill be less than
in the prior, and that component will be associated with a significant
negative eigenvalue. Thus, examining the eigenvalues of the dia-
gonalized matrix allows one to identify a smaller set of stimulus
descriptors (relative to the original 40-ms time sequence) required
to capture the input/output properties of the system.We found that
most eigenvalues of the diagonalized matrix are close to zero but
that a small number are significantly different from zero (Fig. 3D).
In Fig. 3E, we show the relevant eigenmodes or features corre-
sponding to the most significant eigenvalues for an example cell.
In all cells, we noted that a pair of the most significant eigen-

vectors had the property that one was close to the derivative of the
other (20). In 30 of the 36 cells, the eigenvector corresponding to the
second-largest negative eigenvalue was close to the derivative of the
eigenvector corresponding to the largest negative eigenvalue (Fig. 3
D and E). Of the remaining 6 cells, 4 showed a feature-derivative
relationship between the largest negative and largest positive
eigenvectors; 1 had such a relationship between the second-largest
positive and largest positive eigenvectors; and in 1 cell, the largest
negative eigenvector resembled the derivative of the second-largest
negative eigenvector.

MostCellsAreSelective inMultipleStimulusDimensions.The preceding
analysis allows us to represent the stimulus using only the few
stimulus components that are relevant to the cell’s response. For
each cell, we plotted each stimulus segment in terms of its sim-
ilarity to (i.e., linear projection onto) the derivative pair features
f1, f2 (Fig. 4 A and B). Neural selectivity for motions that are
similar to either of the features can be seen by comparing the
distribution of that component in the spike-triggering stimuli with
that in the prior ensemble. A cell was selective to a particular
stimulus feature if the distribution of spike-triggering stimuli (Fig.
4 C andD, red dots) was very different from the distribution of the
randomly chosen stimuli (Fig. 4 C and D, black dots). We see that
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Fig. 1. (A) Photograph of the crane fly Holorusia hespera. Black pointers
indicate the tips of the large halteres. (Scale bar: ∼5 mm.) (B) Scanning
electron micrograph of halteres of Tipula showing fields of campaniform
sensilla and their approximate orientation [according to Fox and Daniel
(10)]. (Scale bar: 10 μm.) (C) Haltere primary afferent responses to stimuli are
highly repeatable with low jitter. Stimulus (Top), spike response (Middle),
and raster plot (Bottom) of a haltere primary afferent neuron’s response to
repeated presentations of the same segment of white noise.
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Fig. 2. First-order analysis of white noise data. (A) Raw spike responses
showing examples of stimulus segments included in the STE (pink, stimuli
preceding each spike) and the prior ensemble (gray, stimuli preceding ran-
domly chosen points). (B) STA ± SD. (C) Average of prior ensemble ± SD. (D)
STAs for all 36 cells from 40 ms before to 10 ms after the spike. The color of
each STA reflects the cell’s position in the scheme shown in Fig. 7B.
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some cells are primarily selective only in a single dimension (Fig.
4C, 7 cells), whereas others are sharply selective in two dimensions
(Fig. 4D, 29 cells).

The Encoding of All Haltere Neurons Can Be Described by a Single Pair
of Population Features and a Phase. Each cell had a distinct STA
and a unique set of derivative pair features (f1

i, f2
i) (indexed by

the cell label i) that described its selectivity. To examine un-
derlying similarities among these features, we used singular value
decomposition to analyze the set of features comprising the
derivative pairs collected from individual cells. Because the co-
variance analysis described previously exposed the unifying fea-
tures in each cell’s set of spike-triggering stimuli, singular value
decomposition of the set of individual cell features allows us to
find feature selectivity that is common among the entire pop-
ulation of cells. The singular values of the nonsquare matrix
constructed from this list of features revealed that two dominant
“population features,” f1

(p) and f2
(p) (Fig. 5A), account for the

majority (57%) of the variance in the feature set. These pop-
ulation features also form a derivative pair (Fig. 5B). Repre-
senting each cell’s individual features in the 2D plane described
by the population features (Fig. 5C) shows that most cell features
(f1

i, f2
i) are indeed well described as a linear combination of f1

(p)

and f2
(p): When the population feature pair accounts for the

majority of the structure of the original pair, the length of the
vector in the [f1

(p), f2
(p)] plane is close to 1 (points falling inside the

shaded area; Materials and Methods). Thus, the main difference
between the features that drive individual cells is captured by the
specific linear combination af1

(p) + bf2
(p), which approximates a

given fi. For each cell, the coefficients (a, b) describe different
points around the unit circle, and can thus be reduced to a single
number, the phase on the unit circle.

These Population Features Capture Much of the Information Captured
by the Individual Cells. From the individual cell features and the
population features, we constructed low-dimensional models that
allowed us to predict spiking responses to arbitrary stimuli. These
models also allowed us to compute the mutual information—a
measure of correlation between stimulus and response—captured
by both each cell’s measured features and the population features.
The spike-rate predictions constructed using the derivative pair
eigenvectors all predicted spike events accurately when given a
unique arbitrary white noise stimulus (Fig. 6). These models cap-
tured >99% of the recorded spiking events, with falsely predicted
events comprising 15% of the predicted spikes. Approximately
half of these falsely predicted events occurred less than 20ms after
a correctly predicted firing event, suggesting that cell refractori-
ness (not included in the model) suppresses some bursting.
We used a directmethod of estimatingmutual information (21) in

the groupof 25 cells forwhichwehadobtaineda sufficientnumberof
responses to repeated stimuli. Eight of these cells were included in
the groupof 36 cells used inour covariance analysis.Direct estimates
of information rate found an average mutual information of 4.42 ±
1.79 bits per spike for the 25 cells measured. 2D models using each
cell’s individual features captured, on average, 3.34 ± 0.97 bits per
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Fig. 3. Covariance analysis of white noise data.
(A) Covariance matrix of the STE. (B) Covariance
matrix of the prior ensemble. (C) Overall cova-
riance matrix (A − B). (D) All eigenvalues of the
subtracted covariance matrix; a small number are
significantly different from zero. The two largest
values are labeled in color. (E) Eigenvectors cor-
responding to the two largest eigenvalues, rep-
resenting the most relevant stimulus features.
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spike (75% of the measured information). The population features
captured an average of 2.90 ± 1.08 bits per spike (66% of the
measured information). Models based on the population features
capture, on average, 86 ± 14% of the information captured by
models based on the derivative pairs.

Predictions of Responses to Sine Wave Stimuli Show a Broad Range of
Phase Responses.Given that the feature selectivity of each cell can
be described as a unique combination of two common features,
how might these particular phases in the [f1

(p), f2
(p)] plane allow

the cells to respond differently to simple stimuli? Using the
derivative pair eigenvectors and decision functions of each cell,
we predicted the responses to sine wave stimuli at wing-beat and
twice wing-beat frequencies and at several stimulus amplitudes.
In each cell, we calculated the mean phase of the peak firing rate
and estimated the cell’s phase precision by measuring the width
at half of the maximum firing rate (Fig. 7A). We divided the cells
into four groups based on the projection of the dominant feature
onto the [f1

(p), f2
(p)] plane (Fig. 7B). Each cell’s peak firing rate

occurred at a unique phase, and the population of cells from

which we recorded contained cells whose peak phases spanned
nearly the entire cycle (Fig. 7C). Although the preferred phase of
individual cells changed slightly with stimulus frequency and
amplitude, the distribution of phases across the sine wave cycle
did not. For many cells, the preferred phase was correlated with
the phase relationship of its derivative pair features. For exam-
ple, if the projection of the cell’s dominant feature onto f1

(p) was
positive and its projection onto f2

(p) was negative, the predicted
response to sine waves was greatest at an earlier phase (Fig. 7C,
green dots).

Discussion
By stimulating the haltere with white noise motion while record-
ing from its primary afferent mechanoreceptors, we were able to
determine the feature selectivity of these crucial flight-control
organs. Haltere primary afferent mechanoreceptors are able to
encode stimuli over a broad range of frequencies using a small
number of stimulus dimensions and transmit this information at a
high rate to the central nervous system. The similarities of these
two stimulus dimensions across all cells, and the ability of the two
population features to capture a large fraction of the information
contained in the cells’ individual features, is evidence that there is
a single encoding strategy employed by haltere neurons. Fur-
thermore, each cell’s dominant features are sufficient to predict
spiking activity in response to complex stimuli with relatively high
accuracy, which is a significant improvement over previous linear
analyses of haltere function (10).

Haltere Afferents Are Selective in Multiple Dimensions.Although the
STA, as measured in terms of haltere position, reflects some
general properties of the stimuli that trigger spiking, it does not
capture the full dimensionality of the response. The stimulus
contains numerous higher order modes (e.g., velocity, accel-
eration, impulse), and we have used principal components an-
alysis to find those aspects of the stimulus that are most relevant
to spiking activity. Although a few cells were primarily selective
for a single dimension of the stimulus (Fig. 4 A and C), a majority
of cells showed very sharp thresholds in two stimulus dimensions
(Fig. 4 B and D). In many of these cells, the second feature
strongly resembled the derivative of the first feature. The pro-
jection of an arbitrary stimulus onto these features and the cell’s
nonlinear decision function could be combined to create a rea-
sonably accurate reconstruction of the cell’s firing rate (Fig. 6),
suggesting that these two features are sufficient to capture the
cell’s encoding activity.

Encoding Is Similar Across All Cells. The advantage of considering
each neuron’s response selectivity in multiple dimensions is
evident from our analysis of the population. Despite the broad
range of forms in the STAs, we found, using singular value
decomposition of the two leading features from each cell, that
two population features captured most of the feature selectivity
of the entire group of cells. Projections of the individual cells’
leading features onto the population features (Fig. 5C) show that
the feature selectivity of most cells can be described by a linear
combination of these two features. The population features
capture an average of 86% of the information captured by the
cell’s individual derivative pair eigenvectors, suggesting that most
haltere afferents share selectivity to the same two stimulus
dimensions but with differing weights. We were able to relate
these weights to the neurons’ preferred phase of response to a
sinusoidal stimulus (Fig. 7 B and C).

Similarity of Encoding Provides Further Evidence of Structural Rather
Than Neural Specialization. Previous studies on the encoding prop-
erties of halteres found latency, phase, and bandwidth among
haltere primary afferents that suggested the potential encoding of
many different forces, including Coriolis forces (10). The present
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study supports this hypothesis by exploring the potential responses
of halteres with white noise and finding only minor differences
in their responses, suggesting that all campaniform sensilla share a
multidimensional feature selectivity that would permit detection
of diverse forces. Similarities between the neural responses of
haltere primary afferents and the homologous campaniform sen-
silla on the wings of the fly (22) suggest that there may be a
generalized encoding strategy used by all flight-associated cam-
paniform sensilla.

APopulationofCampaniformSensillawithaCommonEncodingStrategy
and Diverse Phase Sensitivity Permits Detection of Numerous Forces,
Including Coriolis Forces.Given that the main difference in encoding
between neurons is the phase of the leading features, we
hypothesize that the large population of primary afferents both
increases the acuity of strain sensing in the haltere and opens the
possibility for more complex coincidence-detection algorithms at
higher levels.
The phase shift between neurons of the haltere could arise from

two sources: first, the cells may simply be experiencing the features
of the stimulus at slightly different times because of their positions
on the haltere (23), or, second, there could be some intrinsic delay
in spike generation that differs from cell to cell. Although the first
scenario seems more likely, either case results in a population in
which spatiotemporal resolution is increased as a result of a larger
number of campaniform sensilla.
Although an array of sensory cells could serve a functional

purpose in any mechanoreceptive system, the haltere’s function as
a gyroscopic organ begs the question: How might an array of
similar sensors with distinct preferred phases work to encode
Coriolis forces? The differential phase encoding among the
campaniforms allows the possibility of higher level processing to
address the fundamental problem of detecting small out-of-plane
motions (attributable to Coriolis forces) among the background of
the large in-plane signal caused by the haltere’s oscillation during
flight (3, 24). The haltere oscillates in a sinusoidal or triangle-wave
pattern (5, 24), and rotations of the body introduce small devia-
tions to this pattern in the plane orthogonal to the axis of oscil-
lation. These motions can change the shape of the haltere’s tip
trajectory from a simple line into an ellipse or a figure-of-eight,
depending on the plane of rotation (24). The phase of the wing
stroke at which peak strain occurs will shift depending on the
magnitude of the body rotation. Given that each haltere neuron
responds to a sinusoid stimulus at a preferred phase, the identity
of the first neurons activated by the stimulus will also vary with the
magnitude of the body rotation. The differential activation of
specific campaniform sensilla in response to various forces, com-
bined with high spike-timing precision (10), would allow the
campaniform array to detect complex stimuli accurately while
executing complex flight behavior.

Materials and Methods
Preparation and Recording. All recordings were performed on adult female
crane flies (Holorusia hespera) caught in Snohomish and King Counties in
Washington State during July and August 2008. Crane flies were kept at 4 °C
in sealed individual containers with a moist paper towel until they were
removed for an experiment. In preparation for recording, legs and wings
were removed and the dorsal aspects of the thorax and abdomen were
attachedwith dental wax to ametal rodmounted on amicromanipulator.We
dissected the lateral aspect of the thorax by removing the anepisternum,
anepimeron, and much of the thoracic musculature to expose the haltere
nerve. A hypodermic syringe needle was bent into a hook, attached to a
micromanipulator, and placed underneath the haltere nerve to stabilize it for
intracellular recordings. This syringe also delivered insect saline [150 mM
NaCl, 3 mM CaCl2, 3 mM KCl, 10 mM N-Tris(hydroxymethyl)methyl-2-amino-
ethanesulfonic acid buffer, and 25 mM sucrose, pH 6.5–7.5] (25) to the
preparation. We used quartz glass microelectrodes with a resistance of 30–
150 MΩ that were made with a Sutter Instruments P-2000 puller and filled
with 1 M KCl to record action potentials from single afferent axons in the

haltere nerve. Given the large number of campaniform sensilla and small
numbers of other sensors (chordotonal organs or sensory hairs) (26), we
assume that we are recording from campaniform sensilla afferents. Mem-
brane voltages were amplified with a Neuroprobe 1600 amplifier (AM Sys-
tems), converted to audio signals, and recorded using a data acquisition
board (USB-6251; National Instruments) at 10 kHz, which was sufficiently fast
to capture the times of spike occurrences to 0.1-ms accuracy.

Becausepreliminary recordings showedthathaltereprimaryafferentswere
not spontaneously active, we mechanically oscillated the haltere with a low-
frequency (5–15 Hz) sinusoidal stimulus before and during cell impalement.
The absence of spikes between stimulation events in our records confirmed
that these cells were not spontaneously active. The electrode was advanced
with a piezoelectric motor (MPM-10 Piezo translator with DC3001 motorized
micromanipulator; World Precision Instruments) until spikes were audible.
We recorded spiking responses from a total of 53 cells in eight animals. During
recording, we stimulated the haltere using a capillary tube (internal diameter
= 0.75 mm, external diameter = 1.0 mm) attached to a small motor (MicroMax
Series 671; Cambridge Technology, Inc.). The haltere tip was placed inside the
capillary tube and oscillated either in the approximate natural stroke plane
(dorsoventral) or in the plane orthogonal to the stroke plane (ante-
roposterior). Because we did not find any directional differences between
spike responses in our analyses, data from both planes were pooled. To
measure the motion of our motor directly, we placed a photodiode under-
neath the tip of the capillary tube and oscillated the motor with the same
white noise stimulus as used in experiments. We obtained an approximate
voltage-to-distance conversion factor by using themicromanipulator tomove
the motor 1 mm while recording the voltage in the photodiode. We then
recorded the photodiode’s voltage while oscillating the motor with our
experimental stimuli to obtain the stimulus voltage-to-distance conversion.
We found that, on average, a change in stimulus voltage of 1 V corresponded
to 0.5 mm of translation. Given an approximate haltere length of 4 mm and a
maximum stimulus voltage amplitude difference of 2.5 V, the maximum
haltere excursion during noise stimulation was ≈17°. Additionally, we tested
the motor’s ability to deliver the noise stimulus accurately by oscillating the
motor with our experimental stimuli and recording the photodiode’s voltage.
A Bode plot of the gain and phase between the stimulus voltage and the
photodiode’s voltage showed no significant gain or phase shift between the
input voltage and the resulting output.

The voltage input to the servo-motor was driven by the data acquisition
board, which was controlled with custom Matlab (The Mathworks) code. We
oscillatedthemotorusingband-limitedGaussiannoise(BLGN)withafrequency
range of 1–150 Hz, which includes frequencies below, at, and above the fre-
quency of naturally occurring Coriolis forces. In some recordings, we recorded
continuously for as long as possible. For these stimuli, we considered the
dataset to be sufficiently large if wewere able to collect >1,000 spikes. Thirty-
six such recordingswere obtained in seven animals, lasting amean of 5.56min
and capturing amean of 6,193 spikes. In other recordings, we interleaved 10 s
of random white noise with a single 10-s segment of white noise. These
repeated segments were used to generate raster plots and information cal-
culations. We obtained between 20 and 60 responses 10 s in length to
repeated segments in 25 cells in seven animals (six of which were also used in
the continuous-recording experiments above). Eight of these 25 cells were
among the 36 cells mentioned previously in which we obtained continuous
recordings with BLGN.

Data Analysis. Data were analyzed with custom-built Matlab software. Cell
voltages were bandpass-filtered (80–1,000 Hz), and spike times were dis-
criminated using a thresholded sliding-window algorithm (custom Matlab
code by M.S. Tu, University of Washington, Seattle, WA).

Jitter Calculation. Responses to repeated stimuli were binned into histograms
ataresolutionof1ms.Wedefinedaresponseeventasany1-msbin inwhichthe
meanfiring ratewas10 times thecell’sbaselinefiring rate. Fromthecollections
of all response events in the dataset, we determinedwhich events consisted of
single spikeswith no contaminating spikes in a 5-mswindowaround the event
(15). We found the time of the spike in this window for each trial and calcu-
lated jitter as the SD of the event time across all trials.

Covariance Analysis in Single Cells. We used covariance analysis to find the
stimulus features that had themost significant influenceon the spike response
(20). Using the continuous responses of 36 cells under BLGN stimulation, we
built the STE by selecting the stimulus history in a 40-ms time window before
each recorded spike in each cell. We excluded any spikes that occurred less
than 3ms after the previous spike, thus eliminating secondary spikes in bursts.
The mean of the STE is the STA. For each cell, we found the covariance matrix
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of the STE and subtracted the covariancematrix of theprior stimulus ensemble
to find the overall covariance matrix. We then found the eigenvalues and the
corresponding eigenvectors of this matrix (Fig. 3).

Singular Value Decomposition in the Population of Cells. We used singular
value decomposition to examine whether a small number of features could
capture the response properties of haltere primary afferents as a group (27,
28). Using covariance analysis as described previously, we found the four
most significant positive and negative features for each cell and identified a
pair of features within this set in which the second selected feature
resembled the derivative of the first. The singular value decomposition of a
matrix of these feature pairs was used to derive population features that
described the feature selectivity of the entire group of cells from which
we recorded.

Modeling Neural Responses Using Low-Dimensional Models. Using the meth-
ods of Fairhall et al. (20), we used the principal components of our covariance
matrices to predict spike rates to arbitrary stimuli. We used Bayes’ rule (20):

rðtÞ
�r

¼ Pðspike at tj~sÞ
Pðspike at tÞ ¼ Pð s!jspike at tÞ

Pð s!Þ [1]

Here, the vector s! is some representation of the stimulus: in principle, the
full time series of the input. In practice, we wished to use a lower dimen-
sional representation of the stimulus that captures most of the dependence
of the spiking output on the input. This is provided by the features derived
through reverse correlation. In this case, s! denotes the components of the
stimulus corresponding to the identified features. Thus, we projected the
STE and prior ensemble, respectively, onto one or more relevant features
(the first eigenvector, the derivative eigenvectors, or the population fea-
tures) and binned the resulting values to find Pð s!jspike at tÞand Pð s!Þ. The
quotient of these two probability histograms (Eq. 1) is a nonlinear function
of s! that predicts the time-varying firing rate rðtÞ=�r (Fig. 6). The firing rate
for a given arbitrary stimulus is therefore found by projecting it onto the
relevant feature(s) to determine s! and then looking up the corresponding
firing rate from the decision function.

We used data from the continuous white noise recordings to construct the
model and tested its ability to generalize to an arbitrary stimulus by pre-
dicting the firing rate in response to a novel 10-s random stimulus. In the
recording session, we repeated this random stimulus multiple times to allow
us to estimate the repeatability of the stimulus through calculations of jitter
and information.

Information Calculations. We used a method to measure information trans-
mission directly from the spiking responses. To measure information using
this “direct” method (21), we used the responses to repeated BLGN seg-
ments to compute

Ið1 spike; sÞ ¼ 1
T

Z T

0
dt
�
rðtÞ
�r

�
log2

�
rðtÞ
�r

�
[2]

where T is the total time of the repeated segment, r(t) is the mean spike rate
at a given time (averaged over several repeats), and �r is the overall spike rate
for the random segment. Because the spike rates and the computed infor-
mation content are dependent on the time bin resolution, we measured
information using decreasing bin sizes from 10 to 1 ms and extrapolated to
infinitely small bins using linear regression to calculate a 95% confidence
interval for the extrapolated point. Similarly, we ensured that we had a
sufficiently large number of repetitions by subsampling the data using a
fraction of the total repetitions and recalculating the information (given a
fixed bin size). We found that the information estimate stabilized quickly
with increasing repetitions. In all cells in which we collected more than 20
repetitions, the estimate reached an asymptote by 20 repetitions, suggesting
that 20 repetitions were sufficient to obtain a reliable direct information
estimate from all 25 cells. We removed any repeats during which the firing
rate was more than 20% above or below the mean firing rate across all trials
for that cell. We calculated information using the direct method on the set
of 25 cells and removed one large outlier with a very low firing rate from
our dataset.

To calculate information captured by the low-dimensional models, we
used the following equation developed by Fairhall et al. (20):

I ¼
Z

dKsPðs1; . . . ; sKÞlog2
Pðs1; . . . ; sK j spike at tÞ

Pðs1; . . . ; sK Þ [3]

where K is the number of dimensions used to construct the model. This
equation was used to compare the information content of models con-
structed with an individual cell’s derivative pair eigenvectors with models
made using the population features.
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